首页 > 最新文献

Plant Biotechnology Reports最新文献

英文 中文
Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated mutagenesis of haploid inducer genes in Pak-choi plants (Brassica rapa ssp. chinensis) 建立农杆菌介导的遗传转化和 CRISPR/Cas9 介导的白屈菜单倍体诱导基因诱变技术
IF 2.4 4区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2024-03-26 DOI: 10.1007/s11816-024-00898-1
Young-Cheon Kim, May Phyo Thu, Falguni Maliha Rahman, Young Jae Yun, Jin Hoon Jang, Ok Ran Lee, Jeong Hwan Lee

Pak-choi (Brassica rapa ssp. chinensis) is a popular vegetative crop in southern China, East Asia, and Southeast Asia. Owing to the threat of climate change, rapid breeding strategies for vegetable cultivars that are tolerant to abiotic and biotic stresses are required. Thus, the rapid fixation of useful agronomic traits using doubled haploid technology is urgent. The haploid-inducer gene is key to doubled haploidization. Two known CENH3 and pPLAIIγ genes, in which altered or partially deleted forms lead to haploid induction, were selected, and direct editing of Pak-choi CENH3 and pPLAIIγ genes (BcCENH3 and BcpPLAIIγ) was conducted using an Agrobacterium-mediated CRISPR/Cas9 system. First, BcCENH3 and BcpPLAIIγ genes were characterized by analyzing the spatial expression patterns and subcellular localization. The CENH3 expression levels in carpels and pPLAIIγ in various parts of Pak-choi flowers were higher than those of other parts. BcCENH3 and BcpPLAIIγ proteins targeted in the nucleus and plasma membrane, respectively. Whole plants were successfully regenerated from the shoot apical meristem (SAM) regions of Pak-choi seedlings using the optimized procedure and culture conditions. The regeneration results of SAM explants after Agrobacterium-mediated transformation of constructs expressing CRISPR/Cas9 and BcCENH3 or BcpPLAIIγ sgRNAs confirmed four independent BcCENH3-targeted transgenic lines with 2.1%, 1.8%, 1.8%, and 1.7% INDEL frequencies, and three independent BcpPLAIIγ-targeted transgenic lines with 24.5%, 33.7%, and 33.0% INDEL frequencies. Thus, our results suggested the possibility of developing transgenic Pak-choi lines by applying the CRISPR/Cas9 genome editing technology to BcCENH3 and BcpPLAIIγ as two haploid-inducer genes.

白菜薹(Brassica rapa ssp. chinensis)是中国南方、东亚和东南亚广受欢迎的无性繁殖作物。由于气候变化的威胁,需要采取快速育种策略,培育能够承受非生物和生物胁迫的蔬菜栽培品种。因此,利用加倍单倍体技术快速固定有用的农艺性状迫在眉睫。单倍体诱导基因是双倍单倍体化的关键。我们选择了两个已知的 CENH3 和 pPLAIIγ 基因,它们的改变或部分缺失会导致单倍体诱导,并利用农杆菌介导的 CRISPR/Cas9 系统对 Pak-choi CENH3 和 pPLAIIγ 基因(BcCENH3 和 BcpPLAIIγ)进行了直接编辑。首先,通过分析 BcCENH3 和 BcpPLAIIγ 基因的空间表达模式和亚细胞定位,确定了它们的特征。CENH3在心皮的表达水平和pPLAIIγ在白菜花各部位的表达水平均高于其他部位。BcCENH3和BcpPLAIIγ蛋白分别定位于细胞核和质膜。采用优化的程序和培养条件,成功地从白菜幼苗的芽尖分生区(SAM)再生出了整株植物。用农杆菌介导转化表达 CRISPR/Cas9 和 BcCENH3 或 BcpPLAIIγ sgRNA 的构建体后,SAM 外植体的再生结果证实,4 个独立的 BcCENH3 靶向转基因品系的 INDEL 频率分别为 2.1%、1.8%、1.8% 和 1.7%,3 个独立的 BcpPLAIIγ 靶向转基因品系的 INDEL 频率分别为 24.5%、33.7% 和 33.0%。因此,我们的研究结果表明,通过对BcCENH3和BcpPLAIIγ这两个单倍体诱导基因应用CRISPR/Cas9基因组编辑技术,有可能培育出转基因白菜系。
{"title":"Establishment of an Agrobacterium-mediated genetic transformation and CRISPR/Cas9-mediated mutagenesis of haploid inducer genes in Pak-choi plants (Brassica rapa ssp. chinensis)","authors":"Young-Cheon Kim, May Phyo Thu, Falguni Maliha Rahman, Young Jae Yun, Jin Hoon Jang, Ok Ran Lee, Jeong Hwan Lee","doi":"10.1007/s11816-024-00898-1","DOIUrl":"https://doi.org/10.1007/s11816-024-00898-1","url":null,"abstract":"<p>Pak-choi (<i>Brassica rapa</i> ssp. <i>chinensis</i>) is a popular vegetative crop in southern China, East Asia, and Southeast Asia. Owing to the threat of climate change, rapid breeding strategies for vegetable cultivars that are tolerant to abiotic and biotic stresses are required. Thus, the rapid fixation of useful agronomic traits using doubled haploid technology is urgent. The haploid-inducer gene is key to doubled haploidization. Two known <i>CENH3</i> and <i>pPLAIIγ</i> genes, in which altered or partially deleted forms lead to haploid induction, were selected, and direct editing of Pak-choi <i>CENH3</i> and <i>pPLAIIγ</i> genes (<i>BcCENH3</i> and <i>BcpPLAIIγ</i>) was conducted using an <i>Agrobacterium</i>-mediated CRISPR/Cas9 system. First, <i>BcCENH3</i> and <i>BcpPLAIIγ</i> genes were characterized by analyzing the spatial expression patterns and subcellular localization. The <i>CENH3</i> expression levels in carpels and <i>pPLAIIγ</i> in various parts of Pak-choi flowers were higher than those of other parts. BcCENH3 and BcpPLAIIγ proteins targeted in the nucleus and plasma membrane, respectively. Whole plants were successfully regenerated from the shoot apical meristem (SAM) regions of Pak-choi seedlings using the optimized procedure and culture conditions. The regeneration results of SAM explants after <i>Agrobacterium</i>-mediated transformation of constructs expressing CRISPR/Cas9 and <i>BcCENH3</i> or <i>BcpPLAIIγ</i> sgRNAs confirmed four independent <i>BcCENH3</i>-targeted transgenic lines with 2.1%, 1.8%, 1.8%, and 1.7% INDEL frequencies, and three independent <i>BcpPLAIIγ</i>-targeted transgenic lines with 24.5%, 33.7%, and 33.0% INDEL frequencies. Thus, our results suggested the possibility of developing transgenic Pak-choi lines by applying the CRISPR/Cas9 genome editing technology to <i>BcCENH3</i> and <i>BcpPLAIIγ</i> as two haploid-inducer genes.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140315652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR–Cas13d in plant biology: an insight 植物生物学中的 CRISPR-Cas13d:一种见解
IF 2.4 4区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2024-03-21 DOI: 10.1007/s11816-024-00893-6
Jyotirmay Sarkar, Thakur Prava Jyoti, Soumitra Sahana, Arka Bhattacharya, Shivani Chandel, Rajveer Singh

Plants are among the many creatures that have benefited from the widespread application of the CRISPR-associated Cas system as a genome-editing tool for investigating gene function, identifying disease, and enhancing agricultural yields. Although the CRISPR/Cas systems for DNA editing are widely employed, post-transcriptional manipulation of RNA remains difficult despite the prevalence of Cas9. Type VI CRISPR/Cas systems, which were recently found, allow for precise RNA editing without permanently affecting the genome. Cas13d has been put to good use in RNA-related studies across a wide range of RNA knock-down, and RNA detection without affecting DNA. Regulation of cas13d specificity and activity helps to avoid the off-target effects and immune responses in plants. Cas13d as highly efficient RNA-targeting tools for the virus resistance, gene function studies, disease diagnostics, and crop improvement in plants. However, CRISPR/Cas13d applications in plant RNA biology are just getting started. This article discusses how RNA editing tools derived from the CRISPR/Cas13d system are currently being used and where they may be used in the future for plant research.

CRISPR相关的Cas系统作为基因组编辑工具被广泛应用于研究基因功能、识别疾病和提高农业产量,植物是其中受益的众多生物之一。尽管用于 DNA 编辑的 CRISPR/Cas 系统得到了广泛应用,但尽管 Cas9 已经普及,对 RNA 的转录后操作仍然困难重重。最近发现的第六类 CRISPR/Cas 系统可以在不永久影响基因组的情况下进行精确的 RNA 编辑。Cas13d 在 RNA 相关研究中得到了很好的应用,它可以在不影响 DNA 的情况下敲除大量 RNA 并检测 RNA。调控 Cas13d 的特异性和活性有助于避免脱靶效应和植物免疫反应。Cas13d 作为高效的 RNA 靶向工具,可用于植物的病毒抗性、基因功能研究、疾病诊断和作物改良。然而,CRISPR/Cas13d 在植物 RNA 生物学中的应用才刚刚起步。本文讨论了 CRISPR/Cas13d 系统衍生的 RNA 编辑工具目前的应用情况,以及未来可能用于植物研究的领域。
{"title":"CRISPR–Cas13d in plant biology: an insight","authors":"Jyotirmay Sarkar, Thakur Prava Jyoti, Soumitra Sahana, Arka Bhattacharya, Shivani Chandel, Rajveer Singh","doi":"10.1007/s11816-024-00893-6","DOIUrl":"https://doi.org/10.1007/s11816-024-00893-6","url":null,"abstract":"<p>Plants are among the many creatures that have benefited from the widespread application of the CRISPR-associated Cas system as a genome-editing tool for investigating gene function, identifying disease, and enhancing agricultural yields. Although the CRISPR/Cas systems for DNA editing are widely employed, post-transcriptional manipulation of RNA remains difficult despite the prevalence of Cas9. Type VI CRISPR/Cas systems, which were recently found, allow for precise RNA editing without permanently affecting the genome. Cas13d has been put to good use in RNA-related studies across a wide range of RNA knock-down, and RNA detection without affecting DNA. Regulation of cas13d specificity and activity helps to avoid the off-target effects and immune responses in plants. Cas13d as highly efficient RNA-targeting tools for the virus resistance, gene function studies, disease diagnostics, and crop improvement in plants. However, CRISPR/Cas13d applications in plant RNA biology are just getting started. This article discusses how RNA editing tools derived from the CRISPR/Cas13d system are currently being used and where they may be used in the future for plant research.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic and phenotypic diversity in Solanum lycopersicum genotypes: insights from morpho-molecular and biochemical analyses 番茄红素基因型的遗传和表型多样性:形态-分子和生化分析的启示
IF 2.4 4区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2024-03-12 DOI: 10.1007/s11816-024-00894-5

Abstract

Tomato (Solanum lycopersicum L.) crop is well-known for its versatility worldwide and is also recognized as model species used extensively for various genetic studies. The aim of this research was to investigate both inter and intra-genetic diversity present among various tomato genotypes. This investigation was carried out through a comprehensive analysis encompassing morphological observations, biochemical assessments, and the utilization of SSR markers. A total of 15 discrete agro-morphological traits and six biochemical traits were undertaken in the current study for evaluating the analysis of variance, genetic parameters and correlation. The analysis of variance indicated significant differences across genotypes for all 15 agro-morphological traits and 6 biochemical traits tested, indicating that the experimental material included considerable variability. Morphological clustering divided the genotypes into 2 clusters and the genotype wise distance matrix was obtained to identify the most diverse genotypes. PCA analysis was conducted to understand the directive relation of traits and magnitude of variability contributed by them. SSR profiling with 24 primers identified 44 alleles with 1.83 as mean number of alleles/SSR with an average PIC value of 0.31. Structure analysis revealed two sub-populations (K = 2). The AMOVA indicated that 98% of the total variation was present within populations. This study presents a roadmap for composing future breeding strategies for integrating desirable traits in novel tomato lines that combine robustness and nutritive value.

摘要 番茄(Solanum lycopersicum L.)因其用途广泛而闻名于世,也被公认为广泛用于各种遗传研究的模式物种。本研究的目的是调查各种番茄基因型之间和基因内部的多样性。这项研究是通过形态观察、生化评估和 SSR 标记利用等综合分析进行的。本研究共对 15 个离散农业形态特征和 6 个生化特征进行了方差分析、遗传参数和相关性评估。方差分析结果表明,在所有 15 个农业形态特征和 6 个生化特征测试中,不同基因型之间存在显著差异,这表明实验材料具有相当大的变异性。形态聚类将基因型分为 2 个聚类,并获得了基因型间的距离矩阵,以确定差异最大的基因型。通过 PCA 分析,了解了性状之间的指导关系及其变异程度。使用 24 个引物进行的 SSR 分析确定了 44 个等位基因,平均等位基因数/SSR 为 1.83,平均 PIC 值为 0.31。结构分析显示有两个亚群(K = 2)。AMOVA表明,98%的总变异存在于种群内部。这项研究为今后制定育种策略提供了路线图,以便在兼具稳健性和营养价值的新型番茄品系中整合理想的性状。
{"title":"Genetic and phenotypic diversity in Solanum lycopersicum genotypes: insights from morpho-molecular and biochemical analyses","authors":"","doi":"10.1007/s11816-024-00894-5","DOIUrl":"https://doi.org/10.1007/s11816-024-00894-5","url":null,"abstract":"<h3>Abstract</h3> <p>Tomato (<em>Solanum lycopersicum</em> L.) crop is well-known for its versatility worldwide and is also recognized as model species used extensively for various genetic studies. The aim of this research was to investigate both inter and intra-genetic diversity present among various tomato genotypes. This investigation was carried out through a comprehensive analysis encompassing morphological observations, biochemical assessments, and the utilization of SSR markers. A total of 15 discrete agro-morphological traits and six biochemical traits were undertaken in the current study for evaluating the analysis of variance, genetic parameters and correlation. The analysis of variance indicated significant differences across genotypes for all 15 agro-morphological traits and 6 biochemical traits tested, indicating that the experimental material included considerable variability. Morphological clustering divided the genotypes into 2 clusters and the genotype wise distance matrix was obtained to identify the most diverse genotypes. PCA analysis was conducted to understand the directive relation of traits and magnitude of variability contributed by them. SSR profiling with 24 primers identified 44 alleles with 1.83 as mean number of alleles/SSR with an average PIC value of 0.31. Structure analysis revealed two sub-populations (<em>K</em> = 2). The AMOVA indicated that 98% of the total variation was present within populations. This study presents a roadmap for composing future breeding strategies for integrating desirable traits in novel tomato lines that combine robustness and nutritive value.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140115424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular identification of DNA barcoding of Leguminous toxic species and quantitative analysis by ELISA kits 豆科有毒物种 DNA 条形码的分子鉴定和酶联免疫吸附试剂盒的定量分析
IF 2.4 4区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2024-03-05 DOI: 10.1007/s11816-024-00892-7
Jie Wang, Shuangyu Wang, Fenglin Sun, Chang Liu, Jinquan Zhao, Hongwei Yu, Xiaojing Lv, Ze Liu, Shuhua Bu, Weisen Yu

Some edible Leguminous are toxic when raw, and the Chinese are particularly fond of beans, so Leguminous poisoning is very common in China. Rapid and accurate identification of poisoned species and determination of their toxic components would better assist physicians in treating patients. However, traditional morphology-based identification methods possess many limitations. DNA barcoding technique is a new species identification technique developed in recent years, which is expected to make up for the shortcomings of traditional morphological identification. In this study, a comprehensive evaluation system based on DNA barcoding and ELISA kits was attempted. A total of 30 Leguminous toxic plants were collected, involving 9 genera and 10 species. We used simulated gastric fluid (SGF) to simulate the human gastric environment. Three markers (rbcL, trnH-psbA, and ITS) were amplified and sequenced for all untreated and 15 mock-digested samples. The validity of DNA barcoding for species identification was assessed using the Basic Local Alignment Search Tool (BLAST) method and the tree construction method. The levels of three toxic components (saponin, phytoagglutin and trasylol) were determined in all samples using ELISA kits. The amplification success rate of all three regions was high (rbcL 96.67%, trnH-psbA 100%, and ITS 100%), but the sequencing of the trnH-psbA region was less satisfactory (66.67%), and SGF had a significant impact on the sequencing of the ITS region (After 40 min of SGF treatment, the sequencing success rate decreased by 46.67%). The samples from different species and origins contained different levels of toxic components, and the levels of all three substances decreased significantly after undergoing SGF digestion. After 1 h of SGF treatment, the saponin content decreased to 0–8.60% in untreated content (PHA decreased to 8.62–36.88%, trasylol decreased to 4.70–47.06%). The current results suggest that DNA barcoding has great potential for rapid identification of Leguminous poisoning in clinical settings. Toxins are probably not detectable in the patient for longer periods of poisoning. We recommend DNA barcoding technology as a first step for rapid screening and combined with toxin analysis for clinical diagnosis.

一些可食用的豆科植物生吃有毒,而中国人又特别喜欢吃豆子,因此豆科植物中毒在中国非常常见。快速准确地鉴定中毒种类并确定其毒性成分,能更好地帮助医生治疗病人。然而,传统的基于形态学的鉴定方法存在很多局限性。DNA条形码技术是近年来发展起来的一种新的物种鉴定技术,有望弥补传统形态鉴定的不足。本研究尝试建立基于 DNA 条形编码和 ELISA 试剂盒的综合评价体系。共采集了 30 种豆科有毒植物,涉及 9 属 10 种。我们使用模拟胃液(SGF)来模拟人类胃部环境。对所有未处理样本和 15 个模拟消化样本的三个标记(rbcL、trnH-psbA 和 ITS)进行了扩增和测序。使用基本局部比对搜索工具(BLAST)方法和树构建方法评估了DNA条形码在物种鉴定中的有效性。使用酶联免疫吸附试剂盒测定了所有样本中三种有毒成分(皂苷、植物凝集素和三苯酚)的含量。三个区域的扩增成功率都很高(rbcL 96.67%、trnH-psbA 100%、ITS 100%),但 trnH-psbA 区域的测序结果不太理想(66.67%),SGF 对 ITS 区域的测序结果有明显影响(SGF 处理 40 分钟后,测序成功率下降了 46.67%)。不同物种和产地的样品含有不同含量的有毒成分,经过 SGF 消解后,这三种物质的含量都明显下降。经过 1 小时的 SGF 处理后,皂苷含量下降到未处理含量的 0-8.60%(PHA 下降到 8.62-36.88%,三苯酚下降到 4.70-47.06%)。目前的研究结果表明,DNA 条形码技术在临床上快速鉴定豆科植物中毒方面具有很大的潜力。中毒时间较长的患者体内可能检测不到毒素。我们建议将 DNA 条形码技术作为快速筛查的第一步,并结合毒素分析进行临床诊断。
{"title":"Molecular identification of DNA barcoding of Leguminous toxic species and quantitative analysis by ELISA kits","authors":"Jie Wang, Shuangyu Wang, Fenglin Sun, Chang Liu, Jinquan Zhao, Hongwei Yu, Xiaojing Lv, Ze Liu, Shuhua Bu, Weisen Yu","doi":"10.1007/s11816-024-00892-7","DOIUrl":"https://doi.org/10.1007/s11816-024-00892-7","url":null,"abstract":"<p>Some edible <i>Leguminous</i> are toxic when raw, and the Chinese are particularly fond of beans, so <i>Leguminous</i> poisoning is very common in China. Rapid and accurate identification of poisoned species and determination of their toxic components would better assist physicians in treating patients. However, traditional morphology-based identification methods possess many limitations. DNA barcoding technique is a new species identification technique developed in recent years, which is expected to make up for the shortcomings of traditional morphological identification. In this study, a comprehensive evaluation system based on DNA barcoding and ELISA kits was attempted. A total of 30 <i>Leguminous</i> toxic plants were collected, involving 9 genera and 10 species. We used simulated gastric fluid (SGF) to simulate the human gastric environment. Three markers (rbcL, trnH-psbA, and ITS) were amplified and sequenced for all untreated and 15 mock-digested samples. The validity of DNA barcoding for species identification was assessed using the Basic Local Alignment Search Tool (BLAST) method and the tree construction method. The levels of three toxic components (saponin, phytoagglutin and trasylol) were determined in all samples using ELISA kits. The amplification success rate of all three regions was high (rbcL 96.67%, trnH-psbA 100%, and ITS 100%), but the sequencing of the trnH-psbA region was less satisfactory (66.67%), and SGF had a significant impact on the sequencing of the ITS region (After 40 min of SGF treatment, the sequencing success rate decreased by 46.67%). The samples from different species and origins contained different levels of toxic components, and the levels of all three substances decreased significantly after undergoing SGF digestion. After 1 h of SGF treatment, the saponin content decreased to 0–8.60% in untreated content (PHA decreased to 8.62–36.88%, trasylol decreased to 4.70–47.06%). The current results suggest that DNA barcoding has great potential for rapid identification of <i>Leguminous</i> poisoning in clinical settings. Toxins are probably not detectable in the patient for longer periods of poisoning. We recommend DNA barcoding technology as a first step for rapid screening and combined with toxin analysis for clinical diagnosis.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140036982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular cloning, subcellular localization, and expression of BsWRKY51 gene from Bletilla striata 横纹金鱼 BsWRKY51 基因的分子克隆、亚细胞定位和表达
IF 2.4 4区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2024-03-02 DOI: 10.1007/s11816-024-00891-8
Shuangshuang Wang, Yuxia Zheng, Quanli Dou, Zhengling Zhang, Boping Zeng, Ying Li, Yongchun Qian, Li Ma

The WRKY transcription factor family plays a key role in plant growth and development, hormone signaling, and resistance to environmental stress. In this study, we investigated the gene sequence, subcellular localization, and response pattern of a member of the WRKY transcription factor family to reveal its protein structure and involvement in the resistance signaling pathway.The BsWRKY51 gene was cloned by RT-PCR, and the structural characteristics of its encoded protein WRKY51 were analyzed by bioinformatics. The vector was next transiently transformed into tobacco to analyze the subcellular localization, and real-time fluorescence quantitative PCR was performed to analyze the changes in the expression pattern of BsWRKY51. The BsWRKY51 gene has a coding sequence (CDS) length of 987 bp.The respective unstable hydrophilic protein BsWRKY51 is localized in the nucleus. It most closely related to the WRKY protein of Dendrobium catenatum in the Orchidaceae family. Fluorescence quantitative PCR results showed that the BsWRKY51 expression in the leaves was significantly higher than that in the roots, stems, and pseudobulbs of Bletilla striata seedlings. Under the conditions of salt and drought stress, the BsWRKY51 expression gradual increased and then a slightly decreased, and under salicylic acid (SA) treatment, the expression of BsWRKY51 showed an overall decreasing trend.The BsWRKY51 gene of Bletilla striata may play an important regulatory role in its salt and drought stress responses. Our present findings provide the foundation for elucidating the mechanisms of salt and drought tolerance in Bletilla striata and for breeding new varieties.

WRKY 转录因子家族在植物生长发育、激素信号转导和抗环境胁迫中起着关键作用。本研究研究了 WRKY 转录因子家族中一个成员的基因序列、亚细胞定位和响应模式,以揭示其蛋白结构和参与抗性信号通路的情况。然后将载体瞬时转化到烟草中分析其亚细胞定位,并进行实时荧光定量 PCR 分析 BsWRKY51 表达模式的变化。BsWRKY51基因的编码序列(CDS)长度为987 bp。它与兰科植物铁皮石斛的 WRKY 蛋白关系最为密切。荧光定量 PCR 结果表明,BsWRKY51 在叶片中的表达量明显高于根、茎和假鳞茎中的表达量。在盐胁迫和干旱胁迫条件下,BsWRKY51的表达量先逐渐增加后略有下降,而在水杨酸(SA)处理条件下,BsWRKY51的表达量总体呈下降趋势。本研究结果为阐明条纹叶女贞的耐盐和耐旱机制以及培育新品种奠定了基础。
{"title":"Molecular cloning, subcellular localization, and expression of BsWRKY51 gene from Bletilla striata","authors":"Shuangshuang Wang, Yuxia Zheng, Quanli Dou, Zhengling Zhang, Boping Zeng, Ying Li, Yongchun Qian, Li Ma","doi":"10.1007/s11816-024-00891-8","DOIUrl":"https://doi.org/10.1007/s11816-024-00891-8","url":null,"abstract":"<p>The WRKY transcription factor family plays a key role in plant growth and development, hormone signaling, and resistance to environmental stress. In this study, we investigated the gene sequence, subcellular localization, and response pattern of a member of the WRKY transcription factor family to reveal its protein structure and involvement in the resistance signaling pathway.The <i>BsWRKY51</i> gene was cloned by RT-PCR, and the structural characteristics of its encoded protein WRKY51 were analyzed by bioinformatics. The vector was next transiently transformed into tobacco to analyze the subcellular localization, and real-time fluorescence quantitative PCR was performed to analyze the changes in the expression pattern of <i>BsWRKY51</i>. The <i>BsWRKY51</i> gene has a coding sequence (CDS) length of 987 bp.The respective unstable hydrophilic protein BsWRKY51 is localized in the nucleus. It most closely related to the WRKY protein of <i>Dendrobium catenatum</i> in the Orchidaceae family. Fluorescence quantitative PCR results showed that the <i>BsWRKY51</i> expression in the leaves was significantly higher than that in the roots, stems, and pseudobulbs of <i>Bletilla striata</i> seedlings. Under the conditions of salt and drought stress, the <i>BsWRKY51</i> expression gradual increased and then a slightly decreased, and under salicylic acid (SA) treatment, the expression of <i>BsWRKY51</i> showed an overall decreasing trend.The <i>BsWRKY51</i> gene of <i>Bletilla striata</i> may play an important regulatory role in its salt and drought stress responses. Our present findings provide the foundation for elucidating the mechanisms of salt and drought tolerance in <i>Bletilla striata</i> and for breeding new varieties<i>.</i></p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140017517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient CRISPR/Cas9-mediated gene editing of the ZjEIN2 gene in Zoysia japonica CRISPR/Cas9 介导的对车轴草 ZjEIN2 基因的高效基因编辑
IF 2.4 4区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2024-02-29 DOI: 10.1007/s11816-024-00890-9
Jin Hee Kim, Mi-Young Park, Lanshuo Wang, Phan Phuong Thao Doan, Yueyue Yuan, Hyo-Yeon Lee, Jeongsik Kim

CRISPR/Cas9-based targeted gene editing has emerged as a versatile tool for deciphering gene function and improving traits in plants. However, this technique has not been applied to Zoysia japonica, a prominent warm-season turfgrass widely used for green spaces. Leaf senescence, a vital process affecting crop quality, occurs in Z. japonica during late growth, diminishing its aesthetic value and performance. In this study, we adeptly employed CRISPR/Cas9-mediated gene editing to create Z. japonica exhibiting delayed leaf senescence by targeting the ZjEIN2 gene, a crucial regulator of ethylene-mediated senescence. Precise gene editing, which generated knockout mutations in ZjEIN2, led to delayed leaf senescence in both dark and ethylene treatment conditions. This provided strong evidence for ZjEIN2’s role in leaf senescence regulation. These findings highlight the potential of CRISPR/Cas9-mediated gene editing as a biotechnological strategy to enhance anti-senescence traits in Z. japonica and potentially other crops. This study carries significant implications for sustainable agriculture and turfgrass management, offering promising avenues for future applications and research.

基于 CRISPR/Cas9 的靶向基因编辑技术已成为破译基因功能和改良植物性状的多功能工具。然而,这种技术尚未应用于广泛用于绿地的著名暖季型草坪--紫云英(Zoysia japonica)。叶片衰老是影响作物质量的一个重要过程,它发生在 Z. japonica 的生长后期,降低了其美学价值和性能。在这项研究中,我们巧妙地利用 CRISPR/Cas9 介导的基因编辑技术,通过靶向 ZjEIN2 基因(乙烯介导的衰老的关键调控因子),创造出具有延迟叶片衰老的 Z. japonica。精确的基因编辑产生了 ZjEIN2 基因的敲除突变,从而导致在黑暗和乙烯处理条件下叶片衰老延迟。这为 ZjEIN2 在叶片衰老调控中的作用提供了有力证据。这些发现凸显了 CRISPR/Cas9 介导的基因编辑作为一种生物技术策略来增强粳稻及其他作物抗衰老性状的潜力。这项研究对可持续农业和草坪管理具有重要意义,为未来的应用和研究提供了广阔的前景。
{"title":"Efficient CRISPR/Cas9-mediated gene editing of the ZjEIN2 gene in Zoysia japonica","authors":"Jin Hee Kim, Mi-Young Park, Lanshuo Wang, Phan Phuong Thao Doan, Yueyue Yuan, Hyo-Yeon Lee, Jeongsik Kim","doi":"10.1007/s11816-024-00890-9","DOIUrl":"https://doi.org/10.1007/s11816-024-00890-9","url":null,"abstract":"<p>CRISPR/Cas9-based targeted gene editing has emerged as a versatile tool for deciphering gene function and improving traits in plants. However, this technique has not been applied to <i>Zoysia japonica</i>, a prominent warm-season turfgrass widely used for green spaces. Leaf senescence, a vital process affecting crop quality, occurs in <i>Z. japonica</i> during late growth, diminishing its aesthetic value and performance. In this study, we adeptly employed CRISPR/Cas9-mediated gene editing to create <i>Z. japonica</i> exhibiting delayed leaf senescence by targeting the <i>ZjEIN2</i> gene, a crucial regulator of ethylene-mediated senescence. Precise gene editing, which generated knockout mutations in <i>ZjEIN2</i>, led to delayed leaf senescence in both dark and ethylene treatment conditions. This provided strong evidence for <i>ZjEIN2</i>’s role in leaf senescence regulation. These findings highlight the potential of CRISPR/Cas9-mediated gene editing as a biotechnological strategy to enhance anti-senescence traits in <i>Z. japonica</i> and potentially other crops. This study carries significant implications for sustainable agriculture and turfgrass management, offering promising avenues for future applications and research.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of physiological and biochemical activities of Eugenia uniflora by green-synthesized silver nanoparticle and melatonin under drought stress 干旱胁迫下绿色合成银纳米粒子和褪黑素对单叶洋金花生理生化活性的调节作用
IF 2.4 4区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2024-02-21 DOI: 10.1007/s11816-024-00887-4
Ayomide H. Labulo, Oyinade A. David, Augustine D. Terna, Timileyin P. Omotosho, Nicholas S. Tanko, Ibrahim Hassan, Bosede R. Oluwole, Adeyinka Odebode

The development of an effective and eco-friendly silver nanoparticle (AgNPs) to abate the effect of abiotic stress is an important area of nano-biotechnology. This study aimed to study the priming effect of plant-based green-synthesized silver nanoparticles and melatonin on the physiological and biochemical activities of drought-stressed E. uniflora. Sterilized seeds of E. uniflora were primed with 0.06 mg/l of ML-AgNPs, 0.06 mg/l of melatonin, and a nano-silver formulation of melatonin (1:1). Primed seeds were planted and subjected to 7 days under drought stress. The ML-AgNPs enhanced germination percentage, speed and vigor, and shoot elongation and induced the production of APx, CAT, and proline dehydrogenase (100% increases). Melatonin improved the activities of APx and CAT, total protein, accumulation of proline, and proline dehydrogenase (200% increases) and stabilized MDA content. Meanwhile, silver nano-formulation of melatonin increased leaves proliferation of leaves and production of APx, GPx, SOD, and CAT. Accumulation of proline and 100% upregulation of proline dehydrogenase osmo-regulated the effects of the drought, reduced MDA contents, and stabilized the excessive production of H2O2 and O2−. The ML-AgNO3 showed an efficient delivery system of melatonin into the plant under drought stress. As a result, our research shows that melatonin in silver nano-formulation (1:1) is a useful biostimulant against drought stress.

开发一种有效且环保的银纳米粒子(AgNPs)来减轻非生物胁迫的影响是纳米生物技术的一个重要领域。本研究旨在研究植物基绿色合成的银纳米粒子和褪黑素对干旱胁迫独叶草生理生化活性的促进作用。用 0.06 毫克/升的 ML-AgNPs、0.06 毫克/升的褪黑素和褪黑素的纳米银制剂(1:1)对灭菌的一枝黄花种子进行引种。种子播种后在干旱胁迫下生长 7 天。ML-AgNPs 提高了发芽率、发芽速度和活力、芽伸长率,并诱导产生 APx、CAT 和脯氨酸脱氢酶(增加 100%)。褪黑素提高了 APx 和 CAT、总蛋白、脯氨酸积累和脯氨酸脱氢酶的活性(提高了 200%),并稳定了 MDA 含量。同时,纳米银制剂褪黑素增加了叶片的增殖和 APx、GPx、SOD 和 CAT 的产生。脯氨酸的积累和脯氨酸脱氢酶的 100% 上调渗透调节了干旱的影响,降低了 MDA 含量,稳定了 H2O2 和 O2- 的过量产生。在干旱胁迫下,ML-AgNO3 显示出一种高效的褪黑激素植物输送系统。因此,我们的研究表明,银纳米配方(1:1)中的褪黑素是一种有效的抗旱生物刺激剂。
{"title":"Modulation of physiological and biochemical activities of Eugenia uniflora by green-synthesized silver nanoparticle and melatonin under drought stress","authors":"Ayomide H. Labulo, Oyinade A. David, Augustine D. Terna, Timileyin P. Omotosho, Nicholas S. Tanko, Ibrahim Hassan, Bosede R. Oluwole, Adeyinka Odebode","doi":"10.1007/s11816-024-00887-4","DOIUrl":"https://doi.org/10.1007/s11816-024-00887-4","url":null,"abstract":"<p>The development of an effective and eco-friendly silver nanoparticle (AgNPs) to abate the effect of abiotic stress is an important area of nano-biotechnology. This study aimed to study the priming effect of plant-based green-synthesized silver nanoparticles and melatonin on the physiological and biochemical activities of drought-stressed <i>E. uniflora</i>. Sterilized seeds of <i>E. uniflora</i> were primed with 0.06 mg/l of ML-AgNPs, 0.06 mg/l of melatonin, and a nano-silver formulation of melatonin (1:1). Primed seeds were planted and subjected to 7 days under drought stress. The ML-AgNPs enhanced germination percentage, speed and vigor, and shoot elongation and induced the production of APx, CAT, and proline dehydrogenase (100% increases). Melatonin improved the activities of APx and CAT, total protein, accumulation of proline, and proline dehydrogenase (200% increases) and stabilized MDA content. Meanwhile, silver nano-formulation of melatonin increased leaves proliferation of leaves and production of APx, GPx, SOD, and CAT. Accumulation of proline and 100% upregulation of proline dehydrogenase osmo-regulated the effects of the drought, reduced MDA contents, and stabilized the excessive production of H<sub>2</sub>O<sub>2</sub> and O<sup>2−</sup>. The ML-AgNO<sub>3</sub> showed an efficient delivery system of melatonin into the plant under drought stress. As a result, our research shows that melatonin in silver nano-formulation (1:1) is a useful biostimulant against drought stress.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139921451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biotechnological strategies to decipher the functions of abiotic stress-associated genes in soybean 解读大豆非生物胁迫相关基因功能的生物技术策略
IF 2.4 4区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2024-02-20 DOI: 10.1007/s11816-024-00888-3
Ruby Tiwari, Manchikatla V. Rajam

Soybean is one of the richest and cheapest proteins and vegetable oil sources. It is adapted to grow in a varied environment; however, yield loss occurs due to multiple abiotic stresses. Abiotic stresses negatively impact plant growth and development, damaging the crop and decreasing productivity. The last two decades have focused tremendously on improving soybean productivity by dissecting physiological and molecular mechanisms for developing abiotic stress-tolerant varieties. Here, we present a review with a comprehensive outlook on the biotechnological approaches to explore the pathways involved in abiotic stress tolerance in soybean. The review focuses on summarizing transgenic and RNA interference-based strategies as well as genome editing tools to validate the function of abiotic stress-associated genes in soybean. We have also highlighted the significant challenges faced in increasing soybean yield against climatic changes using diverse techniques.

大豆是最丰富、最廉价的蛋白质和植物油来源之一。大豆适应在各种环境中生长,但多种非生物胁迫会导致产量下降。非生物胁迫会对植物的生长和发育产生负面影响,损害作物并降低产量。在过去的二十年里,人们一直致力于通过剖析大豆的生理和分子机制来开发耐受非生物胁迫的品种,从而提高大豆的产量。在此,我们对探索大豆耐受非生物胁迫途径的生物技术方法进行了综述和全面展望。综述重点总结了基于转基因和 RNA 干扰的策略以及基因组编辑工具,以验证大豆中与非生物胁迫相关基因的功能。我们还强调了利用各种技术提高大豆产量以应对气候变化所面临的重大挑战。
{"title":"Biotechnological strategies to decipher the functions of abiotic stress-associated genes in soybean","authors":"Ruby Tiwari, Manchikatla V. Rajam","doi":"10.1007/s11816-024-00888-3","DOIUrl":"https://doi.org/10.1007/s11816-024-00888-3","url":null,"abstract":"<p>Soybean is one of the richest and cheapest proteins and vegetable oil sources. It is adapted to grow in a varied environment; however, yield loss occurs due to multiple abiotic stresses. Abiotic stresses negatively impact plant growth and development, damaging the crop and decreasing productivity. The last two decades have focused tremendously on improving soybean productivity by dissecting physiological and molecular mechanisms for developing abiotic stress-tolerant varieties. Here, we present a review with a comprehensive outlook on the biotechnological approaches to explore the pathways involved in abiotic stress tolerance in soybean. The review focuses on summarizing transgenic and RNA interference-based strategies as well as genome editing tools to validate the function of abiotic stress-associated genes in soybean. We have also highlighted the significant challenges faced in increasing soybean yield against climatic changes using diverse techniques.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139928268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marker-assisted selection for scab resistance and columnar growth habit in inter-varietal population of apple (Malus × domestica) 标记辅助选择苹果(Malus × domestica)变种间群体的疮痂病抗性和柱状生长习性
IF 2.4 4区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2024-01-30 DOI: 10.1007/s11816-024-00889-2
Aatifa Rasool, K. M. Bhat, M. A. Mir, A. S. Sundouri, Salha Mesfer ALshamrani, Abeer S. Aloufi, Diaa Abd El Moneim, Sheikh Mansoor, Yong Suk Chung

In recent years, there has been significant progress in enhancing the genetic foundation underlying important agricultural traits such as resistance to scab and the development of a columnar growth habit. V. inaequalis is a hemibiotrophic fungus widely distributed in temperate regions where apples are grown on commercial scale. The present investigation was undertaken to identify Vf gene and Co gene, which, respectively, confer resistance against apple scab disease and columnar phenotype in apple cultivar ‘Rosalie’ and introgression of both the genes in commercially important cultivar ‘Fuji’. Polymorphism survey was carried out between the two parents using 22 simple sequence repeat (SSR) and sequence-characterized amplified region (SCAR) markers. The observations revealed that almost 50% hybrids fall in resistant category and 50% in susceptible category. The results of marker-assisted screening confirmed 38 F1s carrying resistance gene for scab while the remaining 32 F1 plants were found to be lacking the gene. The 38 genotypically scab-resistant hybrids were selected for further characterization as columnar and non-columnar plants. Based on the selection criteria, 21 individuals were categorized as columnar and the remaining 17 were categorized as non-columnar. The phenotypic screening was followed by screening of F1 s using molecular markers for Co gene. The amplification of Co-specific markers yielded columnar-specific fragments in the population and fitted the expected 1:1 Mendelian ratio. 18 scab-resistant F1 hybrids were found to carry Co gene and the remaining 20 did not possess the gene for columnar growth habit. Gene-specific primers identified in the present study can be directly used for screening large apple germplasm in a short period of time for developing resistant varieties against apple scab as well as varieties with columnar growth habit. Hybrids with verified scab resistance and columnar growth can be swiftly utilized as scab-resistant columnar cultivars.

近年来,在提高抗疮痂病和柱状生长习性等重要农业性状的遗传基础方面取得了重大进展。V. inaequalis 是一种半生营养真菌,广泛分布于苹果商业化种植的温带地区。本研究旨在鉴定 Vf 基因和 Co 基因,它们分别赋予苹果栽培品种 "Rosalie "对苹果疮痂病和柱状表型的抗性,并将这两种基因导入商业上重要的栽培品种 "Fuji"。利用 22 个简单序列重复(SSR)和序列特征扩增区(SCAR)标记对两个亲本进行了多态性调查。观察结果显示,近 50%的杂交种属于抗性类别,50%属于易感类别。标记辅助筛选的结果证实,38 个 F1 植株携带疮痂病抗性基因,其余 32 个 F1 植株则缺乏该基因。这 38 个基因型上抗疮痂病的杂交种被选作柱状植株和非柱状植株进行进一步鉴定。根据选择标准,21 个个体被归类为柱状植株,其余 17 个个体被归类为非柱状植株。表型筛选之后,使用 Co 基因分子标记对 F1 进行筛选。通过扩增 Co 特异性标记,在群体中发现了柱状特异性片段,并符合预期的 1:1 孟德尔比例。结果发现,18 个抗疮痂病的 F1 代杂交种携带 Co 基因,其余 20 个则不携带柱状生长习性基因。本研究确定的基因特异性引物可直接用于在短时间内筛选大量苹果种质,以培育抗苹果疮痂病的品种和具有柱状生长习性的品种。经证实具有疮痂病抗性和柱状生长习性的杂交种可迅速用作抗疮痂病的柱状栽培品种。
{"title":"Marker-assisted selection for scab resistance and columnar growth habit in inter-varietal population of apple (Malus × domestica)","authors":"Aatifa Rasool, K. M. Bhat, M. A. Mir, A. S. Sundouri, Salha Mesfer ALshamrani, Abeer S. Aloufi, Diaa Abd El Moneim, Sheikh Mansoor, Yong Suk Chung","doi":"10.1007/s11816-024-00889-2","DOIUrl":"https://doi.org/10.1007/s11816-024-00889-2","url":null,"abstract":"<p>In recent years, there has been significant progress in enhancing the genetic foundation underlying important agricultural traits such as resistance to scab and the development of a columnar growth habit. <i>V. inaequalis</i> is a hemibiotrophic fungus widely distributed in temperate regions where apples are grown on commercial scale. The present investigation was undertaken to identify <i>Vf</i> gene and <i>Co</i> gene, which, respectively, confer resistance against apple scab disease and columnar phenotype in apple cultivar ‘Rosalie’ and introgression of both the genes in commercially important cultivar ‘Fuji’. Polymorphism survey was carried out between the two parents using 22 simple sequence repeat (SSR) and sequence-characterized amplified region (SCAR) markers. The observations revealed that almost 50% hybrids fall in resistant category and 50% in susceptible category. The results of marker-assisted screening confirmed 38 F<sub>1</sub>s carrying resistance gene for scab while the remaining 32 F<sub>1</sub> plants were found to be lacking the gene. The 38 genotypically scab-resistant hybrids were selected for further characterization as columnar and non-columnar plants. Based on the selection criteria, 21 individuals were categorized as columnar and the remaining 17 were categorized as non-columnar. The phenotypic screening was followed by screening of F<sub>1</sub> s using molecular markers for <i>Co</i> gene. The amplification of <i>Co</i>-specific markers yielded columnar-specific fragments in the population and fitted the expected 1:1 Mendelian ratio. 18 scab-resistant F<sub>1</sub> hybrids were found to carry <i>Co</i> gene and the remaining 20 did not possess the gene for columnar growth habit. Gene-specific primers identified in the present study can be directly used for screening large apple germplasm in a short period of time for developing resistant varieties against apple scab as well as varieties with columnar growth habit. Hybrids with verified scab resistance and columnar growth can be swiftly utilized as scab-resistant columnar cultivars.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139644796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and expression profile of dhurrin biosynthesis pathway genes in sorghum vegetative tissues 高粱无性组织中 Dhurrin 生物合成途径基因的鉴定和表达谱图
IF 2.4 4区 生物学 Q2 Agricultural and Biological Sciences Pub Date : 2024-01-30 DOI: 10.1007/s11816-024-00886-5
Sri Cindhuri Katamreddy, Bommineni Pradeep Reddy, Polavarapu B Kavi Kishor, Are Ashok Kumar, Palakolanu Sudhakar Reddy

Sorghum is considered a fifth major cereal, widely used as a multipurpose crop worldwide. The use of sorghum as a major forage crop is limited due to cyanogenic glycoside dhurrin in the vegetative shoot tissues. This cyanogenic glycoside is harmful to livestock when fed as fodder. The present study selected three sorghum genotypes for estimating hydrogen cyanide potential (HCNp) in vegetative tissues under well-watered (WW) conditions. The HCNp concentration varied from genotype to genotype and ranged from 364 to 512 ppm. The HCNp estimation was observed more in ICSR 14001 with 511 ppm, followed by ICSV 93046 (443 ppm) and CSH 24 MF (364 ppm). A significant difference was noticed between the genotypes. Sequence information of dhurrin biosynthesis pathway genes was retrieved and characterized using different bioinformatic tools. The gene expression analysis of dhurrin biosynthesis pathway genes showed different expression patterns, with the highest in ICSV 93046 and less in ICSR 14001 and CSH 24 MF. Genes CYP79A1, CYP71E1 and UGT85B1 showed a 2.5- to 4 fold increase in ICSV 93046 and no significant expression in ICSR 14001 and CSH 24 MF. The genotype CSH 24 MF observed a 1.5-fold increase in CYP79A1 gene expression, and the other genes observed no significant increase. This study assisted in identifying the contrasting genotypes inducing HCNp and the key genes of the dhurrin pathway producing hydrogen cyanide (HCN) under WW conditions, which can be used as potential candidates for gene editing, providing safe feed for the livestock.

高粱被认为是第五大谷物,在全世界被广泛用作多用途作物。由于高粱的无性枝条组织中含有氰基糖苷 Dhurrin,因此高粱作为主要饲料作物的使用受到了限制。这种氰苷作为饲料喂养牲畜会对牲畜造成危害。本研究选择了三种高粱基因型,以估测其在水分充足(WW)条件下无性组织中的氰化氢含量(HCNp)。不同基因型的 HCNp 浓度不同,范围在 364 至 512 ppm 之间。在 ICSR 14001 中观察到的 HCNp 估计值较高,为 511 ppm,其次是 ICSV 93046(443 ppm)和 CSH 24 MF(364 ppm)。不同基因型之间存在明显差异。利用不同的生物信息学工具检索并鉴定了 Dhurrin 生物合成途径基因的序列信息。Dhurrin 生物合成途径基因的基因表达分析显示出不同的表达模式,在 ICSV 93046 中最高,而在 ICSR 14001 和 CSH 24 MF 中较低。基因 CYP79A1、CYP71E1 和 UGT85B1 在 ICSV 93046 中的表达量增加了 2.5 至 4 倍,而在 ICSR 14001 和 CSH 24 MF 中则没有明显表达。在基因型 CSH 24 MF 中,CYP79A1 基因的表达量增加了 1.5 倍,其他基因的表达量没有明显增加。这项研究有助于确定在 WW 条件下诱导 HCNp 的不同基因型以及产生氰化氢(HCN)的 Dhurrin 通路的关键基因,这些基因型可作为基因编辑的潜在候选基因,为牲畜提供安全饲料。
{"title":"Identification and expression profile of dhurrin biosynthesis pathway genes in sorghum vegetative tissues","authors":"Sri Cindhuri Katamreddy, Bommineni Pradeep Reddy, Polavarapu B Kavi Kishor, Are Ashok Kumar, Palakolanu Sudhakar Reddy","doi":"10.1007/s11816-024-00886-5","DOIUrl":"https://doi.org/10.1007/s11816-024-00886-5","url":null,"abstract":"<p>Sorghum is considered a fifth major cereal, widely used as a multipurpose crop worldwide. The use of sorghum as a major forage crop is limited due to cyanogenic glycoside dhurrin in the vegetative shoot tissues. This cyanogenic glycoside is harmful to livestock when fed as fodder. The present study selected three sorghum genotypes for estimating hydrogen cyanide potential (HCNp) in vegetative tissues under well-watered (WW) conditions. The HCNp concentration varied from genotype to genotype and ranged from 364 to 512 ppm. The HCNp estimation was observed more in ICSR 14001 with 511 ppm, followed by ICSV 93046 (443 ppm) and CSH 24 MF (364 ppm). A significant difference was noticed between the genotypes. Sequence information of dhurrin biosynthesis pathway genes was retrieved and characterized using different bioinformatic tools. The gene expression analysis of dhurrin biosynthesis pathway genes showed different expression patterns, with the highest in ICSV 93046 and less in ICSR 14001 and CSH 24 MF. Genes <i>CYP79A1</i>, <i>CYP71E1</i> and <i>UGT85B1</i> showed a 2.5- to 4 fold increase in ICSV 93046 and no significant expression in ICSR 14001 and CSH 24 MF. The genotype CSH 24 MF observed a 1.5-fold increase in <i>CYP79A1</i> gene expression, and the other genes observed no significant increase. This study assisted in identifying the contrasting genotypes inducing HCNp and the key genes of the dhurrin pathway producing hydrogen cyanide (HCN) under WW conditions, which can be used as potential candidates for gene editing, providing safe feed for the livestock.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139644901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Biotechnology Reports
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1