Pub Date : 2022-12-31DOI: 10.3746/pnf.2022.27.4.407
Hye Jin Yoon, Dae Seong Yoon, Hea Ja Baek, Beodeul Kang, Un Ju Jung
Sinapic acid (SA), a hydroxycinnamic acid, is known to confer protection against oxidative stress, inflammation, diabetes, and liver disease. However, the effectiveness of SA in improving obesity remains obscure. Therefore, this study evaluated anti-obesity efficacy of SA and to elucidate its mechanism of action. Male mice were maintained for 16 weeks on high-fat diet (HFD) alone or with SA (0.004%, w/w) and bodyweight, fat mass, adipocyte size, food intake, and biochemical and molecular markers were evaluated. SA-supplemented mice demonstrated markedly decreased fat mass and adipocyte size compared to unsupplemented group, without any changes in bodyweight and food intake between the two groups. Plasma adipocytokines levels including leptin, resistin, monocyte chemoattractant protein (MCP)-1 and interleukin-6 were also markedly reduced by SA supplementation. SA tended to lower plasma insulin level and improved homeostatic index of insulin resistance and intraperitoneal glucose tolerance test in HFD-induced obese mice. The anti-adiposity effect of SA was maybe owing to down-regulation of the mRNA expression of lipogenic genes, including acetyl coenzyme A (CoA) carboxylase, fatty acid synthesis, stearoyl-CoAdesaturase 1, and phosphatidate phosphatase, and peroxisome proliferator-activated receptor γ, a transcription factor responsible for governing lipid metabolism, in adipose tissues. SA significantly down-regulated pro-inflammatory nuclear factor kappa B, MCP-1, tumor necrosis factor-α, and Toll-like receptor 4 mRNA expression in adipose tissue. Thus, SA could be beneficial for the development of functional foods or herbal medications to combat obesity.
{"title":"Dietary Sinapic Acid Alleviates Adiposity and Inflammation in Diet-Induced Obese Mice.","authors":"Hye Jin Yoon, Dae Seong Yoon, Hea Ja Baek, Beodeul Kang, Un Ju Jung","doi":"10.3746/pnf.2022.27.4.407","DOIUrl":"https://doi.org/10.3746/pnf.2022.27.4.407","url":null,"abstract":"<p><p>Sinapic acid (SA), a hydroxycinnamic acid, is known to confer protection against oxidative stress, inflammation, diabetes, and liver disease. However, the effectiveness of SA in improving obesity remains obscure. Therefore, this study evaluated anti-obesity efficacy of SA and to elucidate its mechanism of action. Male mice were maintained for 16 weeks on high-fat diet (HFD) alone or with SA (0.004%, w/w) and bodyweight, fat mass, adipocyte size, food intake, and biochemical and molecular markers were evaluated. SA-supplemented mice demonstrated markedly decreased fat mass and adipocyte size compared to unsupplemented group, without any changes in bodyweight and food intake between the two groups. Plasma adipocytokines levels including leptin, resistin, monocyte chemoattractant protein (MCP)-1 and interleukin-6 were also markedly reduced by SA supplementation. SA tended to lower plasma insulin level and improved homeostatic index of insulin resistance and intraperitoneal glucose tolerance test in HFD-induced obese mice. The anti-adiposity effect of SA was maybe owing to down-regulation of the mRNA expression of lipogenic genes, including <i>acetyl coenzyme A</i> (<i>CoA</i>) <i>carboxylase</i>, <i>fatty acid synthesis</i>, <i>stearoyl</i>-<i>CoA</i> <i>desaturase 1</i>, and <i>phosphatidate phosphatase</i>, and <i>peroxisome proliferator-activated receptor</i> γ, a transcription factor responsible for governing lipid metabolism, in adipose tissues. SA significantly down-regulated pro-inflammatory <i>nuclear factor kappa B</i>, <i>MCP-1</i>, <i>tumor necrosis factor-α</i>, and <i>Toll-like receptor 4</i> mRNA expression in adipose tissue. Thus, SA could be beneficial for the development of functional foods or herbal medications to combat obesity.</p>","PeriodicalId":20424,"journal":{"name":"Preventive Nutrition and Food Science","volume":"27 4","pages":"407-413"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b1/66/pnfs-27-4-407.PMC9843723.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10593438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-31DOI: 10.3746/pnf.2022.27.4.457
Ayed Amr, Sarah Jaradat, Hatim AlKhatib, Imad Hamadneh, Lama Hamadneh, Hamadallah Hodali, Moroug Zeadeh, Mohammad Shahein
This study was conducted to investigate the effect of cobalt complexation on the spectral properties of anthocyanins (AC) extracted from black grape pomace (Black Magic) and the effect of complexation on the pH stability of AC during storage. Initially, cobalt acetate tetrahydrate aqueous solution was complexed with AC crude extract and diluted separately in buffer solutions with different pH (3.5, 4.5, 5.5, and 6.5). Afterward, spectral changes were determined spectrophotometrically. pH stability was investigated using the same buffer solutions and stored for 7 days in the dark at room temperature, and the absorbance of each solution was measured daily using a spectrophotometer. Results indicated that complexation caused similar hypsochromic and hyperchromic shifts in λmax at all pH values. With regard to pH stability, the degradation of complexed AC followed first-order reaction kinetics causing half-lives to increase up to 80-fold as compared with noncomplexed AC, which was due to the sharp decrease in K (per day), indicating an improved pH stability as compared with noncomplexed AC. Therefore, Co(II) could be used in the stabilization of grape AC for the coloration of a wide range of foods and food products at near-neutral pH environments considering the health benefits of grape AC and the maximum nontoxic dose of Co(II) salt.
{"title":"Extraction of Anthocyanins from Black Grape By-Products and Improving Their Stability Using Cobalt(II) Complexation.","authors":"Ayed Amr, Sarah Jaradat, Hatim AlKhatib, Imad Hamadneh, Lama Hamadneh, Hamadallah Hodali, Moroug Zeadeh, Mohammad Shahein","doi":"10.3746/pnf.2022.27.4.457","DOIUrl":"https://doi.org/10.3746/pnf.2022.27.4.457","url":null,"abstract":"<p><p>This study was conducted to investigate the effect of cobalt complexation on the spectral properties of anthocyanins (AC) extracted from black grape pomace (Black Magic) and the effect of complexation on the pH stability of AC during storage. Initially, cobalt acetate tetrahydrate aqueous solution was complexed with AC crude extract and diluted separately in buffer solutions with different pH (3.5, 4.5, 5.5, and 6.5). Afterward, spectral changes were determined spectrophotometrically. pH stability was investigated using the same buffer solutions and stored for 7 days in the dark at room temperature, and the absorbance of each solution was measured daily using a spectrophotometer. Results indicated that complexation caused similar hypsochromic and hyperchromic shifts in λ<sub>max</sub> at all pH values. With regard to pH stability, the degradation of complexed AC followed first-order reaction kinetics causing half-lives to increase up to 80-fold as compared with noncomplexed AC, which was due to the sharp decrease in K (per day), indicating an improved pH stability as compared with noncomplexed AC. Therefore, Co(II) could be used in the stabilization of grape AC for the coloration of a wide range of foods and food products at near-neutral pH environments considering the health benefits of grape AC and the maximum nontoxic dose of Co(II) salt.</p>","PeriodicalId":20424,"journal":{"name":"Preventive Nutrition and Food Science","volume":"27 4","pages":"457-463"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d5/54/pnfs-27-4-457.PMC9843720.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10593439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-31DOI: 10.3746/pnf.2022.27.4.335
Ahmad Shannar, Md Shahid Sarwar, Ah-Ng Tony Kong
Metabolic rewiring and epigenetic reprogramming are closely inter-related, and mutually regulate each other to control cell growth in cancer initiation, promotion, progression, and metastasis. Epigenetics plays a crucial role in regulating normal cellular functions as well as pathological conditions in many diseases, including cancer. Conversely, certain mitochondrial metabolites are considered as essential cofactors and regulators of epigenetic mechanisms. Furthermore, dysregulation of metabolism promotes tumor cell growth and reprograms the cells to produce metabolites and bioenergy needed to support cancer cell proliferation. Hence, metabolic reprogramming which alters the metabolites/epigenetic cofactors, would drive the epigenetic landscape, including DNA methylation and histone modification, that could lead to cancer initiation, promotion, and progression. Recognizing the diverse array of benefits of phytochemicals, they are gaining increasing interest in cancer interception and treatment. One of the significant mechanisms of cancer interception and treatment by phytochemicals is reprogramming of the key metabolic pathways and remodeling of cancer epigenetics. This review focuses on the metabolic remodeling and epigenetics reprogramming in cancer and investigates the potential mechanisms by which phytochemicals can mitigate cancer.
{"title":"A New Frontier in Studying Dietary Phytochemicals in Cancer and in Health: Metabolic and Epigenetic Reprogramming.","authors":"Ahmad Shannar, Md Shahid Sarwar, Ah-Ng Tony Kong","doi":"10.3746/pnf.2022.27.4.335","DOIUrl":"https://doi.org/10.3746/pnf.2022.27.4.335","url":null,"abstract":"<p><p>Metabolic rewiring and epigenetic reprogramming are closely inter-related, and mutually regulate each other to control cell growth in cancer initiation, promotion, progression, and metastasis. Epigenetics plays a crucial role in regulating normal cellular functions as well as pathological conditions in many diseases, including cancer. Conversely, certain mitochondrial metabolites are considered as essential cofactors and regulators of epigenetic mechanisms. Furthermore, dysregulation of metabolism promotes tumor cell growth and reprograms the cells to produce metabolites and bioenergy needed to support cancer cell proliferation. Hence, metabolic reprogramming which alters the metabolites/epigenetic cofactors, would drive the epigenetic landscape, including DNA methylation and histone modification, that could lead to cancer initiation, promotion, and progression. Recognizing the diverse array of benefits of phytochemicals, they are gaining increasing interest in cancer interception and treatment. One of the significant mechanisms of cancer interception and treatment by phytochemicals is reprogramming of the key metabolic pathways and remodeling of cancer epigenetics. This review focuses on the metabolic remodeling and epigenetics reprogramming in cancer and investigates the potential mechanisms by which phytochemicals can mitigate cancer.</p>","PeriodicalId":20424,"journal":{"name":"Preventive Nutrition and Food Science","volume":"27 4","pages":"335-346"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/57/d8/pnfs-27-4-335.PMC9843711.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9170120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study investigated the activities of Raphanus sativus L. var. caudatus extract (RS) on abnormal lipid and glucose homeostasis in a high-fat diet (HFD)-induced obesity and insulin resistance in a mouse model. Institute of Cancer Research mice were rendered obese by 16-week HFD feeding. Obese mice were administered with 100 or 200 mg/kg/d RS orally during the last 8 weeks of diet feeding. Then, the biochemical parameters were determined. The gene and protein expressions regulating lipid and glucose homeostasis in the liver were measured. This study revealed that the state of hyperglycemia, hyperleptinemia, hyperinsulinemia, and hyperlipidemia was reduced after 8 weeks of RS treatment (100 or 200 mg/kg). Administration of RS also improved insulin sensitivity and increased serum adiponectin. The liver total cholesterol and triglyceride concentrations were decreased by both doses of RS. Notably, a decrease in the expression of liver-specific genes, including sterol regulatory element-binding protein 1c, fatty acid synthase, and acetyl-CoA carboxylase, was found in the RS-treated groups. Moreover, administration of RS showed a significant increase in the expression of adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and sirtuin1 (Sirt1) proteins. These findings indicated that RS improved abnormal lipid and glucose homeostasis in the liver of obesity-associated insulin resistance mouse model, possibly through the stimulation of the AMPK/Sirt1 pathway.
本研究研究了Raphanus sativus L. var. caudatus提取物(RS)对高脂饮食(HFD)诱导的肥胖和胰岛素抵抗小鼠模型中异常脂质和葡萄糖稳态的影响。癌症研究所的小鼠通过16周的HFD喂养使其肥胖。在最后8周的日粮喂养中,肥胖小鼠口服100或200 mg/kg/d RS。然后,测定生化参数。测定肝脏中调节脂质和葡萄糖稳态的基因和蛋白的表达。本研究显示,RS治疗(100或200 mg/kg) 8周后,高血糖、高瘦素血症、高胰岛素血症和高脂血症的状态有所降低。RS也改善了胰岛素敏感性和血清脂联素的增加。两种剂量的RS均降低了肝脏总胆固醇和甘油三酯浓度。值得注意的是,在RS处理组中,肝脏特异性基因的表达减少,包括甾醇调节元件结合蛋白1c、脂肪酸合成酶和乙酰辅酶a羧化酶。此外,RS还显著增加了单磷酸腺苷活化蛋白激酶(AMPK)磷酸化和sirtuin1 (Sirt1)蛋白的表达。这些发现表明,RS可能通过刺激AMPK/Sirt1通路改善肥胖相关胰岛素抵抗小鼠模型肝脏异常脂质和葡萄糖稳态。
{"title":"<i>Raphanus sativus</i> L. var. <i>caudatus</i> Extract Alleviates Impairment of Lipid and Glucose Homeostasis in Liver of High-Fat Diet-Induced Obesity and Insulin Resistance in Mice.","authors":"Linda Chularojmontri, Urarat Nanna, Pholawat Tingpej, Pintusorn Hansakul, Chalerm Jansom, Suvara Wattanapitayakul, Jarinyaporn Naowaboot","doi":"10.3746/pnf.2022.27.4.399","DOIUrl":"https://doi.org/10.3746/pnf.2022.27.4.399","url":null,"abstract":"<p><p>The present study investigated the activities of <i>Raphanus sativus</i> L. var. <i>caudatus</i> extract (RS) on abnormal lipid and glucose homeostasis in a high-fat diet (HFD)-induced obesity and insulin resistance in a mouse model. Institute of Cancer Research mice were rendered obese by 16-week HFD feeding. Obese mice were administered with 100 or 200 mg/kg/d RS orally during the last 8 weeks of diet feeding. Then, the biochemical parameters were determined. The gene and protein expressions regulating lipid and glucose homeostasis in the liver were measured. This study revealed that the state of hyperglycemia, hyperleptinemia, hyperinsulinemia, and hyperlipidemia was reduced after 8 weeks of RS treatment (100 or 200 mg/kg). Administration of RS also improved insulin sensitivity and increased serum adiponectin. The liver total cholesterol and triglyceride concentrations were decreased by both doses of RS. Notably, a decrease in the expression of liver-specific genes, including sterol regulatory element-binding protein 1c, fatty acid synthase, and acetyl-CoA carboxylase, was found in the RS-treated groups. Moreover, administration of RS showed a significant increase in the expression of adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and sirtuin1 (Sirt1) proteins. These findings indicated that RS improved abnormal lipid and glucose homeostasis in the liver of obesity-associated insulin resistance mouse model, possibly through the stimulation of the AMPK/Sirt1 pathway.</p>","PeriodicalId":20424,"journal":{"name":"Preventive Nutrition and Food Science","volume":"27 4","pages":"399-406"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/57/pnfs-27-4-399.PMC9843712.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9170122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-31DOI: 10.3746/pnf.2022.27.4.436
Gustavo Argenor Lozano-Casabianca, Sandra Sulay Arango-Varela, Johanny Aguillón-Osma, María Alejandra Llano-Ramírez, María Elena Maldonado-Celis
The present study evaluated the antiproliferative capacity and possible cell death mechanisms of lyophilized mango pulp extract (LMPE), applied to human colon cancer cells (SW480) and their metastasis-derived counterparts (SW620). The total phenolic content of LMPE was estimated by the Folin-Ciocalteu method. Three assays were employed to determine its antioxidant capacity: ferric-reducing antioxidant power, oxygen radical absorbance capacity, and 2,2-diphenyl-1-picrylhydrazyl. Furthermore, the antiproliferative activity of LMPE was assessed by sulforhodamine B, clonogenic, and Ki-67 assays. Flow cytometry was employed to examine the cell cycle, production of intracellular reactive oxygen species (ROS), cell-surface phosphatidylserine, and change in mitochondrial membrane potential. LMPE exhibited a high level of total phenolic content and antioxidant activity. The mean maximal inhibitory concentration values of LMPE at 48 h of exposure were 43 and 29 mg/mL for SW480 and SW620, respectively. In the SW480 and SW620 cell lines, LMPE at 50 mg/mL and 48 h of exposure induced an increase in intracellular ROS, cell cycle arrest in the G2/M phase, and probably, apoptotic processes without mitochondrial depolarization. LMPE had an antiproliferative capacity against the human colorectal cancer cell lines SW480 and SW620. These results highlight the chemopreventive potential of LMPE in colorectal cancer treatments.
{"title":"Inhibition of Cell Proliferation and Induction of Cell Cycle Arrest in Colon Cancer Cells by Lyophilized Mango (<i>Mangifera indica</i> L.) Pulp Extract.","authors":"Gustavo Argenor Lozano-Casabianca, Sandra Sulay Arango-Varela, Johanny Aguillón-Osma, María Alejandra Llano-Ramírez, María Elena Maldonado-Celis","doi":"10.3746/pnf.2022.27.4.436","DOIUrl":"https://doi.org/10.3746/pnf.2022.27.4.436","url":null,"abstract":"<p><p>The present study evaluated the antiproliferative capacity and possible cell death mechanisms of lyophilized mango pulp extract (LMPE), applied to human colon cancer cells (SW480) and their metastasis-derived counterparts (SW620). The total phenolic content of LMPE was estimated by the Folin-Ciocalteu method. Three assays were employed to determine its antioxidant capacity: ferric-reducing antioxidant power, oxygen radical absorbance capacity, and 2,2-diphenyl-1-picrylhydrazyl. Furthermore, the antiproliferative activity of LMPE was assessed by sulforhodamine B, clonogenic, and Ki-67 assays. Flow cytometry was employed to examine the cell cycle, production of intracellular reactive oxygen species (ROS), cell-surface phosphatidylserine, and change in mitochondrial membrane potential. LMPE exhibited a high level of total phenolic content and antioxidant activity. The mean maximal inhibitory concentration values of LMPE at 48 h of exposure were 43 and 29 mg/mL for SW480 and SW620, respectively. In the SW480 and SW620 cell lines, LMPE at 50 mg/mL and 48 h of exposure induced an increase in intracellular ROS, cell cycle arrest in the G2/M phase, and probably, apoptotic processes without mitochondrial depolarization. LMPE had an antiproliferative capacity against the human colorectal cancer cell lines SW480 and SW620. These results highlight the chemopreventive potential of LMPE in colorectal cancer treatments.</p>","PeriodicalId":20424,"journal":{"name":"Preventive Nutrition and Food Science","volume":"27 4","pages":"436-447"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9a/75/pnfs-27-4-436.PMC9843718.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10593432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Garcinia dulcis is a tropical plant native to Southeast Asia that is traditionally used as a folk remedy to cure several pathological symptoms. Camboginol and morelloflavone have been revealed by previous studies as the principal bioactive compounds from the flower extract of G. dulcis. The disease-preventing properties of camboginol or morelloflavone, including anti-cancer, from various parts of G. dulcis have been revealed by recent studies. Glioblastoma is the aggressive malignant stage of brain cancer and suffers from chemotherapeutic resistance. This study aimed to test the anti-cancer effect of G. dulcis flower extract against the proliferation of A172 human glioblastoma cells. The extract had cytotoxic activity and promoted cell cycle arrest at the S and G2/M phases. Autophagic cell death was promoted by cytotoxic concentrations of the extract, as observed by enhancing autophagic flux and the expression of autophagic markers. Autophagic cell death induced by the extract might be associated with endoplasmic reticulum (ER) stress. Conclusively, it was indicated by this study that the extract from the flower of G. dulcis had a protective effect against the proliferation of A172 human glioblastoma cells through the induction of ER stress-mediated cytotoxic autophagy.
{"title":"Camboginol and Morelloflavone from <i>Garcinia dulcis</i> (Roxb.) Kurz Flower Extract Promote Autophagic Cell Death against Human Glioblastoma Cells through Endoplasmic Reticulum Stress.","authors":"Tanapan Siangcham, Parisa Prathaphan, Jittiporn Ruangtong, Nattaya Thongsepee, Pongsakorn Martviset, Pathanin Chantree, Phornphan Sornchuer, Kant Sangpairoj","doi":"10.3746/pnf.2022.27.4.376","DOIUrl":"https://doi.org/10.3746/pnf.2022.27.4.376","url":null,"abstract":"<p><p><i>Garcinia dulcis</i> is a tropical plant native to Southeast Asia that is traditionally used as a folk remedy to cure several pathological symptoms. Camboginol and morelloflavone have been revealed by previous studies as the principal bioactive compounds from the flower extract of <i>G. dulcis</i>. The disease-preventing properties of camboginol or morelloflavone, including anti-cancer, from various parts of <i>G. dulcis</i> have been revealed by recent studies. Glioblastoma is the aggressive malignant stage of brain cancer and suffers from chemotherapeutic resistance. This study aimed to test the anti-cancer effect of <i>G. dulcis</i> flower extract against the proliferation of A172 human glioblastoma cells. The extract had cytotoxic activity and promoted cell cycle arrest at the S and G2/M phases. Autophagic cell death was promoted by cytotoxic concentrations of the extract, as observed by enhancing autophagic flux and the expression of autophagic markers. Autophagic cell death induced by the extract might be associated with endoplasmic reticulum (ER) stress. Conclusively, it was indicated by this study that the extract from the flower of <i>G. dulcis</i> had a protective effect against the proliferation of A172 human glioblastoma cells through the induction of ER stress-mediated cytotoxic autophagy.</p>","PeriodicalId":20424,"journal":{"name":"Preventive Nutrition and Food Science","volume":"27 4","pages":"376-383"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/63/73/pnfs-27-4-376.PMC9843714.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10593436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-31DOI: 10.3746/pnf.2022.27.4.414
Ji Hyun Kim, Je Hyeon Ra, Heerim Kang, Soo-Dong Park, Jae-Jung Shim, Jung-Lyoul Lee
People often experience cognitive deterioration of various degrees, from early-stage mild cognitive impairment to severe cognitive decline. Cognitive deterioration is related to many diseases and studied to alleviated inflammation reaction or oxidative stress. In the present study, the levels of various memory-related proteins: brain-derived neurotrophic factor (BDNF), amyloid beta (Aβ) 42, Aβ40, interleukin-6 and tumor necrosis factor-alpha were measured. Among Lactobacillus paracasei HP7 (HP7), Portulaca oleracea Linn. (PO) and HP7 together with PO (HP7A), the HP7A group had the best effect on increasing BDNF expression and suppressing Aβ40 expression. Also, we measured the protective effect on scopolamine-induced cognitive decline in mice. In the acquisition test, the HP7A group most reliably relieved cognitive decline from days 2 to 5 of scopolamine injection. When the probe test was performed on the day 6 of scopolamine injection, the HP7A group had the shortest escape latency. Based on the results of the Morris water maze tasks, we suggest that HP7A is most useful for ameliorating cognitive decline. It is suggested that the HP7A ameliorating scopolamine-induced cognitive decline via the increase of BDNF expression and the suppression of Aβ40 expression.
{"title":"<i>Lactobacillus paracasei</i> HP7 with <i>Portulaca oleracea</i> Linn. Alleviates Scopolamine-Induced Cognitive Decline via Regulation of Neurotrophic Factor and Inflammation Signals in Mice.","authors":"Ji Hyun Kim, Je Hyeon Ra, Heerim Kang, Soo-Dong Park, Jae-Jung Shim, Jung-Lyoul Lee","doi":"10.3746/pnf.2022.27.4.414","DOIUrl":"https://doi.org/10.3746/pnf.2022.27.4.414","url":null,"abstract":"<p><p>People often experience cognitive deterioration of various degrees, from early-stage mild cognitive impairment to severe cognitive decline. Cognitive deterioration is related to many diseases and studied to alleviated inflammation reaction or oxidative stress. In the present study, the levels of various memory-related proteins: brain-derived neurotrophic factor (BDNF), amyloid beta (Aβ) 42, Aβ40, interleukin-6 and tumor necrosis factor-alpha were measured. Among <i>Lactobacillus paracasei</i> HP7 (HP7), <i>Portulaca oleracea</i> Linn. (PO) and HP7 together with PO (HP7A), the HP7A group had the best effect on increasing BDNF expression and suppressing Aβ40 expression. Also, we measured the protective effect on scopolamine-induced cognitive decline in mice. In the acquisition test, the HP7A group most reliably relieved cognitive decline from days 2 to 5 of scopolamine injection. When the probe test was performed on the day 6 of scopolamine injection, the HP7A group had the shortest escape latency. Based on the results of the Morris water maze tasks, we suggest that HP7A is most useful for ameliorating cognitive decline. It is suggested that the HP7A ameliorating scopolamine-induced cognitive decline via the increase of BDNF expression and the suppression of Aβ40 expression.</p>","PeriodicalId":20424,"journal":{"name":"Preventive Nutrition and Food Science","volume":"27 4","pages":"414-422"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/04/9d/pnfs-27-4-414.PMC9843713.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10602769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-31DOI: 10.3746/pnf.2022.27.4.423
Minhee Lee, Dakyung Kim, Seong-Hoo Park, Jaeeun Jung, Wonhee Cho, A Ram Yu, Jeongmin Lee
Consistent ultraviolet B (UVB) radiation exposure results in dry skin, wrinkles, and melanogenesis. In this study, we investigated whether fish collagen peptide (NaticolⓇ) could inhibit photoaging and oxidative stress in skin exposed to UVB using cell and animal models. We measured the skin hydration, histological observations, antioxidant activities, moisturizing-related factors, collagen synthesis-related factors, and melanogenesis-related factors in skin cells and animal skin using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blot assay. NaticolⓇ collagen improved skin moisturization via hyaluronic acid and ceramide synthesis-related factors in HaCaT cells and SHK-I hairless mice that were exposed to UVB. In addition, NaticolⓇ collagen inhibited wrinkle formation in Hs27 cells and SHK-I hairless mice exposed to UVB and restrained melanogenesis in 3-isobutyl-1-methylxanthine-induced B16F10 cells and UVB-irradiated SHK-I hairless mice. On the basis of these findings, we propose that ingestion of Naticol Ⓡ collagen might be valuable for preventing skin photoaging.
{"title":"Fish Collagen Peptide (Naticol<sup>Ⓡ</sup>) Protects the Skin from Dryness, Wrinkle Formation, and Melanogenesis Both <i>In Vitro</i> and <i>In Vivo</i>.","authors":"Minhee Lee, Dakyung Kim, Seong-Hoo Park, Jaeeun Jung, Wonhee Cho, A Ram Yu, Jeongmin Lee","doi":"10.3746/pnf.2022.27.4.423","DOIUrl":"https://doi.org/10.3746/pnf.2022.27.4.423","url":null,"abstract":"<p><p>Consistent ultraviolet B (UVB) radiation exposure results in dry skin, wrinkles, and melanogenesis. In this study, we investigated whether fish collagen peptide (Naticol<sup>Ⓡ</sup>) could inhibit photoaging and oxidative stress in skin exposed to UVB using cell and animal models. We measured the skin hydration, histological observations, antioxidant activities, moisturizing-related factors, collagen synthesis-related factors, and melanogenesis-related factors in skin cells and animal skin using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blot assay. Naticol<sup>Ⓡ</sup> collagen improved skin moisturization via hyaluronic acid and ceramide synthesis-related factors in HaCaT cells and SHK-I hairless mice that were exposed to UVB. In addition, Naticol<sup>Ⓡ</sup> collagen inhibited wrinkle formation in Hs27 cells and SHK-I hairless mice exposed to UVB and restrained melanogenesis in 3-isobutyl-1-methylxanthine-induced B16F10 cells and UVB-irradiated SHK-I hairless mice. On the basis of these findings, we propose that ingestion of Naticol <sup>Ⓡ</sup> collagen might be valuable for preventing skin photoaging.</p>","PeriodicalId":20424,"journal":{"name":"Preventive Nutrition and Food Science","volume":"27 4","pages":"423-435"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/42/56/pnfs-27-4-423.PMC9843708.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9170119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-31DOI: 10.3746/pnf.2022.27.4.448
Hyun Jin Jo, Jung Hwan Oh, Fatih Karadeniz, Youngwan Seo, Chang-Suk Kong
Cnidium japonicum is a biennial halophyte found in the salt marshes and shores of Korea and widely used in traditional Korean medicine as an ingredient. This study investigated and compared the antimelanogenic effect of solventpartitioned fractions of C. japonicum extract (CJEFs) in a B16F10 mouse melanoma cell model, focusing on tyrosinase activity and production. Melanogenesis is the process in which skin pigment melanin is produced through tyrosinase activity. Overproduction of melanin is the primary reason behind several skin disorders such as freckles, spots, and hyperpigmentation. The antimelanogenic capacity of CJEFs was initially screened by their tyrosinase inhibitory effects, prevention of dihydroxyphenylalanine (DOPA) oxidation, and suppression of melanin production. The inhibition of tyrosinase activity and DOPA oxidation by CJEFs was suggested to be related to the downregulation of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2, which was confirmed using mRNA and protein expression levels. Moreover, the glycogen synthase kinase 3 beta- and cyclic adenosine monophosphate response element-binding protein-related signaling pathways were inhibited by treatment with CJEFs, indicating their action mechanism. All the tested CJEFs exerted similar effects on tyrosinase activity and production. However, among those, 85% aq. MeOH was the most active fraction to suppress the signaling pathway that produces tyrosinase. These results suggest that especially the MeOH fraction of C. japonicum extract serves as a potential source of bioactive substances, with effective antimelanogenesis properties.
{"title":"Evaluation and Comparison of the Antimelanogenic Properties of Different Solvent Fractionated <i>Cnidium japonicum</i> Extracts in B16F10 Murine Melanoma Cells.","authors":"Hyun Jin Jo, Jung Hwan Oh, Fatih Karadeniz, Youngwan Seo, Chang-Suk Kong","doi":"10.3746/pnf.2022.27.4.448","DOIUrl":"https://doi.org/10.3746/pnf.2022.27.4.448","url":null,"abstract":"<p><p><i>Cnidium japonicum</i> is a biennial halophyte found in the salt marshes and shores of Korea and widely used in traditional Korean medicine as an ingredient. This study investigated and compared the antimelanogenic effect of solventpartitioned fractions of <i>C. japonicum</i> extract (CJEFs) in a B16F10 mouse melanoma cell model, focusing on tyrosinase activity and production. Melanogenesis is the process in which skin pigment melanin is produced through tyrosinase activity. Overproduction of melanin is the primary reason behind several skin disorders such as freckles, spots, and hyperpigmentation. The antimelanogenic capacity of CJEFs was initially screened by their tyrosinase inhibitory effects, prevention of dihydroxyphenylalanine (DOPA) oxidation, and suppression of melanin production. The inhibition of tyrosinase activity and DOPA oxidation by CJEFs was suggested to be related to the downregulation of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2, which was confirmed using mRNA and protein expression levels. Moreover, the glycogen synthase kinase 3 beta- and cyclic adenosine monophosphate response element-binding protein-related signaling pathways were inhibited by treatment with CJEFs, indicating their action mechanism. All the tested CJEFs exerted similar effects on tyrosinase activity and production. However, among those, 85% aq. MeOH was the most active fraction to suppress the signaling pathway that produces tyrosinase. These results suggest that especially the MeOH fraction of <i>C. japonicum</i> extract serves as a potential source of bioactive substances, with effective antimelanogenesis properties.</p>","PeriodicalId":20424,"journal":{"name":"Preventive Nutrition and Food Science","volume":"27 4","pages":"448-456"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b0/a6/pnfs-27-4-448.PMC9843722.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10593430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigated the changes in the oxidative stress and cardiovascular disease risk biomarkers, including the activity of the cardiac autonomic nervous system, in older adults with prehypertension following Riceberry rice bran oil supplementation. A total of 35 women aged 60 to 76 years with prehypertension were randomly allocated to two groups, one of which was supplemented with rice bran oil (n=18) and the other with Riceberry rice bran oil (n=17) at 1,000 mg daily for 8 weeks. Prior to and after the supplementation, oxidative stress and cardiovascular risk biomarkers (primary outcomes), heart rate variability, and blood pressure (secondary outcomes) were investigated. Results showed that plasma malondialdehyde, blood glutathione disulfide, and tumor necrosis factor-alpha levels were significantly decreased, and the ratio of reduced glutathione to glutathione disulfide significantly increased in both groups after supplementation (all P<0.05). No significant differences were observed between groups. Heart rate variability and blood pressure did not statistically significantly change subsequent to supplementation in either group and did not differ between groups. In conclusion, Riceberry rice bran oil supplementation for 8 weeks alleviates oxidative stress and inflammation in older adults with prehypertension to a similar extent as rice bran oil supplementation.
{"title":"Effects of Riceberry Rice Bran Oil Supplementation on Oxidative Stress and Cardiovascular Risk Biomarkers in Older Adults with Prehypertension.","authors":"Piyapong Prasertsri, Orachorn Boonla, Jaruwan Vierra, Waranurin Yisarakun, Sukrisd Koowattanatianchai, Jatuporn Phoemsapthawee","doi":"10.3746/pnf.2022.27.4.365","DOIUrl":"https://doi.org/10.3746/pnf.2022.27.4.365","url":null,"abstract":"<p><p>We investigated the changes in the oxidative stress and cardiovascular disease risk biomarkers, including the activity of the cardiac autonomic nervous system, in older adults with prehypertension following Riceberry rice bran oil supplementation. A total of 35 women aged 60 to 76 years with prehypertension were randomly allocated to two groups, one of which was supplemented with rice bran oil (n=18) and the other with Riceberry rice bran oil (n=17) at 1,000 mg daily for 8 weeks. Prior to and after the supplementation, oxidative stress and cardiovascular risk biomarkers (primary outcomes), heart rate variability, and blood pressure (secondary outcomes) were investigated. Results showed that plasma malondialdehyde, blood glutathione disulfide, and tumor necrosis factor-alpha levels were significantly decreased, and the ratio of reduced glutathione to glutathione disulfide significantly increased in both groups after supplementation (all <i>P</i><0.05). No significant differences were observed between groups. Heart rate variability and blood pressure did not statistically significantly change subsequent to supplementation in either group and did not differ between groups. In conclusion, Riceberry rice bran oil supplementation for 8 weeks alleviates oxidative stress and inflammation in older adults with prehypertension to a similar extent as rice bran oil supplementation.</p>","PeriodicalId":20424,"journal":{"name":"Preventive Nutrition and Food Science","volume":"27 4","pages":"365-375"},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e9/0e/pnfs-27-4-365.PMC9843719.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10593433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}