Pub Date : 2024-10-21DOI: 10.1094/PHYTO-03-24-0088-R
Belnaser A Busnena, Ludger Beerhues, Benye Liu
Apple replant disease (ARD) is a serious soilborne disease in apple nurseries and orchards worldwide. ARD is the result of an unbalanced soil microbiome in which multiple soil-borne plant pathogenic fungi, oomycetes and nematodes form a disease complex. Biphenyl and dibenzofuran phytoalexins are found in greater quantities in the roots of apple plants grown in ARD soil compared to disinfected ARD soil. However, the contribution of these compounds to plant health or disease is not yet understood. Here, the antimicrobial activity of fourteen chemically synthesized biphenyl and dibenzofuran phytoalexins was tested against eight selected microorganisms isolated from either rhizosphere soils or apple roots. These included five potentially beneficial bacteria (Rhodococcus pseudokoreensis strain R79T, Rhodococcus koreensis strain R85, Streptomyces pulveraceus strain ES16, Streptomyces ciscaucasicus GS2, Priestia megaterium strain B1), two ARD fungal pathogens (Ilyonectria robusta H131 and Dactylonectria torresensis N3) and one oomycete (Globisporangium terrestre). Two phytoalexin mixtures reflecting the percentages of the individual compounds inside the roots (Mixture A) and the root exudate (Mixture B) were also tested. The two phytoalexin mixtures demonstrated a higher antimicrobial activity than the individual phytoalexins, suggesting a synergistic effect. The minimum inhibitory concentration (MIC) and the half maximal effective concentration (EC50) values determined to be active against the eight microbes were within a range of 2.5-fold the ecologically relevant phytoalexin concentration (approximately 33 and 24 µg ml-1 in roots and exudates, respectively). The results contribute to our understanding of the impact of apple root phytoalexins on ARD and suggest potential strategies for disease management.
{"title":"Biphenyl and dibenzofuran phytoalexins differentially inhibit root-associated microbiota in apple, including fungal and oomycetal replant disease pathogens.","authors":"Belnaser A Busnena, Ludger Beerhues, Benye Liu","doi":"10.1094/PHYTO-03-24-0088-R","DOIUrl":"https://doi.org/10.1094/PHYTO-03-24-0088-R","url":null,"abstract":"<p><p>Apple replant disease (ARD) is a serious soilborne disease in apple nurseries and orchards worldwide. ARD is the result of an unbalanced soil microbiome in which multiple soil-borne plant pathogenic fungi, oomycetes and nematodes form a disease complex. Biphenyl and dibenzofuran phytoalexins are found in greater quantities in the roots of apple plants grown in ARD soil compared to disinfected ARD soil. However, the contribution of these compounds to plant health or disease is not yet understood. Here, the antimicrobial activity of fourteen chemically synthesized biphenyl and dibenzofuran phytoalexins was tested against eight selected microorganisms isolated from either rhizosphere soils or apple roots. These included five potentially beneficial bacteria (<i>Rhodococcus pseudokoreensis</i> strain R79<sup>T</sup>, <i>Rhodococcus koreensis</i> strain R85, <i>Streptomyces pulveraceus</i> strain ES16, <i>Streptomyces ciscaucasicus</i> GS2, <i>Priestia megaterium</i> strain B1), two ARD fungal pathogens (<i>Ilyonectria robusta</i> H131 and <i>Dactylonectria torresensis</i> N3) and one oomycete (<i>Globisporangium terrestre</i>). Two phytoalexin mixtures reflecting the percentages of the individual compounds inside the roots (Mixture A) and the root exudate (Mixture B) were also tested. The two phytoalexin mixtures demonstrated a higher antimicrobial activity than the individual phytoalexins, suggesting a synergistic effect. The minimum inhibitory concentration (MIC) and the half maximal effective concentration (EC<sub>50</sub>) values determined to be active against the eight microbes were within a range of 2.5-fold the ecologically relevant phytoalexin concentration (approximately 33 and 24 µg ml<sup>-1</sup> in roots and exudates, respectively). The results contribute to our understanding of the impact of apple root phytoalexins on ARD and suggest potential strategies for disease management.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1094/PHYTO-08-24-0269-FI
Monica Higuita, Juliana Sanchez-Yali, Alejandra Perez, Engie Arias, Pablo A Gutierrez
Passifloraceae is a plant family that includes several species of interest in the food, medicinal, and ornamental industries. The most relevant species are the purple and yellow varieties of P. edulis, which are among the most highly prized tropical fruits in the international markets. Unfortunately, the rapid expansion of this crop worldwide has resulted in the emergence of several viral diseases that endangered the productivity of this crop. In this work, we performed an integrated analysis of the Passifloraceae virome using public data. We investigated Pubmed and Genbank records and analyzed all the transcriptome data available for members of this plant family. This analysis resulted in the identification of six novel virus associations and six putative new viral species. We also used RNAseq to inspect virus accumulation levels and mixed infections. Using network analysis, we also examined the global distribution of Passiflora viruses and their associations with alternative hosts, which is valuable information in implementing viral disease management strategies. Our data suggest that a large diversity of viruses remains to be discovered. Finally, we used the information gathered in this work to estimate the cross-transmission risk of viruses in Colombian Passiflora fields.
{"title":"An integrated analysis of the <i>Passifloraceae</i> virome using public-domain data.","authors":"Monica Higuita, Juliana Sanchez-Yali, Alejandra Perez, Engie Arias, Pablo A Gutierrez","doi":"10.1094/PHYTO-08-24-0269-FI","DOIUrl":"https://doi.org/10.1094/PHYTO-08-24-0269-FI","url":null,"abstract":"<p><p><i>Passifloraceae</i> is a plant family that includes several species of interest in the food, medicinal, and ornamental industries. The most relevant species are the purple and yellow varieties of <i>P. edulis</i>, which are among the most highly prized tropical fruits in the international markets. Unfortunately, the rapid expansion of this crop worldwide has resulted in the emergence of several viral diseases that endangered the productivity of this crop. In this work, we performed an integrated analysis of the <i>Passifloraceae</i> virome using public data. We investigated Pubmed and Genbank records and analyzed all the transcriptome data available for members of this plant family. This analysis resulted in the identification of six novel virus associations and six putative new viral species. We also used RNAseq to inspect virus accumulation levels and mixed infections. Using network analysis, we also examined the global distribution of Passiflora viruses and their associations with alternative hosts, which is valuable information in implementing viral disease management strategies. Our data suggest that a large diversity of viruses remains to be discovered. Finally, we used the information gathered in this work to estimate the cross-transmission risk of viruses in Colombian Passiflora fields.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-07DOI: 10.1094/PHYTO-01-24-0034-R
Lorena I Rangel, Nathan Wyatt, Isaac Courneya, Mari B Natwick, Gary A Secor, Viviana Rivera-Varas, Melvin D Bolton
Cercospora leaf spot, caused by the fungus Cercospora beticola, is the most destructive foliar disease of sugarbeet worldwide. Resistance to the sterol demethylation inhibitor (DMI) fungicide tetraconazole has been previously correlated with synonymous and nonsynonymous mutations in CbCyp51. Here, we extend these analyses to the DMI fungicides prothioconazole, difenoconazole, and mefentrifluconazole in addition to tetraconazole to confirm whether the synonymous and nonsynonymous mutations at amino acid positions 144 and 170 are associated with resistance to these fungicides. Nearly half of the 593 isolates of C. beticola collected in the Red River Valley of North Dakota and Minnesota in 2021 were resistant to all four DMIs. Another 20% were resistant to tetraconazole and prothioconazole but sensitive to difenoconazole and mefentrifluconazole. A total of 13% of isolates were sensitive to all DMIs tested. We found five CbCyp51 haplotypes and associated them with phenotypes to the four DMIs. The most predominant haplotype (E170_A/L144F_C) correlated with resistance to all four DMIs with up to 97.6% accuracy. The second most common haplotype (E170_A/L144) consisted of isolates associated with resistance phenotypes to tetraconazole and prothioconazole while also exhibiting sensitive phenotypes to difenoconazole and mefentrifluconazole with up to 98.4% accuracy. Quantitative PCR did not identify differences in CbCyp51 expression between haplotypes. This study offers an understanding of the importance of codon usage in fungicide resistance and provides crop management acuity for fungicide application decision-making.
{"title":"<i>CbCyp51</i>-Mediated Demethylation Inhibitor Resistance Is Modulated by Codon Bias.","authors":"Lorena I Rangel, Nathan Wyatt, Isaac Courneya, Mari B Natwick, Gary A Secor, Viviana Rivera-Varas, Melvin D Bolton","doi":"10.1094/PHYTO-01-24-0034-R","DOIUrl":"10.1094/PHYTO-01-24-0034-R","url":null,"abstract":"<p><p>Cercospora leaf spot, caused by the fungus Cercospora beticola, is the most destructive foliar disease of sugarbeet worldwide. Resistance to the sterol demethylation inhibitor (DMI) fungicide tetraconazole has been previously correlated with synonymous and nonsynonymous mutations in <i>CbCyp51</i>. Here, we extend these analyses to the DMI fungicides prothioconazole, difenoconazole, and mefentrifluconazole in addition to tetraconazole to confirm whether the synonymous and nonsynonymous mutations at amino acid positions 144 and 170 are associated with resistance to these fungicides. Nearly half of the 593 isolates of <i>C. beticola</i> collected in the Red River Valley of North Dakota and Minnesota in 2021 were resistant to all four DMIs. Another 20% were resistant to tetraconazole and prothioconazole but sensitive to difenoconazole and mefentrifluconazole. A total of 13% of isolates were sensitive to all DMIs tested. We found five <i>CbCyp51</i> haplotypes and associated them with phenotypes to the four DMIs. The most predominant haplotype (E170_A/L144F_C) correlated with resistance to all four DMIs with up to 97.6% accuracy. The second most common haplotype (E170_A/L144) consisted of isolates associated with resistance phenotypes to tetraconazole and prothioconazole while also exhibiting sensitive phenotypes to difenoconazole and mefentrifluconazole with up to 98.4% accuracy. Quantitative PCR did not identify differences in <i>CbCyp51</i> expression between haplotypes. This study offers an understanding of the importance of codon usage in fungicide resistance and provides crop management acuity for fungicide application decision-making.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2262-2272"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-15DOI: 10.1094/PHYTO-04-24-0127-R
Jae Young Hwang, Sharmodeep Bhattacharyya, Shirshendu Chatterjee, Thomas L Marsh, Joshua F Pedro, David H Gent
Methods for causal inference from observational data are common in human disease epidemiology and social sciences but are used relatively little in plant pathology. We draw upon an extensive data set of the incidence of hop plants with powdery mildew (caused by Podosphaera macularis) collected from yards in Oregon from 2014 to 2017 and associated metadata on grower cultural practices, cultivar susceptibility to powdery mildew, and pesticide application records to understand variation in and causes of growers' fungicide use and associated costs. An instrumental causal forest model identified growers' spring pruning thoroughness, cultivar susceptibility to two of the dominant pathogenic races of P. macularis, network centrality of yards during May-June and June-July time transitions, and the initial strain of the fungus detected as important variables determining the number of pesticide active constituents applied by growers and the associated costs they incurred in response to powdery mildew. Exposure-response function models fit after covariate weighting indicated that both the number of pesticide active constituents applied and their associated costs scaled linearly with the seasonal mean incidence of plants with powdery mildew. Although the causes of pesticide use intensity are multifaceted, biological and production factors collectively influence the incidence of powdery mildew, which has a direct exposure-response relationship with the number of pesticide active constituents that growers apply and their costs. Our analyses point to several potential strategies for reducing pesticide use and costs for management of powdery mildew on hop. We also highlight the utility of these methods for causal inference in observational studies.
{"title":"What Explains Hop Growers' Fungicide Use Intensity and Management Costs in Response to Powdery Mildew?","authors":"Jae Young Hwang, Sharmodeep Bhattacharyya, Shirshendu Chatterjee, Thomas L Marsh, Joshua F Pedro, David H Gent","doi":"10.1094/PHYTO-04-24-0127-R","DOIUrl":"10.1094/PHYTO-04-24-0127-R","url":null,"abstract":"<p><p>Methods for causal inference from observational data are common in human disease epidemiology and social sciences but are used relatively little in plant pathology. We draw upon an extensive data set of the incidence of hop plants with powdery mildew (caused by <i>Podosphaera macularis</i>) collected from yards in Oregon from 2014 to 2017 and associated metadata on grower cultural practices, cultivar susceptibility to powdery mildew, and pesticide application records to understand variation in and causes of growers' fungicide use and associated costs. An instrumental causal forest model identified growers' spring pruning thoroughness, cultivar susceptibility to two of the dominant pathogenic races of <i>P. macularis</i>, network centrality of yards during May-June and June-July time transitions, and the initial strain of the fungus detected as important variables determining the number of pesticide active constituents applied by growers and the associated costs they incurred in response to powdery mildew. Exposure-response function models fit after covariate weighting indicated that both the number of pesticide active constituents applied and their associated costs scaled linearly with the seasonal mean incidence of plants with powdery mildew. Although the causes of pesticide use intensity are multifaceted, biological and production factors collectively influence the incidence of powdery mildew, which has a direct exposure-response relationship with the number of pesticide active constituents that growers apply and their costs. Our analyses point to several potential strategies for reducing pesticide use and costs for management of powdery mildew on hop. We also highlight the utility of these methods for causal inference in observational studies.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2287-2299"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-03DOI: 10.1094/PHYTO-10-23-0402-KC
Elizabeth M Hellman, Thomas Turini, Cassandra L Swett
California is the primary processing tomato (Solanum lycopersicum) producer in the United States. Fusarium oxysporum f. sp. lycopercisi race 3 (Fol3), the cause of Fusarium wilt, is a major driver of yield losses. Fol3 has recently been observed causing disease in resistant cultivars (I-3 R-gene), often reported in association with high soil salinity. This study was undertaken to better understand the role of salinity in compromising resistance-based management of Fol3. Surveys established opportunity for salinity-Fol3-tomato interactions in 44% of commercial fields examined, with harmful soil salt levels up to 3.6 dS/m (P < 0.001), high sodium (P < 0.001), and high sodicity (sodium adsorption ratio > 13; P < 0.001). In controlled field studies of Fol3 in NaCl/CaCl2-treated soil, Fol3-resistant cultivars either only developed wilt under salt or only developed wilt above the industry non-hybrid threshold (2%) under salt across two trial years. The absence of yield differences indicates low to no economic impact of disease enhancement (P > 0.05). NaCl, CaCl2, and Na2SO4 had no effect on Fol3 propagule production in liquid agar versus water agar controls (P > 0.05), although CaCl2 increased propagule loads sevenfold versus ionic controls (polyethylene glycol) (P = 0.036). NaCl/CaCl2 (2:1) reduced propagule loads up to 65% versus no salt (P = 0.029) in soil with pathogen-infested tomato tissue. These results together establish the opportunity for salinity-Fol3-tomato interactions and potential for salt to influence the efficacy of resistant cultivar-based management-this does not appear to be primarily due to salt enhancement of pathogen populations, pointing to a yet-unexplored direct influence of salt on host resistance.
{"title":"Impacts of Increasing Soil Salinity on Genetic Resistance (<i>I-3</i> Gene)-Based Management of Fusarium Wilt (<i>Fusarium oxysporum</i> f. sp. <i>lycopercisi</i> Race 3) in California Processing Tomatoes.","authors":"Elizabeth M Hellman, Thomas Turini, Cassandra L Swett","doi":"10.1094/PHYTO-10-23-0402-KC","DOIUrl":"10.1094/PHYTO-10-23-0402-KC","url":null,"abstract":"<p><p>California is the primary processing tomato (<i>Solanum lycopersicum</i>) producer in the United States. <i>Fusarium oxysporum</i> f. sp. <i>lycopercisi</i> race 3 (Fol3), the cause of Fusarium wilt, is a major driver of yield losses. Fol3 has recently been observed causing disease in resistant cultivars (<i>I-3</i> R-gene), often reported in association with high soil salinity. This study was undertaken to better understand the role of salinity in compromising resistance-based management of Fol3. Surveys established opportunity for salinity-Fol3-tomato interactions in 44% of commercial fields examined, with harmful soil salt levels up to 3.6 dS/m (<i>P</i> < 0.001), high sodium (<i>P</i> < 0.001), and high sodicity (sodium adsorption ratio > 13; <i>P</i> < 0.001). In controlled field studies of Fol3 in NaCl/CaCl<sub>2</sub>-treated soil, Fol3-resistant cultivars either only developed wilt under salt or only developed wilt above the industry non-hybrid threshold (2%) under salt across two trial years. The absence of yield differences indicates low to no economic impact of disease enhancement (<i>P</i> > 0.05). NaCl, CaCl<sub>2</sub>, and Na<sub>2</sub>SO<sub>4</sub> had no effect on Fol3 propagule production in liquid agar versus water agar controls (<i>P</i> > 0.05), although CaCl<sub>2</sub> increased propagule loads sevenfold versus ionic controls (polyethylene glycol) (<i>P</i> = 0.036). NaCl/CaCl<sub>2</sub> (2:1) reduced propagule loads up to 65% versus no salt (<i>P</i> = 0.029) in soil with pathogen-infested tomato tissue. These results together establish the opportunity for salinity-Fol3-tomato interactions and potential for salt to influence the efficacy of resistant cultivar-based management-this does not appear to be primarily due to salt enhancement of pathogen populations, pointing to a yet-unexplored direct influence of salt on host resistance.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2252-2261"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bursaphelenchus xylophilus (pine wood nematode, PWN), a migratory plant-parasitic nematode, acts as an etiological agent, inflicting considerable damage to pine forests worldwide. Plant immunity constitutes a crucial factor in resisting various pathogenic invasions. The primary defensive responses of host pines against PWN infection encompass terpene accumulation, defense response-related gene expression, and programmed cell death. Venom allergen-like proteins (VAPs), as potential effectors, are instrumental in facilitating the successful colonization of PWNs. In this study, we investigated the inhibition of B. xylophilus VAP (BxVAP1) expression by RNA interference in vitro. Following BxVAP1 silencing, the reproduction rate and migration rate of the PWN population in Pinus massoniana decreased, the expression of the α-pinene synthase gene was induced, other terpene synthase and pathogenesis-related genes were inhibited and delayed, the peak times and levels of terpene-related substances were changed, and the degree of cavitation in P. massoniana was diminished. Transient expression of BxVAP1 in Nicotiana benthamiana revealed that BxVAP1 was expressed in both the cell membrane and nucleus, inducing programmed cell death and the expression of pathogen-associated molecular pattern-triggered immunity marker genes (NbAcre31 and NbPTI5). This study is the first to demonstrate that silencing the BxVAP1 gene affects host defense responses, including terpenoid metabolism in P. massoniana, and that BxVAP1 can be recognized by N. benthamiana as an effector to trigger its innate immunity, expanding our understanding of the parasitic mechanism of B. xylophilus.
{"title":"<i>Bursaphelenchus xylophilus</i> Venom Allergen-Like Protein BxVAP1, Triggering Plant Defense-Related Programmed Cell Death, Plays an Important Role in Regulating <i>Pinus massoniana</i> Terpene Defense Responses.","authors":"Yuqian Feng, Yongxia Li, Zhenkai Liu, Xuan Wang, Wei Zhang, Dongzhen Li, Xiaojian Wen, Xingyao Zhang","doi":"10.1094/PHYTO-01-24-0026-R","DOIUrl":"10.1094/PHYTO-01-24-0026-R","url":null,"abstract":"<p><p><i>Bursaphelenchus xylophilus</i> (pine wood nematode, PWN), a migratory plant-parasitic nematode, acts as an etiological agent, inflicting considerable damage to pine forests worldwide. Plant immunity constitutes a crucial factor in resisting various pathogenic invasions. The primary defensive responses of host pines against PWN infection encompass terpene accumulation, defense response-related gene expression, and programmed cell death. Venom allergen-like proteins (VAPs), as potential effectors, are instrumental in facilitating the successful colonization of PWNs. In this study, we investigated the inhibition of <i>B. xylophilus</i> VAP (<i>BxVAP1</i>) expression by RNA interference in vitro. Following <i>BxVAP1</i> silencing, the reproduction rate and migration rate of the PWN population in <i>Pinus massoniana</i> decreased, the expression of the α-pinene synthase gene was induced, other terpene synthase and pathogenesis-related genes were inhibited and delayed, the peak times and levels of terpene-related substances were changed, and the degree of cavitation in <i>P. massoniana</i> was diminished. Transient expression of BxVAP1 in <i>Nicotiana benthamiana</i> revealed that BxVAP1 was expressed in both the cell membrane and nucleus, inducing programmed cell death and the expression of pathogen-associated molecular pattern-triggered immunity marker genes (<i>NbAcre31</i> and <i>NbPTI5</i>). This study is the first to demonstrate that silencing the <i>BxVAP1</i> gene affects host defense responses, including terpenoid metabolism in <i>P. massoniana</i>, and that BxVAP1 can be recognized by <i>N. benthamiana</i> as an effector to trigger its innate immunity, expanding our understanding of the parasitic mechanism of <i>B. xylophilus</i>.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2331-2340"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-03DOI: 10.1094/PHYTO-12-23-0491-R
Carlos C Góngora-Canul, Alexandria Volkening, Jorge Cuéllar, Lidia Calderón, Mariela Fernández-Campos, Da Young Lee, Jorge Salgado, Andres Cruz-Sancan, C D Cruz
Epidemiological studies to better understand wheat blast (WB) spatial and temporal patterns were conducted in three field environments in Bolivia between 2019 and 2020. The temporal dynamics of wheat leaf blast (WLB) and spike blast (WSB) were best described by the logistic model compared with the Gompertz and exponential models. The nonlinear logistic infection rates were higher under defined inoculation in experiments two and three than under undefined inoculation in experiment one, and they were also higher for WSB than for WLB. The onset of WLB began with a spatial clustering pattern according to autocorrelation analysis and Moran's index values, with higher severity and earlier onset for defined than for undefined inoculation until the last sampling time. The WSB onset did not start with a spatial clustering pattern; instead, it was detected later until the last sampling date across experiments, with higher severity and earlier onset for defined than for undefined inoculation. Maximum severity (Kmax) was 1.0 for WSB and less than 1.0 for WLB. Aggregation of WLB and WSB was higher for defined than for undefined inoculation. The directionality of hotspot development was similar for both WLB and WSB, mainly occurring concentrically for defined inoculation. Our results show no evidence of synchronized development but suggest a temporal and spatial progression of disease symptoms on wheat leaves and spikes. Thus, we recommend that monitoring and management of WB should be considered during early growth stages of wheat planted in areas of high risk.
{"title":"Effect of Initial Inoculum on the Temporal and Spatial Dynamics of Wheat Blast Under Field Conditions in Bolivia.","authors":"Carlos C Góngora-Canul, Alexandria Volkening, Jorge Cuéllar, Lidia Calderón, Mariela Fernández-Campos, Da Young Lee, Jorge Salgado, Andres Cruz-Sancan, C D Cruz","doi":"10.1094/PHYTO-12-23-0491-R","DOIUrl":"10.1094/PHYTO-12-23-0491-R","url":null,"abstract":"<p><p>Epidemiological studies to better understand wheat blast (WB) spatial and temporal patterns were conducted in three field environments in Bolivia between 2019 and 2020. The temporal dynamics of wheat leaf blast (W<sub>L</sub>B) and spike blast (W<sub>S</sub>B) were best described by the logistic model compared with the Gompertz and exponential models. The nonlinear logistic infection rates were higher under defined inoculation in experiments two and three than under undefined inoculation in experiment one, and they were also higher for W<sub>S</sub>B than for W<sub>L</sub>B. The onset of W<sub>L</sub>B began with a spatial clustering pattern according to autocorrelation analysis and Moran's index values, with higher severity and earlier onset for defined than for undefined inoculation until the last sampling time. The W<sub>S</sub>B onset did not start with a spatial clustering pattern; instead, it was detected later until the last sampling date across experiments, with higher severity and earlier onset for defined than for undefined inoculation. Maximum severity (<i>K<sub>max</sub></i>) was 1.0 for W<sub>S</sub>B and less than 1.0 for W<sub>L</sub>B. Aggregation of W<sub>L</sub>B and W<sub>S</sub>B was higher for defined than for undefined inoculation. The directionality of hotspot development was similar for both W<sub>L</sub>B and W<sub>S</sub>B, mainly occurring concentrically for defined inoculation. Our results show no evidence of synchronized development but suggest a temporal and spatial progression of disease symptoms on wheat leaves and spikes. Thus, we recommend that monitoring and management of WB should be considered during early growth stages of wheat planted in areas of high risk.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2273-2286"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is the most devastating disease threatening the global kiwifruit production. This pathogen delivers multiple effector proteins into plant cells to resist plant immune responses and facilitate their survival. Here, we focused on the unique effector HopZ5 in Psa, which previously has been reported to have virulence functions. In this study, our results showed that HopZ5 could cause macroscopic cell death and trigger a serious immune response by agroinfiltration in Nicotiana benthamiana, along with upregulated expression of immunity-related genes and significant accumulation of reactive oxygen species and callose. Subsequently, we confirmed that HopZ5 interacted with the phosphoserine-binding protein GF14C in both the nonhost plant N. benthamiana (NbGF14C) and the host plant kiwifruit (AcGF14C), and silencing of NbGF14C compromised HopZ5-mediated cell death, suggesting that GF14C plays a crucial role in the detection of HopZ5. Further studies showed that overexpression of NbGF14C both markedly reduced the infection of Sclerotinia sclerotiorum and Phytophthora capsica in N. benthamiana, and overexpression of AcGF14C significantly enhanced the resistance of kiwifruit against Psa, indicating that GF14C positively regulates plant immunity. Collectively, our results revealed that the virulence effector HopZ5 could be recognized by plants and interact with GF14C to activate plant immunity.
{"title":"<i>Pseudomonas syringae</i> pv. <i>actinidiae</i> Unique Effector HopZ5 Interacts with GF14C to Trigger Plant Immunity.","authors":"Mingxia Zhou, Jinglong Zhang, Zhibo Zhao, Wei Liu, Zhiran Wu, Lili Huang","doi":"10.1094/PHYTO-09-23-0330-R","DOIUrl":"10.1094/PHYTO-09-23-0330-R","url":null,"abstract":"<p><p>The bacterial canker of kiwifruit caused by <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> (<i>Psa</i>) is the most devastating disease threatening the global kiwifruit production. This pathogen delivers multiple effector proteins into plant cells to resist plant immune responses and facilitate their survival. Here, we focused on the unique effector HopZ5 in <i>Psa</i>, which previously has been reported to have virulence functions. In this study, our results showed that HopZ5 could cause macroscopic cell death and trigger a serious immune response by agroinfiltration in <i>Nicotiana benthamiana</i>, along with upregulated expression of immunity-related genes and significant accumulation of reactive oxygen species and callose. Subsequently, we confirmed that HopZ5 interacted with the phosphoserine-binding protein GF14C in both the nonhost plant <i>N. benthamiana</i> (NbGF14C) and the host plant kiwifruit (AcGF14C), and silencing of NbGF14C compromised HopZ5-mediated cell death, suggesting that GF14C plays a crucial role in the detection of HopZ5. Further studies showed that overexpression of NbGF14C both markedly reduced the infection of <i>Sclerotinia sclerotiorum</i> and <i>Phytophthora capsica</i> in <i>N. benthamiana</i>, and overexpression of AcGF14C significantly enhanced the resistance of kiwifruit against <i>Psa</i>, indicating that GF14C positively regulates plant immunity. Collectively, our results revealed that the virulence effector HopZ5 could be recognized by plants and interact with GF14C to activate plant immunity.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2322-2330"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-16DOI: 10.1094/PHYTO-05-24-0157-R
Amira M I Mourad, Andreas Börner, Samar M Esmail
Wheat powdery mildew (WPM) is one of the most devasting diseases that affects wheat yield worldwide. Few efforts have been made to control such a serious disease. An effective way to control WPM is urgently needed. Biological control is an effective way to control plant diseases worldwide. In this study, the efficiency of three different Trichoderma spp. in controlling WPM at the seedling growth stage was tested using 35 highly diverse wheat genotypes. Highly significant differences were found in WPM resistance among the four treatments, confirming the efficiency of Trichoderma in controlling WPM. Of the three species, T. asperellum T34 (T34) was the most effective species in controlling WPM, as it reduced the symptoms by 50.56%. A set of 196 wheat genotypes was used to identify the genetic control of the WPM resistance induced by T34. A total of 39, 27, and 18 gene models were identified to contain the significant markers under Pm, T34, and the improvement in powdery mildew resistance due to T34 (T34_improvement) conditions. Furthermore, no gene model was common between T34 and Pm, suggesting the presence of completely different genetic systems controlling the resistance under T34 and Pm. The functional annotation and biological process pathways of the detected gene models confirm their association with the normal and induced resistance. This study, for the first time, confirms the efficiency of T34 in controlling WPM and provides a deep understanding of the genetic control of induced and normal resistance to WPM.
{"title":"Effectiveness and Genetic Control of <i>Trichoderma</i> spp. as a Biological Control of Wheat Powdery Mildew Disease.","authors":"Amira M I Mourad, Andreas Börner, Samar M Esmail","doi":"10.1094/PHYTO-05-24-0157-R","DOIUrl":"10.1094/PHYTO-05-24-0157-R","url":null,"abstract":"<p><p>Wheat powdery mildew (WPM) is one of the most devasting diseases that affects wheat yield worldwide. Few efforts have been made to control such a serious disease. An effective way to control WPM is urgently needed. Biological control is an effective way to control plant diseases worldwide. In this study, the efficiency of three different <i>Trichoderma</i> spp. in controlling WPM at the seedling growth stage was tested using 35 highly diverse wheat genotypes. Highly significant differences were found in WPM resistance among the four treatments, confirming the efficiency of <i>Trichoderma</i> in controlling WPM. Of the three species, <i>T. asperellum</i> T34 (T34) was the most effective species in controlling WPM, as it reduced the symptoms by 50.56%. A set of 196 wheat genotypes was used to identify the genetic control of the WPM resistance induced by T34. A total of 39, 27, and 18 gene models were identified to contain the significant markers under Pm, T34, and the improvement in powdery mildew resistance due to T34 (T34_improvement) conditions. Furthermore, no gene model was common between T34 and Pm, suggesting the presence of completely different genetic systems controlling the resistance under T34 and Pm. The functional annotation and biological process pathways of the detected gene models confirm their association with the normal and induced resistance. This study, for the first time, confirms the efficiency of T34 in controlling WPM and provides a deep understanding of the genetic control of induced and normal resistance to WPM.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2221-2234"},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}