Rice blast is one of the most hazardous diseases affecting rice production. Previously, we discovered that the Atp2 protein of Rhodopseudomonas palustris could significantly inhibit the appressorium formation and pathogenicity of Magnaporthe oryzae. However, the molecular mechanism of this fungus has remained unknown. This study revealed that Atp2 can enter the cell and interact with the ribosomal protein MoRpl12 of M. oryzae, directly affecting the expression of the MoRpl12 protein. Silencing the MoRPL12 gene can affect cell wall integrity, growth, conidiogenesis, and fungal pathogenicity. The quantitative reverse transcription PCR results showed significant changes in the expression of conidiation-related genes in the MoRPL12 gene-silenced mutants or in the Atp2 protein-treated plants. We further found that Atp2 treatment can influence the expression of ribosomal-related genes, such as RPL, in M. oryzae. Our study revealed a novel antifungal mechanism by which the Atp2 protein binds to the ribosomal protein MoRpl12 and inhibits the pathogenicity of rice blast fungus, providing a new potential target for rice blast prevention and control.
{"title":"<i>Rhodopseudomonas palustris</i> Atp2 Protein Exerts Antifungal Effects by Targeting the Ribosomal Protein MoRpl12 in <i>Magnaporthe oryzae</i>.","authors":"Chunyan Chen, Xiyang Wu, Qiang Huang, Yingfei Qin, Chenggang Li, Xin Zhang, Pei Wang, Xinqiu Tan, Yong Liu, Yue Chen, Deyong Zhang","doi":"10.1094/PHYTO-05-24-0169-R","DOIUrl":"10.1094/PHYTO-05-24-0169-R","url":null,"abstract":"<p><p>Rice blast is one of the most hazardous diseases affecting rice production. Previously, we discovered that the Atp2 protein of <i>Rhodopseudomonas palustris</i> could significantly inhibit the appressorium formation and pathogenicity of <i>Magnaporthe oryzae.</i> However, the molecular mechanism of this fungus has remained unknown. This study revealed that Atp2 can enter the cell and interact with the ribosomal protein MoRpl12 of <i>M. oryzae</i>, directly affecting the expression of the MoRpl12 protein. Silencing the <i>MoRPL12</i> gene can affect cell wall integrity, growth, conidiogenesis, and fungal pathogenicity. The quantitative reverse transcription PCR results showed significant changes in the expression of conidiation-related genes in the <i>MoRPL12</i> gene-silenced mutants or in the Atp2 protein-treated plants. We further found that Atp2 treatment can influence the expression of ribosomal-related genes, such as <i>RPL</i>, in <i>M. oryzae</i>. Our study revealed a novel antifungal mechanism by which the Atp2 protein binds to the ribosomal protein MoRpl12 and inhibits the pathogenicity of rice blast fungus, providing a new potential target for rice blast prevention and control.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2235-2243"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-13DOI: 10.1094/PHYTO-11-23-0443-R
Stephen C Boushell, Mengjun Hu
In this study, in planta assays were conducted to assess the effects of fungicide spray tactics, such as the reduction of the labeled fungicide dose and mixture with a multisite fungicide, on fungicide resistance selection and disease control using Vitis vinifera 'Cabernet Sauvignon' grown in a greenhouse for 2 years. The entire clusters were inoculated with Botrytis cinerea isolates at varying frequencies of fenhexamid resistance, followed by fungicide sprays and disease and fenhexamid resistance investigations at critical phenological stages. Our findings indicate that the lower dose of the at-risk fungicide, fenhexamid, effectively managed fenhexamid resistance and disease as well as the higher, labeled dose. In addition, a mixture with the multisite fungicide captan generally resulted a net-positive effect on both resistance management and disease control.
{"title":"Validation of Fungicide Spray Strategies and Selection for Fenhexamid Resistance in <i>Botrytis cinerea</i> on Greenhouse-Grown Grapevines.","authors":"Stephen C Boushell, Mengjun Hu","doi":"10.1094/PHYTO-11-23-0443-R","DOIUrl":"10.1094/PHYTO-11-23-0443-R","url":null,"abstract":"<p><p>In this study, in planta assays were conducted to assess the effects of fungicide spray tactics, such as the reduction of the labeled fungicide dose and mixture with a multisite fungicide, on fungicide resistance selection and disease control using <i>Vitis vinifera</i> 'Cabernet Sauvignon' grown in a greenhouse for 2 years. The entire clusters were inoculated with <i>Botrytis cinerea</i> isolates at varying frequencies of fenhexamid resistance, followed by fungicide sprays and disease and fenhexamid resistance investigations at critical phenological stages. Our findings indicate that the lower dose of the at-risk fungicide, fenhexamid, effectively managed fenhexamid resistance and disease as well as the higher, labeled dose. In addition, a mixture with the multisite fungicide captan generally resulted a net-positive effect on both resistance management and disease control.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2244-2251"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerasus × yedoensis (cherry 'Somei-yoshino' Fujino) is affected by bacterial gall disease caused by Pseudomonas syringae pv. cerasicola (PSC). C. × yedoensis is often infected with PSC under weak light intensity, which indicates that susceptibility of C. × yedoensis to PSC is affected by light. To evaluate the effects of white light intensity and different light qualities, white or blue, on bacterial gall disease development, we quantitatively assessed the anatomical and histological features of bacterial-inoculated sites on branches of 2-year-old potted C. × yedoensis seedlings grown under different light intensities and qualities. The stronger the white light intensity, the less severe the gall symptoms. Gall formation was suppressed more by blue than white light of the same intensity. The validity of a simple gall index for assessing gall development with the naked eye, via quantitative evaluation of gall shape by measuring gall height, width, and volume, showed that the gall index could be used as a practical method for on-site assessments of gall development. The ratio of degeneration area in the gall remained constant, suggesting the presence of some regulatory mechanism preventing PSC from affecting the entire gall within the plant. Microscopy showed that the gall tissue is composed primarily of callus cells and has voids containing gummy material that is exuded from cracks in the gall, and the periderm develops at the gall foot but not at the gall apex, so the cells at the gall apex were necrotic or collapsed.
{"title":"Effects of Different Light Conditions on Anatomical and Histological Features of Galls in Bacterial Gall Disease of <i>Cerasus</i> × <i>yedoensis</i>.","authors":"Takefumi Ikeda, Misaki Okuda, Makoto Ishihara, Yasuo Kon-No","doi":"10.1094/PHYTO-06-22-0221-R","DOIUrl":"10.1094/PHYTO-06-22-0221-R","url":null,"abstract":"<p><p><i>Cerasus</i> × <i>yedoensis</i> (cherry 'Somei-yoshino' Fujino) is affected by bacterial gall disease caused by <i>Pseudomonas syringae</i> pv. <i>cerasicola</i> (PSC). <i>C.</i> × <i>yedoensis</i> is often infected with PSC under weak light intensity, which indicates that susceptibility of <i>C.</i> × <i>yedoensis</i> to PSC is affected by light. To evaluate the effects of white light intensity and different light qualities, white or blue, on bacterial gall disease development, we quantitatively assessed the anatomical and histological features of bacterial-inoculated sites on branches of 2-year-old potted <i>C</i>. × <i>yedoensis</i> seedlings grown under different light intensities and qualities. The stronger the white light intensity, the less severe the gall symptoms. Gall formation was suppressed more by blue than white light of the same intensity. The validity of a simple gall index for assessing gall development with the naked eye, via quantitative evaluation of gall shape by measuring gall height, width, and volume, showed that the gall index could be used as a practical method for on-site assessments of gall development. The ratio of degeneration area in the gall remained constant, suggesting the presence of some regulatory mechanism preventing PSC from affecting the entire gall within the plant. Microscopy showed that the gall tissue is composed primarily of callus cells and has voids containing gummy material that is exuded from cracks in the gall, and the periderm develops at the gall foot but not at the gall apex, so the cells at the gall apex were necrotic or collapsed.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2196-2206"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-16DOI: 10.1094/PHYTO-04-24-0147-R
Yao Xiao, Shatrupa Ray, Saul Burdman, Doron Teper
Xanthomonas species are specialized plant pathogens, often exhibiting a narrow host range. They rely on the translocation of effector proteins through the type III secretion system to colonize their respective hosts. The effector arsenal varies among Xanthomonas spp., typically displaying species-specific compositions. This species-specific effector composition, collectively termed the effectorome, is thought to influence host specialization. We determined the plant host-derived effectoromes of more than 300 deposited genomes of Xanthomonas species associated with either Solanaceae or Brassicaceae hosts. Comparative analyses revealed clear species-specific effectorome signatures. However, Solanaceae or Brassicaceae host-associated effectorome signatures were not detected. Nevertheless, host biases in the presence or absence of specific effector classes were observed. To assess whether host-associated effector absence results from selective pressures, we introduced effectors unique to Solanaceae pathogens to X. campestris pv. campestris and effectors unique to Brassicaceae pathogens to X. euvesicatoria pv. euvesicatoria (Xeue) and evaluated if these introductions hindered virulence on their respective hosts. Introducing the effector XopI into X. campestris pv. campestris reduced virulence on white cabbage leaves without affecting localized or systemic colonization. Introducing the XopAC or XopJ5 effectors into Xeue reduced virulence and colonization on tomato but not on pepper. Additionally, XopAC and XopJ5 induced a hypersensitive response on tomato leaves when delivered by Xeue or through Agrobacterium-mediated transient expression, confirming recognition in tomato. This study demonstrates the role of host-derived selection in establishing species-specific effectoromes, identifying XopAC and XopJ5 as recognized effectors in tomato.
{"title":"Host-Driven Selection, Revealed by Comparative Analysis of <i>Xanthomonas</i> Type III Secretion Effectoromes, Unveils Novel Recognized Effectors.","authors":"Yao Xiao, Shatrupa Ray, Saul Burdman, Doron Teper","doi":"10.1094/PHYTO-04-24-0147-R","DOIUrl":"10.1094/PHYTO-04-24-0147-R","url":null,"abstract":"<p><p><i>Xanthomonas</i> species are specialized plant pathogens, often exhibiting a narrow host range. They rely on the translocation of effector proteins through the type III secretion system to colonize their respective hosts. The effector arsenal varies among <i>Xanthomonas</i> spp., typically displaying species-specific compositions. This species-specific effector composition, collectively termed the effectorome, is thought to influence host specialization. We determined the plant host-derived effectoromes of more than 300 deposited genomes of <i>Xanthomonas</i> species associated with either <i>Solanaceae</i> or <i>Brassicaceae</i> hosts. Comparative analyses revealed clear species-specific effectorome signatures. However, <i>Solanaceae</i> or <i>Brassicaceae</i> host-associated effectorome signatures were not detected. Nevertheless, host biases in the presence or absence of specific effector classes were observed. To assess whether host-associated effector absence results from selective pressures, we introduced effectors unique to <i>Solanaceae</i> pathogens to <i>X. campestris</i> pv. <i>campestris</i> and effectors unique to <i>Brassicaceae</i> pathogens to <i>X. euvesicatoria</i> pv. <i>euvesicatoria</i> (Xeue) and evaluated if these introductions hindered virulence on their respective hosts. Introducing the effector XopI into <i>X. campestris</i> pv. <i>campestris</i> reduced virulence on white cabbage leaves without affecting localized or systemic colonization. Introducing the XopAC or XopJ5 effectors into Xeue reduced virulence and colonization on tomato but not on pepper. Additionally, XopAC and XopJ5 induced a hypersensitive response on tomato leaves when delivered by Xeue or through <i>Agrobacterium</i>-mediated transient expression, confirming recognition in tomato. This study demonstrates the role of host-derived selection in establishing species-specific effectoromes, identifying XopAC and XopJ5 as recognized effectors in tomato.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2207-2220"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-04DOI: 10.1094/PHYTO-01-24-0017-R
Lifang Ye, Weigang Kuang, Lianhu Zhang, Yachun Lin, Yifan Zhang, Xiaotang Sun, Ruqiang Cui
Fusarium commune is the main pathogen of lotus rhizome rot, which causes the wilt of many plants. Histone acetyltransferase plays a critical part in the growth and virulence of fungi. In the present study, we identified an FcElp3 in F. commune homologous to histone acetyltransferase Elp3. We further constructed a mutant strain of F. commune to determine the function of FcElp3 in fungal growth and pathogenicity. The results showed that the deletion of FcElp3 resulted in reduced mycelial growth and sporulation. Compared with the wild type, the ΔFcElp3 strain showed more tolerance to osmotic stress and cell wall stress responses but was highly sensitive to oxidative stress. The subcellular localization results indicated that FcElp3 was distributed in both the cytoplasm and nucleus. Western blotting showed that FcElp3 was important for acetylation of H3K14 and H4K8. RNA sequencing analysis showed significant transcriptional changes in the ΔFcElp3 mutant, with 3,098 genes upregulated and 5,770 genes downregulated. Peroxisome was the most significantly enriched metabolic pathway for downregulated genes. This led to a significant decrease in the expression of the core transcription factor Fcap1 involved in the oxidative stress response. Pathogenicity tests revealed that the ΔFcElp3 mutant's pathogenicity on lotus was significantly decreased. Together, these findings clearly demonstrated that FcElp3 was involved in fungal growth, development, stress response, and pathogenicity via the direct regulation of multiple target genes.
{"title":"Functional Characterization of the Histone Acetyltransferase <i>FcElp3</i> in Lotus Rhizome Rot-Causing Fungus <i>Fusarium commune</i>.","authors":"Lifang Ye, Weigang Kuang, Lianhu Zhang, Yachun Lin, Yifan Zhang, Xiaotang Sun, Ruqiang Cui","doi":"10.1094/PHYTO-01-24-0017-R","DOIUrl":"10.1094/PHYTO-01-24-0017-R","url":null,"abstract":"<p><p><i>Fusarium commune</i> is the main pathogen of lotus rhizome rot, which causes the wilt of many plants. Histone acetyltransferase plays a critical part in the growth and virulence of fungi. In the present study, we identified an FcElp3 in <i>F. commune</i> homologous to histone acetyltransferase Elp3. We further constructed a mutant strain of <i>F. commune</i> to determine the function of FcElp3 in fungal growth and pathogenicity. The results showed that the deletion of FcElp3 resulted in reduced mycelial growth and sporulation. Compared with the wild type, the Δ<i>FcElp3</i> strain showed more tolerance to osmotic stress and cell wall stress responses but was highly sensitive to oxidative stress. The subcellular localization results indicated that FcElp3 was distributed in both the cytoplasm and nucleus. Western blotting showed that FcElp3 was important for acetylation of H3K14 and H4K8. RNA sequencing analysis showed significant transcriptional changes in the Δ<i>FcElp3</i> mutant, with 3,098 genes upregulated and 5,770 genes downregulated. Peroxisome was the most significantly enriched metabolic pathway for downregulated genes. This led to a significant decrease in the expression of the core transcription factor <i>Fcap1</i> involved in the oxidative stress response. Pathogenicity tests revealed that the Δ<i>FcElp3</i> mutant's pathogenicity on lotus was significantly decreased. Together, these findings clearly demonstrated that <i>FcElp3</i> was involved in fungal growth, development, stress response, and pathogenicity via the direct regulation of multiple target genes.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2300-2309"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1094/phyto-10-23-0366-ia
Jaime Cubero,Pablo J Zarco-Tejada,Sara Cuesta-Morrondo,Ana Palacio-Bielsa,Juan A Navas-Cortés,Pilar Sabuquillo,Tomás Poblete,Blanca B Landa,Jerson Garita-Cambronero
Detecting plant pathogens and diagnosing diseases are critical components of successful pest management. These key areas have undergone significant advancements driven by breakthroughs in molecular biology and remote sensing technologies within the realm of precision agriculture. Notably, nucleic acid amplification techniques, with recent emphasis on sequencing procedures, particularly next-generation sequencing, have enabled improved DNA or RNA amplification detection protocols that now enable previously unthinkable strategies aimed at dissecting plant microbiota, including the disease-causing components. Simultaneously, the domain of remote sensing has seen the emergence of cutting-edge imaging sensor technologies and the integration of powerful computational tools, such as machine learning. These innovations enable spectral analysis of foliar symptoms and specific pathogen-induced alterations, making imaging spectroscopy and thermal imaging fundamental tools for large-scale disease surveillance and monitoring. These technologies contribute significantly to understanding the temporal and spatial dynamics of plant diseases.
检测植物病原体和诊断病害是成功病虫害管理的关键组成部分。在精准农业领域,分子生物学和遥感技术的突破推动了这些关键领域的重大进展。值得注意的是,核酸扩增技术以及最近强调的测序程序,特别是下一代测序,改进了 DNA 或 RNA 扩增检测规程,现在可以采用以前无法想象的策略来剖析植物微生物群,包括致病成分。与此同时,遥感领域也出现了尖端的成像传感器技术,并集成了强大的计算工具,如机器学习。这些创新技术能够对叶面症状和特定病原体引起的变化进行光谱分析,使成像光谱学和热成像成为大规模病害监测和监控的基本工具。这些技术大大有助于了解植物病害的时空动态。
{"title":"New Approaches to Plant Pathogen Detection and Disease Diagnosis.","authors":"Jaime Cubero,Pablo J Zarco-Tejada,Sara Cuesta-Morrondo,Ana Palacio-Bielsa,Juan A Navas-Cortés,Pilar Sabuquillo,Tomás Poblete,Blanca B Landa,Jerson Garita-Cambronero","doi":"10.1094/phyto-10-23-0366-ia","DOIUrl":"https://doi.org/10.1094/phyto-10-23-0366-ia","url":null,"abstract":"Detecting plant pathogens and diagnosing diseases are critical components of successful pest management. These key areas have undergone significant advancements driven by breakthroughs in molecular biology and remote sensing technologies within the realm of precision agriculture. Notably, nucleic acid amplification techniques, with recent emphasis on sequencing procedures, particularly next-generation sequencing, have enabled improved DNA or RNA amplification detection protocols that now enable previously unthinkable strategies aimed at dissecting plant microbiota, including the disease-causing components. Simultaneously, the domain of remote sensing has seen the emergence of cutting-edge imaging sensor technologies and the integration of powerful computational tools, such as machine learning. These innovations enable spectral analysis of foliar symptoms and specific pathogen-induced alterations, making imaging spectroscopy and thermal imaging fundamental tools for large-scale disease surveillance and monitoring. These technologies contribute significantly to understanding the temporal and spatial dynamics of plant diseases.","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":"44 1","pages":"PHYTO10230366IA"},"PeriodicalIF":3.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142220025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-09-12DOI: 10.1094/PHYTO-04-24-0138-R
Rebekah A Frampton, Louise S Shuey, Charles C David, Georgia M Pringle, Falk Kalamorz, Geoff S Pegg, David Chagné, Grant R Smith
Austropuccinia psidii is the causal pathogen of myrtle rust disease of Myrtaceae. To gain understanding of the initial infection process, gene expression in germinating A. psidii urediniospores and in Leptospermum scoparium-inoculated leaves were investigated via analyses of RNA sequencing samples taken 24 and 48 h postinoculation (hpi). Principal component analyses of transformed transcript count data revealed differential gene expression between the uninoculated L. scoparium control plants that correlated with the three plant leaf resistance phenotypes (immunity, hypersensitive response, and susceptibility). Gene expression in the immune resistant plants did not significantly change in response to fungal inoculation, whereas susceptible plants showed differential expression of genes in response to fungal challenge. A putative disease resistance gene, jg24539.t1, was identified in the L. scoparium hypersensitive response phenotype family. Expression of this gene may be associated with the phenotype and could be important for further understanding the plant hypersensitive response to A. psidii challenge. Differential expression of pathogen genes was found between samples taken 24 and 48 hpi, but there were no significant differences in pathogen gene expression that were associated with the three different plant leaf resistance phenotypes. There was a significant decrease in the abundance of fungal transcripts encoding three putative effectors and a putative carbohydrate-active enzyme between 24 and 48 hpi, suggesting that the encoded proteins are important during the initial phase of infection. These transcripts, or their translated proteins, may be potential targets to impede the early phases of fungal infection by this wide-host-range obligate biotrophic basidiomycete.
{"title":"Analysis of Plant and Fungal Transcripts from Resistant and Susceptible Phenotypes of <i>Leptospermum scoparium</i> Challenged by <i>Austropuccinia psidii</i>.","authors":"Rebekah A Frampton, Louise S Shuey, Charles C David, Georgia M Pringle, Falk Kalamorz, Geoff S Pegg, David Chagné, Grant R Smith","doi":"10.1094/PHYTO-04-24-0138-R","DOIUrl":"10.1094/PHYTO-04-24-0138-R","url":null,"abstract":"<p><p><i>Austropuccinia psidii</i> is the causal pathogen of myrtle rust disease of Myrtaceae. To gain understanding of the initial infection process, gene expression in germinating <i>A. psidii</i> urediniospores and in <i>Leptospermum scoparium</i>-inoculated leaves were investigated via analyses of RNA sequencing samples taken 24 and 48 h postinoculation (hpi). Principal component analyses of transformed transcript count data revealed differential gene expression between the uninoculated <i>L. scoparium</i> control plants that correlated with the three plant leaf resistance phenotypes (immunity, hypersensitive response, and susceptibility). Gene expression in the immune resistant plants did not significantly change in response to fungal inoculation, whereas susceptible plants showed differential expression of genes in response to fungal challenge. A putative disease resistance gene, jg24539.t1, was identified in the <i>L. scoparium</i> hypersensitive response phenotype family. Expression of this gene may be associated with the phenotype and could be important for further understanding the plant hypersensitive response to <i>A. psidii</i> challenge. Differential expression of pathogen genes was found between samples taken 24 and 48 hpi, but there were no significant differences in pathogen gene expression that were associated with the three different plant leaf resistance phenotypes. There was a significant decrease in the abundance of fungal transcripts encoding three putative effectors and a putative carbohydrate-active enzyme between 24 and 48 hpi, suggesting that the encoded proteins are important during the initial phase of infection. These transcripts, or their translated proteins, may be potential targets to impede the early phases of fungal infection by this wide-host-range obligate biotrophic basidiomycete.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2121-2130"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-09-09DOI: 10.1094/PHYTO-12-23-0498-R
Liangliang Zhu, Lin Tang, Xiangrong Tian, Yayuan Bai, Lili Huang
Valsa pyri, the causal agent of pear canker disease, typically induces cankers on the bark of infected trees and even leads to tree mortality. Secondary metabolites produced by pathogenic fungi play a crucial role in the pathogenic process. In this study, secondary metabolic regulator VpLaeA was identified in V. pyri. VpLaeA was found to strongly affect the pathogenicity, fruiting body formation, and toxicity of secondary metabolites of V. pyri. Additionally, VpLaeA was found to be required for the response of V. pyri to some abiotic stresses. Transcriptome data analysis revealed that many of differentially expressed genes were involved in the secondary metabolite biosynthesis. Among them, about one third of secondary metabolite biosynthesis core genes were regulated by VpLaeA at different periods. Seven differentially expressed secondary metabolite biosynthesis core genes (VpPKS9, VpPKS10, VpPKS33, VpNRPS6, VpNRPS7, VpNRPS16, and VpNRPS17) were selected for knockout. Two modular polyketide synthase genes (VpPKS10 and VpPKS33) that were closely related to the virulence of V. pyri from the above seven genes were identified. Notably, VpPKS10 and VpPKS33 also affected the production of fruiting body of V. pyri but did not participate in the resistance of V. pyri to abiotic stresses. Overall, this study demonstrates the multifaceted biological functions of VpLaeA in V. pyri and identifies two toxicity-associated polyketide synthase genes in Valsa species fungi for the first time.
{"title":"Two Polyketide Synthase Genes, <i>VpPKS10</i> and <i>VpPKS33</i>, Regulated by VpLaeA Are Essential to the Virulence of <i>Valsa pyri</i>.","authors":"Liangliang Zhu, Lin Tang, Xiangrong Tian, Yayuan Bai, Lili Huang","doi":"10.1094/PHYTO-12-23-0498-R","DOIUrl":"10.1094/PHYTO-12-23-0498-R","url":null,"abstract":"<p><p><i>Valsa pyri</i>, the causal agent of pear canker disease, typically induces cankers on the bark of infected trees and even leads to tree mortality. Secondary metabolites produced by pathogenic fungi play a crucial role in the pathogenic process. In this study, secondary metabolic regulator VpLaeA was identified in <i>V. pyri</i>. <i>VpLaeA</i> was found to strongly affect the pathogenicity, fruiting body formation, and toxicity of secondary metabolites of <i>V. pyri</i>. Additionally, <i>VpLaeA</i> was found to be required for the response of <i>V. pyri</i> to some abiotic stresses. Transcriptome data analysis revealed that many of differentially expressed genes were involved in the secondary metabolite biosynthesis. Among them, about one third of secondary metabolite biosynthesis core genes were regulated by <i>VpLaeA</i> at different periods. Seven differentially expressed secondary metabolite biosynthesis core genes (<i>VpPKS9</i>, <i>VpPKS10</i>, <i>VpPKS33</i>, <i>VpNRPS6</i>, <i>VpNRPS7</i>, <i>VpNRPS16</i>, and <i>VpNRPS17</i>) were selected for knockout. Two modular polyketide synthase genes (<i>VpPKS10</i> and <i>VpPKS33</i>) that were closely related to the virulence of <i>V. pyri</i> from the above seven genes were identified. Notably, <i>VpPKS10</i> and <i>VpPKS33</i> also affected the production of fruiting body of <i>V. pyri</i> but did not participate in the resistance of <i>V. pyri</i> to abiotic stresses. Overall, this study demonstrates the multifaceted biological functions of <i>VpLaeA</i> in <i>V. pyri</i> and identifies two toxicity-associated polyketide synthase genes in <i>Valsa</i> species fungi for the first time.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2071-2083"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-09-13DOI: 10.1094/PHYTO-02-24-0056-KC
Yassine Bouhouch, Qassim Esmaeel, Nicolas Richet, Essaïd Aït Barka, Aurélie Backes, Luiz Angelo Steffenel, Majida Hafidi, Cédric Jacquard, Lisa Sanchez
Net blotch disease caused by Drechslera teres is a major fungal disease that affects barley (Hordeum vulgare) plants and can result in significant crop losses. In this study, we developed a deep learning model to quantify net blotch disease symptoms on different days postinfection on seedling leaves using Cascade R-CNN (region-based convolutional neural network) and U-Net (a convolutional neural network) architectures. We used a dataset of barley leaf images with annotations of net blotch disease to train and evaluate the model. The model achieved an accuracy of 95% for Cascade R-CNN in net blotch disease detection and a Jaccard index score of 0.99, indicating high accuracy in disease quantification and location. The combination of Cascade R-CNN and U-Net architectures improved the detection of small and irregularly shaped lesions in the images at 4 days postinfection, leading to better disease quantification. To validate the model developed, we compared the results obtained by automated measurement with a classical method (necrosis diameter measurement) and a pathogen detection by real-time PCR. The proposed deep learning model could be used in automated systems for disease quantification and to screen the efficacy of potential biocontrol agents to protect against disease.
{"title":"Deep Learning-Based Barley Disease Quantification for Sustainable Crop Production.","authors":"Yassine Bouhouch, Qassim Esmaeel, Nicolas Richet, Essaïd Aït Barka, Aurélie Backes, Luiz Angelo Steffenel, Majida Hafidi, Cédric Jacquard, Lisa Sanchez","doi":"10.1094/PHYTO-02-24-0056-KC","DOIUrl":"10.1094/PHYTO-02-24-0056-KC","url":null,"abstract":"<p><p>Net blotch disease caused by <i>Drechslera teres</i> is a major fungal disease that affects barley (<i>Hordeum vulgare</i>) plants and can result in significant crop losses. In this study, we developed a deep learning model to quantify net blotch disease symptoms on different days postinfection on seedling leaves using Cascade R-CNN (region-based convolutional neural network) and U-Net (a convolutional neural network) architectures. We used a dataset of barley leaf images with annotations of net blotch disease to train and evaluate the model. The model achieved an accuracy of 95% for Cascade R-CNN in net blotch disease detection and a Jaccard index score of 0.99, indicating high accuracy in disease quantification and location. The combination of Cascade R-CNN and U-Net architectures improved the detection of small and irregularly shaped lesions in the images at 4 days postinfection, leading to better disease quantification. To validate the model developed, we compared the results obtained by automated measurement with a classical method (necrosis diameter measurement) and a pathogen detection by real-time PCR. The proposed deep learning model could be used in automated systems for disease quantification and to screen the efficacy of potential biocontrol agents to protect against disease.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2045-2054"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-08-14DOI: 10.1094/PHYTO-03-24-0105-PER
Peter Balint-Kurti, Jerald Pataky
The southern corn leaf blight epidemic of 1970 caused estimated losses of about 16% for the U.S. corn crop, equivalent to about $8 billion in current terms. The epidemic was caused by the prevalence of Texas male sterile cytoplasm (cms-T), used to produce most of the hybrid corn seed planted that year, combined with the emergence of a novel race of the fungus Cochliobolus heterostrophus that was exquisitely virulent on cms-T corn. Remarkably, the epidemic lasted just a single year. This episode has often been portrayed in the literature and textbooks over the last 50 years as a catastrophic mistake perpetrated by corn breeders and seed companies of the time who did not understand or account for the dangers of crop genetic uniformity. In this perspective article, we aim to present an alternative interpretation of these events. First, we contend that, rather than being caused by a grievous error on the part of the corn breeding and seed industry, this epidemic was a particularly unfortunate, unusual, and unlucky consequence of a technological advancement intended to improve the efficiency of corn seed production for America's farmers. Second, we tell the story of the resolution of the epidemic as an example of timely, meticulously applied research in the public sector for the public good.
{"title":"Reconsidering the Lessons Learned from the 1970 Southern Corn Leaf Blight Epidemic.","authors":"Peter Balint-Kurti, Jerald Pataky","doi":"10.1094/PHYTO-03-24-0105-PER","DOIUrl":"10.1094/PHYTO-03-24-0105-PER","url":null,"abstract":"<p><p>The southern corn leaf blight epidemic of 1970 caused estimated losses of about 16% for the U.S. corn crop, equivalent to about $8 billion in current terms. The epidemic was caused by the prevalence of Texas male sterile cytoplasm (<i>cms</i>-T), used to produce most of the hybrid corn seed planted that year, combined with the emergence of a novel race of the fungus <i>Cochliobolus heterostrophus</i> that was exquisitely virulent on <i>cms</i>-T corn. Remarkably, the epidemic lasted just a single year. This episode has often been portrayed in the literature and textbooks over the last 50 years as a catastrophic mistake perpetrated by corn breeders and seed companies of the time who did not understand or account for the dangers of crop genetic uniformity. In this perspective article, we aim to present an alternative interpretation of these events. First, we contend that, rather than being caused by a grievous error on the part of the corn breeding and seed industry, this epidemic was a particularly unfortunate, unusual, and unlucky consequence of a technological advancement intended to improve the efficiency of corn seed production for America's farmers. Second, we tell the story of the resolution of the epidemic as an example of timely, meticulously applied research in the public sector for the public good.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2007-2016"},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}