S. Wissel, J. Aguilar, P. Allison, J. Beatty, H. Bernhoff, D. Besson, N. Bingefors, O. Botner, S. Bouma, S. Buitink, K. Carter, M. Cataldo, B. Clark, Z. Curtis-Ginsberg, A. Connolly, P. Dasgupta, S. D. Kockere, K. D. Vries, C. Deaconu, M. DuVernois, C. Glaser, A. Hallgren, S. Hallmann, J. Hanson, B. Hendricks, B. Hokanson-Fasig, C. Hornhuber, K. Hughes, A. Karle, J. Kelley, S. Klein, R. Krebs, R. Lahmann, U. Latif, M. Magnuson, T. Meures, Z. Meyers, K. Mulrey, A. Nelles, A. Novikov, E. Oberla, B. Oeyen, H. Pandya, I. Plaisier, L. Pyras, D. Ryckbosch, O. Scholten, D. Seckel, Daniel Smith, D. Southall, J. Torres, S. Toscano, D. Tosi, D. V. D. Broeck, N. Eijndhoven, A. Vieregg, C. Welling, R. Young, A. Zink, Rno-g
The Radio Neutrino Observatory Greenland (RNO-G) is scheduled for deployment in the summerof 2021. It will target the detection of astrophysical and cosmogenic neutrinos above 10 PeV. With 35 autonomous stations, it will be the largest implementation of a radio neutrino detector to date.The stations combine best-practice instrumentation from all previous radio neutrino arrays, such as a deep phased-array trigger and surface antennas. These proceedings describe the experimentalconsiderations that have driven the design of RNO-G and the current progress in deployment, aswell as discuss the projected sensitivity of the instrument. RNO-G will provide a unique view ofthe Northern Sky and will also inform the design of the radio component of IceCube-Gen2.
{"title":"The Radio Neutrino Observatory Greenland (RNO-G)","authors":"S. Wissel, J. Aguilar, P. Allison, J. Beatty, H. Bernhoff, D. Besson, N. Bingefors, O. Botner, S. Bouma, S. Buitink, K. Carter, M. Cataldo, B. Clark, Z. Curtis-Ginsberg, A. Connolly, P. Dasgupta, S. D. Kockere, K. D. Vries, C. Deaconu, M. DuVernois, C. Glaser, A. Hallgren, S. Hallmann, J. Hanson, B. Hendricks, B. Hokanson-Fasig, C. Hornhuber, K. Hughes, A. Karle, J. Kelley, S. Klein, R. Krebs, R. Lahmann, U. Latif, M. Magnuson, T. Meures, Z. Meyers, K. Mulrey, A. Nelles, A. Novikov, E. Oberla, B. Oeyen, H. Pandya, I. Plaisier, L. Pyras, D. Ryckbosch, O. Scholten, D. Seckel, Daniel Smith, D. Southall, J. Torres, S. Toscano, D. Tosi, D. V. D. Broeck, N. Eijndhoven, A. Vieregg, C. Welling, R. Young, A. Zink, Rno-g","doi":"10.22323/1.395.0001","DOIUrl":"https://doi.org/10.22323/1.395.0001","url":null,"abstract":"The Radio Neutrino Observatory Greenland (RNO-G) is scheduled for deployment in the summerof 2021. It will target the detection of astrophysical and cosmogenic neutrinos above 10 PeV. With 35 autonomous stations, it will be the largest implementation of a radio neutrino detector to date.The stations combine best-practice instrumentation from all previous radio neutrino arrays, such as a deep phased-array trigger and surface antennas. These proceedings describe the experimentalconsiderations that have driven the design of RNO-G and the current progress in deployment, aswell as discuss the projected sensitivity of the instrument. RNO-G will provide a unique view ofthe Northern Sky and will also inform the design of the radio component of IceCube-Gen2.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81059829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cosmic ray propagation is determined by the properties of interstellar turbulence. The multiphase nature of interstellar medium (ISM) and diversity of driving mechanisms give rise to spatial variation of turbulence properties. Meanwhile, precision astroparticle experiments pose challenges to the conventional picture of homogeneous and isotropic transport of cosmic rays (CRs). We are opening a new horizon for CR propagation research when studies of particle transport and interstellar turbulence confront each other. Here we review our recent developement on understandings of magnetohydrodynamic (MHD) turbulence and its connection to the fundamental processes governing cosmic ray propagation, different regimes of particle transport, that are augmented with observational discovery and analysis from multi-wavelength observations.
{"title":"Magnetohydrodynamic turbulence and propagation of cosmic rays: theory confronted with observations","authors":"H. Yan","doi":"10.22323/1.395.0038","DOIUrl":"https://doi.org/10.22323/1.395.0038","url":null,"abstract":"Cosmic ray propagation is determined by the properties of interstellar turbulence. The multiphase nature of interstellar medium (ISM) and diversity of driving mechanisms give rise to spatial variation of turbulence properties. Meanwhile, precision astroparticle experiments pose challenges to the conventional picture of homogeneous and isotropic transport of cosmic rays (CRs). We are opening a new horizon for CR propagation research when studies of particle transport and interstellar turbulence confront each other. Here we review our recent developement on understandings of magnetohydrodynamic (MHD) turbulence and its connection to the fundamental processes governing cosmic ray propagation, different regimes of particle transport, that are augmented with observational discovery and analysis from multi-wavelength observations.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78985247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Incardona, Alessandro Costa, K. Munari, P. Bruno, A. Bulgarelli, S. Germani, A. Grillo, J. Schwarz, E. Sciacca, G. Tosti, F. Vitello, G. Tudisco
The ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Mini-Array (MA) project is an international collaboration led by the Italian National Institute for Astrophysics (INAF). ASTRI MA is composed of nine Cherenkov telescopes operating in the energy range 1-100 TeV, and it aims to study very high-energy gamma ray astrophysics and optical intensity interferometry of bright stars. ASTRI MA is currently under construction, and will be installed at the site of the Teide Observatory in Tenerife (Spain). The hardware and software system that is responsible of monitoring and controlling all the operations carried out at the ASTRI MA site is the Supervision Control and Data Acquisition (SCADA). The LOgging UnifieD (LOUD) subsystem is one of the main components of SCADA. It provides the service responsible for collecting, filtering, exposing and storing log events collected by all the array elements (telescopes, LIDAR, devices, etc.). In this paper, we present the LOUD architecture and the software stack explicitly designed for distributed computing environments exploiting Internet of Things technologies (IoT).
ASTRI (Astrofisica con Specchi a tecologia Replicante Italiana) Mini-Array (MA)项目是由意大利国家天体物理研究所(INAF)领导的国际合作项目。ASTRI MA由9台切伦科夫望远镜组成,其工作能量范围为1-100 TeV,旨在研究高能伽玛射线天体物理学和明亮恒星的光学强度干涉测量。ASTRI MA目前正在建设中,并将安装在西班牙特内里费岛的泰德天文台。负责监察和控制在应科院管理处进行的所有操作的硬件和软件系统是监控和数据采集系统(SCADA)。统一测井(LOUD)子系统是SCADA的主要组成部分之一。它提供负责收集、过滤、暴露和存储所有阵列元素(望远镜、激光雷达、设备等)收集的日志事件的服务。在本文中,我们提出了为利用物联网技术(IoT)的分布式计算环境明确设计的LOUD架构和软件堆栈。
{"title":"LOgging UnifieD for ASTRI Mini Array","authors":"F. Incardona, Alessandro Costa, K. Munari, P. Bruno, A. Bulgarelli, S. Germani, A. Grillo, J. Schwarz, E. Sciacca, G. Tosti, F. Vitello, G. Tudisco","doi":"10.22323/1.395.0195","DOIUrl":"https://doi.org/10.22323/1.395.0195","url":null,"abstract":"The ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Mini-Array (MA) project is an international collaboration led by the Italian National Institute for Astrophysics (INAF). ASTRI MA is composed of nine Cherenkov telescopes operating in the energy range 1-100 TeV, and it aims to study very high-energy gamma ray astrophysics and optical intensity interferometry of bright stars. ASTRI MA is currently under construction, and will be installed at the site of the Teide Observatory in Tenerife (Spain). The hardware and software system that is responsible of monitoring and controlling all the operations carried out at the ASTRI MA site is the Supervision Control and Data Acquisition (SCADA). The LOgging UnifieD (LOUD) subsystem is one of the main components of SCADA. It provides the service responsible for collecting, filtering, exposing and storing log events collected by all the array elements (telescopes, LIDAR, devices, etc.). In this paper, we present the LOUD architecture and the software stack explicitly designed for distributed computing environments exploiting Internet of Things technologies (IoT).","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91467761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We review some recent findings on diffusion of cosmic rays (CRs) in magnetohydrodynamic (MHD) turbulence obtained by adopting the numerically-tested model of MHD turbulence, including perpendicular superdiffusion of CRs, inefficient gyroresonant scattering by Alfvén and slow modes with scale-dependent turbulence anisotropy, resonance-broadened Transit Time Damping (TTD) interaction, and mirror diffusion. As the diffusion behavior of CRs strongly depends on the properties of MHD turbulence, theoretical modeling of CR diffusion, its numerical testing, and interpretation of CR-related observations require proper modeling of MHD turbulence.
{"title":"Diffusion of cosmic rays in MHD turbulence","authors":"Siyao Xu","doi":"10.22323/1.395.0041","DOIUrl":"https://doi.org/10.22323/1.395.0041","url":null,"abstract":"We review some recent findings on diffusion of cosmic rays (CRs) in magnetohydrodynamic (MHD) turbulence obtained by adopting the numerically-tested model of MHD turbulence, including perpendicular superdiffusion of CRs, inefficient gyroresonant scattering by Alfvén and slow modes with scale-dependent turbulence anisotropy, resonance-broadened Transit Time Damping (TTD) interaction, and mirror diffusion. As the diffusion behavior of CRs strongly depends on the properties of MHD turbulence, theoretical modeling of CR diffusion, its numerical testing, and interpretation of CR-related observations require proper modeling of MHD turbulence.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86879968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Particles of the cosmic radiation, electrons and nuclei, transport a dominant positive electric charge. A tiny fraction of these particles of extremely high energies in favorable conditions overflow from galaxies. The overflowing of positively charged cosmic nuclei into the intergalactic space uncovers an equal amount of negative charge in the parent galaxy. Negative charge is mainly stored by quiescent electrons. After adequate particle propagation neither the negative electric charge located in the galaxies nor the positive electric charge of the overflowed cosmic nuclei can be neutralized due to the enormous distances. In several ways it is proved that the total electric charge retained by clusters of galaxies after an appropriate time interval generate a repulsive force between clusters which overwhelms gravity. After a few billions years of electrostatic repulsion, peripheral clusters attain relativistic velocities and their mutual distances increase accordingly. Several facts suggest that the expansion of the universe, as determined by optical observations since a century, has been caused by the electrostatic repulsion of the positively charged cosmic nuclei overflowed from galaxy clusters.
{"title":"On the overflowing of cosmic rays from galaxies and the expansion of cosmic matter","authors":"A. Codino","doi":"10.22323/1.395.0150","DOIUrl":"https://doi.org/10.22323/1.395.0150","url":null,"abstract":"Particles of the cosmic radiation, electrons and nuclei, transport a dominant positive electric charge. A tiny fraction of these particles of extremely high energies in favorable conditions overflow from galaxies. The overflowing of positively charged cosmic nuclei into the intergalactic space uncovers an equal amount of negative charge in the parent galaxy. Negative charge is mainly stored by quiescent electrons. After adequate particle propagation neither the negative electric charge located in the galaxies nor the positive electric charge of the overflowed cosmic nuclei can be neutralized due to the enormous distances. In several ways it is proved that the total electric charge retained by clusters of galaxies after an appropriate time interval generate a repulsive force between clusters which overwhelms gravity. After a few billions years of electrostatic repulsion, peripheral clusters attain relativistic velocities and their mutual distances increase accordingly. Several facts suggest that the expansion of the universe, as determined by optical observations since a century, has been caused by the electrostatic repulsion of the positively charged cosmic nuclei overflowed from galaxy clusters.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88967696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The mechanism accelerating cosmic rays in the M ilky W ay Galaxy and galaxy clusters is identified and described. The acceleration of cosmic rays is a purely electrostatic process which operates up to the maximum energies of 1023 eV in galaxy clusters. Galactic cosmic rays are accelerated in a pervasive electrostatic field active in the whole Galaxy except in restricted regions shielded by interstellar and stellar plasmas as, for instance, the region occupied by the solar system. It is proved that the energy spectrum of the cosmic radiation in the Milky Way Galaxy, in the region where the solar system resides, has a constant spectral index comprised between 2.64-2.68 and the maximum energies of Galactic protons are 3.0 × 1019 eV . The agreement of these results with the experimental data is discussed in detail and underlined.
{"title":"The ubiquitous mechanism accelerating cosmic rays at all the energies","authors":"A. Codino","doi":"10.22323/1.395.0450","DOIUrl":"https://doi.org/10.22323/1.395.0450","url":null,"abstract":"The mechanism accelerating cosmic rays in the M ilky W ay Galaxy and galaxy clusters is identified and described. The acceleration of cosmic rays is a purely electrostatic process which operates up to the maximum energies of 1023 eV in galaxy clusters. Galactic cosmic rays are accelerated in a pervasive electrostatic field active in the whole Galaxy except in restricted regions shielded by interstellar and stellar plasmas as, for instance, the region occupied by the solar system. It is proved that the energy spectrum of the cosmic radiation in the Milky Way Galaxy, in the region where the solar system resides, has a constant spectral index comprised between 2.64-2.68 and the maximum energies of Galactic protons are 3.0 × 1019 eV . The agreement of these results with the experimental data is discussed in detail and underlined.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81609289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Q. Remy, L. Tibaldo, F. Acero, M. Fiori, J. Knödlseder, B. Olmi, P. Sharma
Max-Planck-Institut fur Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany IRAP, Université de Toulouse, CNRS, UPS, CNES, F-31028 Toulouse, France AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France INAF Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova, Italy INAF Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5 50125 Firenze, Italy f IJCLab, Université Paris-Saclay, Université de Paris, IN2P3/CNRS, 91405 Orsay, France E-mail: quentin.remy@mpi-hd.mpg.de, luigi.tibaldo@irap.omp.eu
天fur Kernphysik Saupfercheckweg 1、69117海德堡大学、德国3.3.1 de Toulouse CNRS、UPS、CNES F-31028 Toulouse France AIM, eaa, CNRS Paris-Saclay大学、巴黎狄德罗大学、索邦巴黎城,F-91191 Gif-sur-Yvette、法国INAF帕多瓦、天文观测台小巷5、I-35122、帕多瓦、意大利INAF天文台tozzi Astrofisico天文台和费米宽,5、6楼、意大利f IJCLab Paris-Saclay大学,巴黎大学,IN2P3/CNRS, 91405 Orsay,法国
{"title":"Survey of the Galactic Plane with the Cherenkov Telescope Array","authors":"Q. Remy, L. Tibaldo, F. Acero, M. Fiori, J. Knödlseder, B. Olmi, P. Sharma","doi":"10.22323/1.395.0886","DOIUrl":"https://doi.org/10.22323/1.395.0886","url":null,"abstract":"Max-Planck-Institut fur Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany IRAP, Université de Toulouse, CNRS, UPS, CNES, F-31028 Toulouse, France AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France INAF Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova, Italy INAF Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5 50125 Firenze, Italy f IJCLab, Université Paris-Saclay, Université de Paris, IN2P3/CNRS, 91405 Orsay, France E-mail: quentin.remy@mpi-hd.mpg.de, luigi.tibaldo@irap.omp.eu","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88595115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Angelis, J. Burgess, F. Cadoux, J. Greiner, J. Hulsman, M. Kole, H. C. Li, S. Mianowski, A. Pollo, Nicolas Produit, D. Rybka, J. Stauffer, J. Sun, B. B. Wu, X. Wu, A. Zadrożny, S. Zhang
Despite several decades of multi-wavelength and multi-messenger spectral observations, GammaRay Bursts (GRBs) remain one of the big mysteries of modern astrophysics. Polarization measurements are essential to gain a more clear and complete picture of the emission processes at work in these extremely powerful transient events. In this regard, a first generation of dedicated W-ray polarimeters, POLAR and GAP, were launched into space in the last decade. After 6 months of operation, the POLAR mission detected 55 GRBs, among which 14 have been analyzed in detail, reporting a low polarization degree and a hint of a temporal evolution of the polarization angle. Starting early 2024 and based on the legacy of the POLAR results, the POLAR-2 instrument will aim to provide a catalog of high quality measurements of the energy and temporal evolution of the GRB polarization thanks to its large and efficient polarimeter. Several spectrometer modules will additionally allow to perform joint spectral and polarization analyzes. The mission is foreseen to make high precision polarization measurements of about 50 GRBs every year on board of the China Space Station (CSS). The technical design of the polarimeter modules will be discussed in detail, as well as the expected scientific performances based on the first results of the developed prototype modules.
{"title":"Development and science perspectives of the POLAR-2 instrument: a large scale GRB polarimeter","authors":"N. Angelis, J. Burgess, F. Cadoux, J. Greiner, J. Hulsman, M. Kole, H. C. Li, S. Mianowski, A. Pollo, Nicolas Produit, D. Rybka, J. Stauffer, J. Sun, B. B. Wu, X. Wu, A. Zadrożny, S. Zhang","doi":"10.22323/1.395.0580","DOIUrl":"https://doi.org/10.22323/1.395.0580","url":null,"abstract":"Despite several decades of multi-wavelength and multi-messenger spectral observations, GammaRay Bursts (GRBs) remain one of the big mysteries of modern astrophysics. Polarization measurements are essential to gain a more clear and complete picture of the emission processes at work in these extremely powerful transient events. In this regard, a first generation of dedicated W-ray polarimeters, POLAR and GAP, were launched into space in the last decade. After 6 months of operation, the POLAR mission detected 55 GRBs, among which 14 have been analyzed in detail, reporting a low polarization degree and a hint of a temporal evolution of the polarization angle. Starting early 2024 and based on the legacy of the POLAR results, the POLAR-2 instrument will aim to provide a catalog of high quality measurements of the energy and temporal evolution of the GRB polarization thanks to its large and efficient polarimeter. Several spectrometer modules will additionally allow to perform joint spectral and polarization analyzes. The mission is foreseen to make high precision polarization measurements of about 50 GRBs every year on board of the China Space Station (CSS). The technical design of the polarimeter modules will be discussed in detail, as well as the expected scientific performances based on the first results of the developed prototype modules.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81952204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Kole, N. Angelis, J. Burgess, F. Cadoux, J. Greiner, J. Hulsman, H. C. Li, S. Mianowski, A. Pollo, Nicolas Produit, D. Rybka, J. Stauffer, J. Sun, B. B. Wu, X. Wu, A. Zadrożny, S. Zhang
Despite over 50 years of Gamma-Ray Burst (GRB) observations many open questions remain about their nature and the environments in which the emission takes place. Polarization measurements of the GRB prompt emission have long been theorized to be able to answer most of these questions. The POLAR detector was a dedicated GRB polarimeter developed by a Swiss, Chinese and Polish collaboration. The instrument was launched, together with the second Chinese Space Lab, the Tiangong-2, in September 2016 after which it took 6 months of scientific data. During this period POLAR detected 55 GRBs as well as several pulsars. From the analysis of the GRB polarization catalog we see that the prompt emission is lowly polarized or fully unpolarized. There is, however, the caveat that within single pulses there are strong hints of an evolving polarization angle which washes out the polarization degree in the time integrated analysis. Building on the success of the POLAR mission, the POLAR-2 instrument is currently under development. POLAR-2 is a Swiss, Chinese, Polish and German collaboration and was recently approved for launch in 2024. Thanks to its large sensitivity POLAR-2 will produce polarization measurements of at least 50 GRBs per year with a precision equal or higher than the best results published by POLAR. POLAR-2 thereby aims to make the prompt polarization a standard observable and produce catalogs of the gamma-ray polarization of GRBs. Here we will present an overview of the POLAR mission and all its scientific measurement results. Additionally, we will present an overview of the future POLAR-2 mission, and how it will answer some of the questions raised by the POLAR results.
{"title":"Gamma-Ray Polarization Results of the POLAR Mission and Future Prospects","authors":"M. Kole, N. Angelis, J. Burgess, F. Cadoux, J. Greiner, J. Hulsman, H. C. Li, S. Mianowski, A. Pollo, Nicolas Produit, D. Rybka, J. Stauffer, J. Sun, B. B. Wu, X. Wu, A. Zadrożny, S. Zhang","doi":"10.22323/1.395.0600","DOIUrl":"https://doi.org/10.22323/1.395.0600","url":null,"abstract":"Despite over 50 years of Gamma-Ray Burst (GRB) observations many open questions remain about their nature and the environments in which the emission takes place. Polarization measurements of the GRB prompt emission have long been theorized to be able to answer most of these questions. The POLAR detector was a dedicated GRB polarimeter developed by a Swiss, Chinese and Polish collaboration. The instrument was launched, together with the second Chinese Space Lab, the Tiangong-2, in September 2016 after which it took 6 months of scientific data. During this period POLAR detected 55 GRBs as well as several pulsars. From the analysis of the GRB polarization catalog we see that the prompt emission is lowly polarized or fully unpolarized. There is, however, the caveat that within single pulses there are strong hints of an evolving polarization angle which washes out the polarization degree in the time integrated analysis. Building on the success of the POLAR mission, the POLAR-2 instrument is currently under development. POLAR-2 is a Swiss, Chinese, Polish and German collaboration and was recently approved for launch in 2024. Thanks to its large sensitivity POLAR-2 will produce polarization measurements of at least 50 GRBs per year with a precision equal or higher than the best results published by POLAR. POLAR-2 thereby aims to make the prompt polarization a standard observable and produce catalogs of the gamma-ray polarization of GRBs. Here we will present an overview of the POLAR mission and all its scientific measurement results. Additionally, we will present an overview of the future POLAR-2 mission, and how it will answer some of the questions raised by the POLAR results.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84724168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The CALorimetric Electron Telescope (CALET), developed and operated by Japan in collaboration with Italy and the United States, is a high-energy astroparticle physics experiment installed on the International Space Station (ISS). Its mission goals include investigating the possible presence of nearby sources of high-energy electrons, performing direct measurements of observables sensitive to the details of the acceleration and propagation of galactic particles, and detecting potential dark matter signatures. CALET measures cosmic-ray electron+positron flux up to 20 TeV, gamma rays up to 10 TeV, and nuclei up to 1,000 TeV. Charge measurements cover from Z=1 to 40 allowing to study the more abundant elements and to extend the range of long-term observations above iron. CALET is collecting science data on the International Space Station since October 2015 with excellent and continuous performance with no major interruptions. Approximately 20 million triggered events per month are recorded with energies > 10 GeV. Here, we present the highlights of CALET observations carried out during the first 5.5 years of operation, including the electron+positron energy spectrum, the spectra of protons and other nuclei, gamma-ray observations, as well as the characterization of on-orbit performance. Some results on the electromagnetic counterpart search for LIGO/Virgo gravitational wave events and the observations of solar modulation and gamma-ray bursts are also included.
{"title":"New Results from the first 5 years of CALET observations on the International Space Station","authors":"P. Marrocchesi","doi":"10.22323/1.395.0010","DOIUrl":"https://doi.org/10.22323/1.395.0010","url":null,"abstract":"The CALorimetric Electron Telescope (CALET), developed and operated by Japan in collaboration with Italy and the United States, is a high-energy astroparticle physics experiment installed on the International Space Station (ISS). Its mission goals include investigating the possible presence of nearby sources of high-energy electrons, performing direct measurements of observables sensitive to the details of the acceleration and propagation of galactic particles, and detecting potential dark matter signatures. CALET measures cosmic-ray electron+positron flux up to 20 TeV, gamma rays up to 10 TeV, and nuclei up to 1,000 TeV. Charge measurements cover from Z=1 to 40 allowing to study the more abundant elements and to extend the range of long-term observations above iron. CALET is collecting science data on the International Space Station since October 2015 with excellent and continuous performance with no major interruptions. Approximately 20 million triggered events per month are recorded with energies > 10 GeV. Here, we present the highlights of CALET observations carried out during the first 5.5 years of operation, including the electron+positron energy spectrum, the spectra of protons and other nuclei, gamma-ray observations, as well as the characterization of on-orbit performance. Some results on the electromagnetic counterpart search for LIGO/Virgo gravitational wave events and the observations of solar modulation and gamma-ray bursts are also included.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85653510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}