首页 > 最新文献

Physiological reviews最新文献

英文 中文
NETosis creates a link between diabetes and Long COVID. Netosis在糖尿病和长期新冠肺炎之间建立了联系。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-04-01 Epub Date: 2023-10-19 DOI: 10.1152/physrev.00032.2023
Alain R Thierry
{"title":"NETosis creates a link between diabetes and Long COVID.","authors":"Alain R Thierry","doi":"10.1152/physrev.00032.2023","DOIUrl":"10.1152/physrev.00032.2023","url":null,"abstract":"","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"651-654"},"PeriodicalIF":33.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49681334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. 间充质基质细胞用于改善急性心肌梗死后的心脏功能:时机问题。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-04-01 Epub Date: 2023-08-17 DOI: 10.1152/physrev.00009.2023
Stéphanie Barrère-Lemaire, Anne Vincent, Christian Jorgensen, Christophe Piot, Joël Nargeot, Farida Djouad

Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.

急性心肌梗死(AMI)是心血管疾病死亡的主要原因,也是心力衰竭最常见的原因。重新开放闭塞的动脉,即再灌注,是挽救心肌的唯一方法。然而,由于再灌注悖论也会诱发特异性细胞死亡,缩小梗死面积的预期效果令人失望。这些缺血再灌注(I/R)病变可占最终梗死面积的 50%,是死亡率和心力衰竭风险(发病率)的主要决定因素。在这篇综述中,我们将详细介绍作为 I/R 损伤特征的细胞死亡和炎症机制,以及缺血后处理等心脏保护策略及其内在机制。由于间充质基质/干细胞(MSCs)的生物特性,其使用被认为是急性心肌梗死的一种潜在治疗方法。尽管在使用间充质干细胞的临床前研究中取得了令人鼓舞的结果和安全性证据,但临床试验中报告的效果并不确定,甚至不一致。这些差异归因于许多参数,如供体年龄、体外培养和储存时间以及急性髓损伤后的注射时间窗,这些都会改变间充质干细胞的治疗特性。就急性心肌梗死而言,未来的方向将是产生具有更强特性的间充质干细胞,以限制心肌组织中的细胞死亡,从而缩小梗死面积,并改善愈合阶段以提高梗死后心肌的功能。
{"title":"Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing.","authors":"Stéphanie Barrère-Lemaire, Anne Vincent, Christian Jorgensen, Christophe Piot, Joël Nargeot, Farida Djouad","doi":"10.1152/physrev.00009.2023","DOIUrl":"10.1152/physrev.00009.2023","url":null,"abstract":"<p><p>Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"659-725"},"PeriodicalIF":33.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10033541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. CD36作为心肌脂质代谢的看门人和代谢性疾病的治疗靶点。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-04-01 Epub Date: 2023-10-26 DOI: 10.1152/physrev.00011.2023
Jan F C Glatz, Lisa C Heather, Joost J F P Luiken

The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H+-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.

多功能膜糖蛋白CD36在不同类型的细胞中表达,并在细胞脂质代谢中发挥关键的调节作用。CD36促进长链脂肪酸的细胞摄取,介导脂质信号传导,并通过活跃的脂质代谢调节各种组织中脂质的储存和氧化。CD36缺乏导致外周脂质代谢的显著损伤,由于代谢的综合性,从而影响多种不同燃料的细胞利用。CD36在质膜上的功能性存在由其从内体到内体的可逆亚细胞循环调节,并受机械、激素和营养因素的控制。CD36这种动态作用的异常与各种代谢性疾病,特别是胰岛素抵抗、糖尿病心肌病和心肌肥大有因果关系。最近对心肌的研究揭示了内体质子泵v-ATP酶是调节亚细胞CD36循环的关键酶,也是各种底物之间相互作用以确定细胞底物偏好的位点。此外,越来越多的证据表明,直接靶向CD36或调节其亚细胞循环的干预措施对治疗代谢性疾病是有效的。总之,亚细胞CD36定位是细胞摄取和代谢长链脂肪酸的主要适应性调节因子,是修复衰竭心脏的代谢调节疗法的合适靶点。
{"title":"CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease.","authors":"Jan F C Glatz, Lisa C Heather, Joost J F P Luiken","doi":"10.1152/physrev.00011.2023","DOIUrl":"10.1152/physrev.00011.2023","url":null,"abstract":"<p><p>The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H<sup>+</sup>-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"727-764"},"PeriodicalIF":33.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50162630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cannabinoid treatments in epilepsy and seizure disorders. 大麻素治疗癫痫和癫痫。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-04-01 Epub Date: 2023-10-26 DOI: 10.1152/physrev.00049.2021
Orrin Devinsky, Nicholas A Jones, Mark O Cunningham, B Ashan P Jayasekera, Sasha Devore, Benjamin J Whalley

Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.

自古以来,大麻就被用来治疗抽搐和其他疾病。在过去的几十年里,临床前动物研究和临床调查已经确定了大麻素(CBD)在治疗癫痫和癫痫发作中的作用,并支持大麻素在其他神经和精神疾病中的潜在治疗益处。在此,我们全面回顾大麻素在癫痫中的作用。我们简要回顾了介导中枢神经系统对大麻素反应的各种生理过程,包括D9-THC、大麻素二醇和萜烯。接下来,我们从急性癫痫发作和慢性癫痫发生的动物研究中描述了大麻素的抗惊厥和促惊厥作用。然后,我们回顾了使用大麻素治疗癫痫的临床文献,包括轶事证据和案例研究,以及最近的随机对照临床试验,这些试验导致美国食品药品监督管理局批准CBD治疗某些类型的癫痫。总的来说,我们试图评估我们目前对大麻素在癫痫中的理解,并将未来的研究重点放在未回答的问题上。
{"title":"Cannabinoid treatments in epilepsy and seizure disorders.","authors":"Orrin Devinsky, Nicholas A Jones, Mark O Cunningham, B Ashan P Jayasekera, Sasha Devore, Benjamin J Whalley","doi":"10.1152/physrev.00049.2021","DOIUrl":"10.1152/physrev.00049.2021","url":null,"abstract":"<p><p>Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ<sup>9</sup>-tetrahydrocannabinol (Δ<sup>9</sup>-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"591-649"},"PeriodicalIF":33.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50162629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is Notch1 a neglected vascular mechanosensor? Davis等人的社论。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-04-01 Epub Date: 2023-11-09 DOI: 10.1152/physrev.00033.2023
Brooke R Shepley, Anthony R Bain
{"title":"Is Notch1 a neglected vascular mechanosensor?","authors":"Brooke R Shepley, Anthony R Bain","doi":"10.1152/physrev.00033.2023","DOIUrl":"10.1152/physrev.00033.2023","url":null,"abstract":"","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"655-658"},"PeriodicalIF":33.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71522380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphodiesterase in heart and vessels: from physiology to diseases. 心脏和血管中的磷酸二酯酶——从生理学到疾病。
IF 29.9 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-04-01 Epub Date: 2023-11-16 DOI: 10.1152/physrev.00015.2023
Qin Fu, Ying Wang, Chen Yan, Yang K Xiang

Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.

磷酸二酯酶(PDEs)是一个水解环核苷酸的超家族酶,包括环腺苷单磷酸(cAMP)和环鸟苷单磷酸(cGMP),是心血管系统中神经激素调节的关键次级信使。PDEs以细胞和组织特异性的方式精确控制环核苷酸的时空亚细胞分布,在心脏和血管对激素刺激的生理反应中发挥关键作用。PDEs的失调与几种心血管疾病的发生有关,如高血压、动脉瘤、动脉粥样硬化、心律失常和心力衰竭(HF)。以这些酶为靶点治疗心血管疾病已被证明是有效的,是开发新药的一种有吸引力和前景的策略。在这篇综述中,我们将讨论目前对PDE异构体在心血管功能中的复杂调控的理解,强调PDE异构体在不同发病机制中的不同甚至相反的作用。
{"title":"Phosphodiesterase in heart and vessels: from physiology to diseases.","authors":"Qin Fu, Ying Wang, Chen Yan, Yang K Xiang","doi":"10.1152/physrev.00015.2023","DOIUrl":"10.1152/physrev.00015.2023","url":null,"abstract":"<p><p>Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"765-834"},"PeriodicalIF":29.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136398904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. 微生物群:在免疫稳态和呼吸道炎症中起着不可或缺的作用。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-04-01 Epub Date: 2023-12-07 DOI: 10.1152/physrev.00020.2023
Olaf Perdijk, Rossana Azzoni, Benjamin J Marsland

The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.

近十年来,微生物组研究强调了其在全身免疫和代谢稳态中的基本作用。当母亲的生活方式因素影响新生儿的免疫发育时,微生物组在妊娠期和生命早期起着突出的作用。母乳进一步塑造肠道定植,支持对共生细菌和无害抗原的耐受性的发展,同时防止病原体的生长。破坏这一过程的环境微生物和生活方式因素可使免疫稳态失调,使婴儿易患特应性疾病和儿童哮喘。在健康方面,低生物量的肺微生物组与吸入的环境微生物成分一起,建立了维持肺免疫防御所必需的免疫设定值。然而,在疾病中,对免疫和生理过程的扰动使上呼吸道成为致病细菌的储存库,这些细菌可以在患病的肺部定植并引起严重的炎症。研究这些宿主-微生物在呼吸系统疾病中的相互作用,对患者进行分层,以获得合适的治疗方案和发现生物标志物,以预测疾病进展具有很大的希望。临床前研究表明,共生肠道微生物处于细胞分裂和死亡的不断变化中,释放微生物成分、代谢副产物和囊泡,这些微生物成分、代谢副产物和囊泡塑造了免疫系统,可以预防呼吸道疾病。下一个重大进展可能来自于测试和利用这些微生物因素的临床效益,并通过采用多组学分析方法来开发微生物组的预测能力。
{"title":"The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract.","authors":"Olaf Perdijk, Rossana Azzoni, Benjamin J Marsland","doi":"10.1152/physrev.00020.2023","DOIUrl":"10.1152/physrev.00020.2023","url":null,"abstract":"<p><p>The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"835-879"},"PeriodicalIF":33.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138499247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lung endothelium, tau, and amyloids in health and disease. 健康和疾病中的肺内皮、tau 和淀粉样蛋白。
IF 29.9 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-04-01 Epub Date: 2023-08-10 DOI: 10.1152/physrev.00006.2023
Ron Balczon, Mike T Lin, Sarah Voth, Amy R Nelson, Jonas C Schupp, Brant M Wagener, Jean-Francois Pittet, Troy Stevens

Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.

动脉、毛细血管和静脉中的肺内皮在结构和功能上各不相同。尤其是肺毛细血管,它代表了一种独特的血管龛位,具有薄而限制性强的肺泡-毛细血管屏障,可优化气体交换。毛细血管内皮在检测血液的同时,还能解读由肺泡内部发出并通过紧邻的 I 型和 II 型上皮细胞、成纤维细胞和周细胞传递的信号。这种细胞间的交流是协调对下呼吸道感染的免疫反应所必需的。最近的研究发现,肺毛细血管内皮细胞中表达的微管相关蛋白 tau 在宿主与病原体的相互作用中扮演着重要角色。这种内皮 tau 能稳定屏障完整性所需的微管,但感染会促使细胞毒性 tau 变体的产生,这些变体被释放到呼吸道和血液循环中,导致内脏器官功能障碍。同样,β-淀粉样蛋白也会在感染过程中产生。β-淀粉样蛋白具有抗菌活性,但在感染过程中会产生细胞毒性,对宿主造成危害。这些细胞毒性 tau 和淀粉样蛋白变体的产生和功能是本综述的主题。肺源性细胞毒性 tau 和淀粉样蛋白变体是最近发现的一种在感染期间和感染后导致包括神经认知功能障碍在内的终末器官功能障碍的机制。
{"title":"Lung endothelium, tau, and amyloids in health and disease.","authors":"Ron Balczon, Mike T Lin, Sarah Voth, Amy R Nelson, Jonas C Schupp, Brant M Wagener, Jean-Francois Pittet, Troy Stevens","doi":"10.1152/physrev.00006.2023","DOIUrl":"10.1152/physrev.00006.2023","url":null,"abstract":"<p><p>Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"533-587"},"PeriodicalIF":29.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9957916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution, biomechanics, and neurobiology converge to explain selective finger motor control 进化论、生物力学和神经生物学共同解释手指运动控制的选择性
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-02-22 DOI: 10.1152/physrev.00030.2023
Jing Xu, Firas Mawase, Marc H. Schieber
Physiological Reviews, Ahead of Print.
生理学评论》,提前出版。
{"title":"Evolution, biomechanics, and neurobiology converge to explain selective finger motor control","authors":"Jing Xu, Firas Mawase, Marc H. Schieber","doi":"10.1152/physrev.00030.2023","DOIUrl":"https://doi.org/10.1152/physrev.00030.2023","url":null,"abstract":"Physiological Reviews, Ahead of Print. <br/>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"259 1","pages":""},"PeriodicalIF":33.6,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Community-acquired bacterial coinfections and COVID-19. 社区——获得性细菌感染和新冠肺炎。
IF 33.6 1区 医学 Q1 PHYSIOLOGY Pub Date : 2024-01-01 Epub Date: 2023-08-17 DOI: 10.1152/physrev.00010.2023
Michael John Patton, Amit Gaggar, Matthew Might, Nathaniel Erdmann, Carlos J Orihuela, Kevin S Harrod
{"title":"Community-acquired bacterial coinfections and COVID-19.","authors":"Michael John Patton,&nbsp;Amit Gaggar,&nbsp;Matthew Might,&nbsp;Nathaniel Erdmann,&nbsp;Carlos J Orihuela,&nbsp;Kevin S Harrod","doi":"10.1152/physrev.00010.2023","DOIUrl":"10.1152/physrev.00010.2023","url":null,"abstract":"","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"1-21"},"PeriodicalIF":33.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10016545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physiological reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1