首页 > 最新文献

Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)最新文献

英文 中文
Relativistic dust grains: a new subject of research with orbital fluorescence detectors 相对论尘埃颗粒:轨道荧光探测器研究的新课题
Pub Date : 2021-08-16 DOI: 10.22323/1.395.0315
P. Klimov, B. Khrenov, N. Kalmykov, S. Sharakin, M. Zotov
TUS (Tracking Ultraviolet Set-up) was the world’s first orbital detector aimed at testing the principle of observing ultra-high energy cosmic rays (UHECRs) with a space-based fluorescence telescope. TUS was launched into orbit on 28th April 2016 as a part of the scientific payload of the Lomonosov satellite, and itsmission continued for 1.5 years. During this time, its exposure reached ∼ 1550 km2 sr yr for primary energy & 400 EeV, and a number of extensive air showers-like events were registered. The shape and kinematics of the signal in these events closely resembled those expected fromUHECRs but amplitudes of the signal and some other features were in contradiction with this assumption. A detailed analysis of one of EAS-like events (TUS161003) revealed that a primary cosmic ray would need to have an energy & 1 ZeV in order to produce a light curve of the observed amplitude, which is incompatible with the cosmic ray spectrum obtained with ground-based experiments. More than this, the slant depth of the shower maximum be the signal produced by a cosmic particle, was estimated as . 500 g/cm2, which corresponds to cosmic rays around 1 PeV. We present a preliminary discussion of a hypothesis that the TUS161003 event and perhaps some other bright EAS-like events could be produced by relativistic dust grains, which were considered a possible component of the cosmic ray flux beyond the GZK cut-off some time ago.
TUS(跟踪紫外线装置)是世界上第一个轨道探测器,旨在测试用天基荧光望远镜观测超高能量宇宙射线(uhecr)的原理。作为罗蒙诺索夫卫星科学有效载荷的一部分,TUS于2016年4月28日发射进入轨道,其任务持续了一年半。在此期间,一次能源和400 EeV的暴露量达到每年约1550平方公里,并且记录了许多广泛的类似空气阵雨的事件。在这些事件中,信号的形状和运动学与muhecr的预期非常相似,但信号的振幅和其他一些特征与这一假设相矛盾。对一个类似easa的事件(TUS161003)的详细分析表明,为了产生观测振幅的光曲线,初级宇宙射线的能量需要为1 ZeV,这与地面实验获得的宇宙射线光谱不相容。不仅如此,据估计,流星雨的倾斜深度最大是由宇宙粒子产生的信号。500克/平方厘米,相当于1 PeV左右的宇宙射线。我们提出了一个假设的初步讨论,即TUS161003事件和其他一些明亮的ea事件可能是由相对论性尘埃颗粒产生的,这些尘埃颗粒被认为是一段时间前超越GZK截止点的宇宙射线通量的可能组成部分。
{"title":"Relativistic dust grains: a new subject of research with orbital fluorescence detectors","authors":"P. Klimov, B. Khrenov, N. Kalmykov, S. Sharakin, M. Zotov","doi":"10.22323/1.395.0315","DOIUrl":"https://doi.org/10.22323/1.395.0315","url":null,"abstract":"TUS (Tracking Ultraviolet Set-up) was the world’s first orbital detector aimed at testing the principle of observing ultra-high energy cosmic rays (UHECRs) with a space-based fluorescence telescope. TUS was launched into orbit on 28th April 2016 as a part of the scientific payload of the Lomonosov satellite, and itsmission continued for 1.5 years. During this time, its exposure reached ∼ 1550 km2 sr yr for primary energy & 400 EeV, and a number of extensive air showers-like events were registered. The shape and kinematics of the signal in these events closely resembled those expected fromUHECRs but amplitudes of the signal and some other features were in contradiction with this assumption. A detailed analysis of one of EAS-like events (TUS161003) revealed that a primary cosmic ray would need to have an energy & 1 ZeV in order to produce a light curve of the observed amplitude, which is incompatible with the cosmic ray spectrum obtained with ground-based experiments. More than this, the slant depth of the shower maximum be the signal produced by a cosmic particle, was estimated as . 500 g/cm2, which corresponds to cosmic rays around 1 PeV. We present a preliminary discussion of a hypothesis that the TUS161003 event and perhaps some other bright EAS-like events could be produced by relativistic dust grains, which were considered a possible component of the cosmic ray flux beyond the GZK cut-off some time ago.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76328066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Energy Balance at Interplanetary Shocks: In-situ Measurement of the Fraction in Supra-thermal and Energetic Ions with ACE and Wind 行星际冲击中的能量平衡:用ACE和风对超热和高能离子部分的原位测量
Pub Date : 2021-08-16 DOI: 10.22323/1.395.1311
Liam David, F. Fraschetti, J. Giacalone, R. Wimmer–Schweingruber, L. Berger, D. Lario
Lunar & Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, 02138, USA Institute of Experimental and Applied Physics, Kiel University, Kiel, Germany National Space Science Center, Chinese Academy of Sciences, Beijing, China Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA E-mail: liamdavid@email.arizona.edu
美国亚利桑那大学月球与行星实验室,亚利桑那州图森85721,美国天体物理中心|哈佛&史密森尼,马萨诸塞州剑桥,02138,美国基尔大学实验与应用物理研究所,基尔,德国国家空间科学中心,中国科学院,北京,中国太阳物理科学部,美国宇航局戈达德航天飞行中心,马里兰州格林贝尔特,美国e -邮件:liamdavid@email.arizona.edu
{"title":"Energy Balance at Interplanetary Shocks: In-situ Measurement of the Fraction in Supra-thermal and Energetic Ions with ACE and Wind","authors":"Liam David, F. Fraschetti, J. Giacalone, R. Wimmer–Schweingruber, L. Berger, D. Lario","doi":"10.22323/1.395.1311","DOIUrl":"https://doi.org/10.22323/1.395.1311","url":null,"abstract":"Lunar & Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA, 02138, USA Institute of Experimental and Applied Physics, Kiel University, Kiel, Germany National Space Science Center, Chinese Academy of Sciences, Beijing, China Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA E-mail: liamdavid@email.arizona.edu","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":"522 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86885137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Status and results of the prototype LST of CTA CTA原型LST的现状与结果
Pub Date : 2021-08-13 DOI: 10.22323/1.395.0872
D. Mazin
The Large-Sized Telescopes (LSTs) of Cherenkov TelescopeArray (CTA) are designed for gammaray studies focusing on low energy threshold, high flux sensitivity, rapid telescope repositioning speed and a large field of view. Once the CTA array is complete, the LSTs will be dominating the CTA performance between 20 GeV and 150 GeV. During most of the CTA Observatory construction phase, however, the LSTs will be dominating the array performance until several TeVs. In this presentation we will report on the status of the LST-1 telescope inaugurated in La Palma, Canary islands, Spain in 2018. We will show the progress of the telescope commissioning, compare the expectations with the achieved performance, and give a glance of the first physics results.
切伦科夫望远镜(Cherenkov telescope, CTA)的大型望远镜(large - sized telescope, LSTs)是专为伽玛射线研究而设计的,其特点是低能量阈值、高通量灵敏度、望远镜快速定位速度和大视场。一旦CTA阵列完成,lst将在20gev到150gev之间主导CTA性能。然而,在CTA天文台的大部分建设阶段,lst将主导阵列的性能,直到几个tev。在本次演讲中,我们将报告2018年在西班牙加那利群岛拉帕尔马启用的LST-1望远镜的现状。我们将展示望远镜调试的进展,将预期与实际性能进行比较,并简要介绍第一个物理结果。
{"title":"Status and results of the prototype LST of CTA","authors":"D. Mazin","doi":"10.22323/1.395.0872","DOIUrl":"https://doi.org/10.22323/1.395.0872","url":null,"abstract":"The Large-Sized Telescopes (LSTs) of Cherenkov TelescopeArray (CTA) are designed for gammaray studies focusing on low energy threshold, high flux sensitivity, rapid telescope repositioning speed and a large field of view. Once the CTA array is complete, the LSTs will be dominating the CTA performance between 20 GeV and 150 GeV. During most of the CTA Observatory construction phase, however, the LSTs will be dominating the array performance until several TeVs. In this presentation we will report on the status of the LST-1 telescope inaugurated in La Palma, Canary islands, Spain in 2018. We will show the progress of the telescope commissioning, compare the expectations with the achieved performance, and give a glance of the first physics results.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83342165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Parametrization of the Relative Amplitude of Geomagnetic and Askaryan Radio Emission from Cosmic-Ray Air Showers using CORSIKA/CoREAS Simulations 利用CORSIKA/CoREAS模拟宇宙射线空气阵雨地磁和阿斯卡良射电发射相对振幅的参数化
Pub Date : 2021-08-13 DOI: 10.22323/1.395.0429
E. Paudel, A. Coleman, F. Schroeder
Cosmic rays are messengers from highly energetic events in the Universe. These rare ultra-highenergy particles can be detected efficiently and in an affordable way using large arrays of radio antennas. Linearly polarized geomagnetic emission is the dominant emission mechanism produced when charged particles in air showers get deflected in the Earth’s magnetic field. The sub-dominant Askaryan emission is radially polarized and produced due to the time-varying negative-charge excess in the shower front. The relative amplitude of these two emission components depends on various air shower parameters, such as the arrival direction and the depth of the shower maximum. We studied these dependencies using CoREAS simulations of the radio emission from air showers at the South Pole using a star-shaped antenna layout. On the one hand, the parametrization of the Askaryan-to-geomagnetic ratio can be used as input for a more accurate reconstruction of the shower energy. On the other hand, if measured precisely enough, this ratio may provide a new method to reconstruct the atmospheric depth of the shower maximum.
宇宙射线是宇宙中高能事件的信使。这些罕见的超高能量粒子可以使用大型无线电天线阵列以一种经济实惠的方式有效地探测到。线极化地磁发射是空气阵雨中的带电粒子在地球磁场中偏转时产生的主要发射机制。亚主导的阿斯卡良发射是径向极化的,是由于阵雨锋面中随时间变化的负电荷过剩而产生的。这两种发射分量的相对振幅取决于不同的风淋点参数,如到达方向和最大雨淋点深度。我们使用CoREAS模拟了南极的星形天线布局的空气阵雨的无线电发射,研究了这些依赖关系。一方面,阿斯卡良地磁比的参数化可以作为输入,更精确地重建阵雨能量。另一方面,如果测量得足够精确,这个比值可以提供一种重建最大流星雨的大气深度的新方法。
{"title":"Parametrization of the Relative Amplitude of Geomagnetic and Askaryan Radio Emission from Cosmic-Ray Air Showers using CORSIKA/CoREAS Simulations","authors":"E. Paudel, A. Coleman, F. Schroeder","doi":"10.22323/1.395.0429","DOIUrl":"https://doi.org/10.22323/1.395.0429","url":null,"abstract":"Cosmic rays are messengers from highly energetic events in the Universe. These rare ultra-highenergy particles can be detected efficiently and in an affordable way using large arrays of radio antennas. Linearly polarized geomagnetic emission is the dominant emission mechanism produced when charged particles in air showers get deflected in the Earth’s magnetic field. The sub-dominant Askaryan emission is radially polarized and produced due to the time-varying negative-charge excess in the shower front. The relative amplitude of these two emission components depends on various air shower parameters, such as the arrival direction and the depth of the shower maximum. We studied these dependencies using CoREAS simulations of the radio emission from air showers at the South Pole using a star-shaped antenna layout. On the one hand, the parametrization of the Askaryan-to-geomagnetic ratio can be used as input for a more accurate reconstruction of the shower energy. On the other hand, if measured precisely enough, this ratio may provide a new method to reconstruct the atmospheric depth of the shower maximum.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":"232 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77076548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Exploring a PMT+SiPM hybrid optical module for next generation neutrino telescopes 探索用于下一代中微子望远镜的PMT+SiPM混合光学模块
Pub Date : 2021-08-12 DOI: 10.22323/1.395.1043
F. Hu, Zhuo Li, Donglian Xu
Department of Astronomy, Peking University, 5 Yiheyuan Rd, Beijing, China The Kavli Institute for Astronomy and Astrophysics, Peking University, 5 Yiheyuan Rd, Beijing, China Tsung-Dao Lee Institute, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, China School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, China E-mail: fan_hu@pke.edu.cn, zhuo.li@pku.edu.cn, donglianxu@sjtu.edu.cn
北京大学天文系,北京市一河源路5号;北京大学Kavli天文与天体物理研究所,北京市一河源路5号;上海交通大学李宗道研究所,上海市东川路800号;上海交通大学中国物理与天文学院,上海市东川路800号E-mail: fan_hu@pke.edu.cn, zhuo.li@pku.edu.cn, donglianxu@sjtu.edu.cn
{"title":"Exploring a PMT+SiPM hybrid optical module for next generation neutrino telescopes","authors":"F. Hu, Zhuo Li, Donglian Xu","doi":"10.22323/1.395.1043","DOIUrl":"https://doi.org/10.22323/1.395.1043","url":null,"abstract":"Department of Astronomy, Peking University, 5 Yiheyuan Rd, Beijing, China The Kavli Institute for Astronomy and Astrophysics, Peking University, 5 Yiheyuan Rd, Beijing, China Tsung-Dao Lee Institute, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, China School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, China E-mail: fan_hu@pke.edu.cn, zhuo.li@pku.edu.cn, donglianxu@sjtu.edu.cn","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88346329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Development of hybrid reconstruction techniques for TAIGA TAIGA杂交重建技术的发展
Pub Date : 2021-08-11 DOI: 10.22323/1.395.0757
M. Blank, M. Tluczykont, A. Awad, D. Horns, A. Porelli, I. Astapov, P. Bezyazeekov, E. Bonvech, A. Borodin, A. Bulan, M. Brueckner, N. Budnev, A. Chiavassa, D. Chernov, A. Dyachok, A. Gafarov, A. Garmash, V. Grebenyuk, O. Gress, E. Gress, T. Gress, O. Grishin, A. Grinyuk, N. Kalmykov, V. Kindin, S. Kiryuhin, R. Kokoulin, K. Kompaniets, E. Korosteleva, V. Kozhin, E. Kravchenko, A. Kryukov, L. Kuzmichev, A. Lagutin, M. Lavrova, B. Lubsandorzhiev, N. Lubsandorzhiev, A. Lukanov, D. Lukyantsev, R. Mirgazov, R. Mirzoyan, R. Monkhoev, E. Osipova, A. Pakhorukov, A. Pan, L. Pankov, A. Panov, A. Petrukhin, D. Podgrudkov, V. Poleschuk, M. Popesku, E. Popova, E. Postnikov, V. Prosin, V. Ptuskin, A. Pushnin, R. Raikin, A. Razumov, G. Rubtsov, E. Ryabov, Y. Sagan, V. Samoliga, A. Silaev, A. S. Junior, A. Sidorenkov, A. Skurikhin, M. Slunečka, A. Sokolov, L. Sveshnikova, V. Tabolenko, B. Tarashansky, L. Tkachev, R. Togoo, N. Ushakov, A. Vaidyanathan, P. Volchugov, N. Volkov, D. Voronin, R. Wischnewski, A. Zagorodnikov, 
The TAIGA-experiment aims to implement a hybrid detection technique of Extensive Air Showers (EAS) at TeV to PeV energies, combining the wide angle Cherenkov timing array HiSCORE with Imaging Air Cherenkov Telescopes (IACTs). The detector currently consists of 89 HiSCORE stations and two IACTs, distributed over an area of about 1 km2. Our goal is to introduce a new reconstruction technique, combining the good angular and shower core resolution of HiSCORE with the gamma-hadron separation power of the imaging telescopes. With the second IACT in operation, three different event types can be explored: IACT stereo, full hybrid (IACT stereo + stations) and mono hybrid (IACT mono + HiSCORE), the latter being the operational goal of TAIGA. The status of the development of the full hybrid reconstruction and its verification using real data and simulation are presented.
taiga实验旨在实现TeV到PeV能量的广泛空气阵雨(EAS)混合探测技术,将广角切伦科夫定时阵列HiSCORE与成像空气切伦科夫望远镜(IACTs)相结合。该探测器目前由89个HiSCORE站和两个IACTs组成,分布在约1平方公里的区域内。我们的目标是引入一种新的重建技术,将HiSCORE良好的角度和阵雨核分辨率与成像望远镜的伽玛强子分离能力相结合。随着第二个IACT的运行,可以探索三种不同的事件类型:IACT立体声,全混合(IACT立体声+电台)和单混合(IACT单声道+ HiSCORE),后者是TAIGA的运营目标。介绍了全混合重构的发展现状,并用实际数据和仿真对其进行了验证。
{"title":"Development of hybrid reconstruction techniques for TAIGA","authors":"M. Blank, M. Tluczykont, A. Awad, D. Horns, A. Porelli, I. Astapov, P. Bezyazeekov, E. Bonvech, A. Borodin, A. Bulan, M. Brueckner, N. Budnev, A. Chiavassa, D. Chernov, A. Dyachok, A. Gafarov, A. Garmash, V. Grebenyuk, O. Gress, E. Gress, T. Gress, O. Grishin, A. Grinyuk, N. Kalmykov, V. Kindin, S. Kiryuhin, R. Kokoulin, K. Kompaniets, E. Korosteleva, V. Kozhin, E. Kravchenko, A. Kryukov, L. Kuzmichev, A. Lagutin, M. Lavrova, B. Lubsandorzhiev, N. Lubsandorzhiev, A. Lukanov, D. Lukyantsev, R. Mirgazov, R. Mirzoyan, R. Monkhoev, E. Osipova, A. Pakhorukov, A. Pan, L. Pankov, A. Panov, A. Petrukhin, D. Podgrudkov, V. Poleschuk, M. Popesku, E. Popova, E. Postnikov, V. Prosin, V. Ptuskin, A. Pushnin, R. Raikin, A. Razumov, G. Rubtsov, E. Ryabov, Y. Sagan, V. Samoliga, A. Silaev, A. S. Junior, A. Sidorenkov, A. Skurikhin, M. Slunečka, A. Sokolov, L. Sveshnikova, V. Tabolenko, B. Tarashansky, L. Tkachev, R. Togoo, N. Ushakov, A. Vaidyanathan, P. Volchugov, N. Volkov, D. Voronin, R. Wischnewski, A. Zagorodnikov, ","doi":"10.22323/1.395.0757","DOIUrl":"https://doi.org/10.22323/1.395.0757","url":null,"abstract":"The TAIGA-experiment aims to implement a hybrid detection technique of Extensive Air Showers (EAS) at TeV to PeV energies, combining the wide angle Cherenkov timing array HiSCORE with Imaging Air Cherenkov Telescopes (IACTs). The detector currently consists of 89 HiSCORE stations and two IACTs, distributed over an area of about 1 km2. Our goal is to introduce a new reconstruction technique, combining the good angular and shower core resolution of HiSCORE with the gamma-hadron separation power of the imaging telescopes. With the second IACT in operation, three different event types can be explored: IACT stereo, full hybrid (IACT stereo + stations) and mono hybrid (IACT mono + HiSCORE), the latter being the operational goal of TAIGA. The status of the development of the full hybrid reconstruction and its verification using real data and simulation are presented.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76887095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of the D-Egg optical sensor for the IceCube-Upgrade 用于冰立方升级的D-Egg光学传感器的性能
Pub Date : 2021-08-11 DOI: 10.22323/1.395.1042
C. Hill, Max Meier, R. Nagai, K. Kin, N. Shimizu, A. Ishihara, S. Yoshida, T. Anderson, J. Braun, A. Fienberg, Jeff Weber
New optical sensors called the “D-Egg” have been developed for cost-effective instrumentation for the IceCube Upgrade. With two 8-inch high quantum efficient photomultiplier tubes (PMTs), they offer increased effective photocathode area while retaining as much of the successful IceCube Digital Optical Module design as possible. Mass production of D-Eggs has started in 2020. By the end of 2021, there will be 310 D-Eggs produced with 288 deployed in the IceCube Upgrade. The D-Egg readout system uses advanced technologies in electronics and computing power. Each of the two PMT signals is digitised using ultra-low-power 14-bit ADCs with a sampling frequency of 240 MSPS, enabling seamless and lossless event recording from single-photon signals to signals exceeding 200 PE within 10 ns, as well as flexible event triggering. In this paper, we report the single photon detection performance as well as the multiple photon recording capability of D-Eggs from the mass production line which have been evaluated with the built-in data acquisition system.
名为“D-Egg”的新型光学传感器已经为冰立方升级项目开发了具有成本效益的仪器。采用两个8英寸高量子效率光电倍增管(pmt),在尽可能多地保留成功的冰立方数字光学模块设计的同时,增加了有效光电阴极面积。D-Eggs已于2020年开始批量生产。到2021年底,将生产310个d - egg,其中288个部署在冰立方升级项目中。D-Egg读出系统采用了先进的电子技术和计算能力。两个PMT信号均采用超低功耗14位adc数字化,采样频率为240 MSPS,可在10 ns内实现从单光子信号到超过200 PE信号的无缝无损事件记录,以及灵活的事件触发。本文报道了批量生产的D-Eggs的单光子探测性能和多光子记录能力,并利用内置的数据采集系统对其进行了评估。
{"title":"Performance of the D-Egg optical sensor for the IceCube-Upgrade","authors":"C. Hill, Max Meier, R. Nagai, K. Kin, N. Shimizu, A. Ishihara, S. Yoshida, T. Anderson, J. Braun, A. Fienberg, Jeff Weber","doi":"10.22323/1.395.1042","DOIUrl":"https://doi.org/10.22323/1.395.1042","url":null,"abstract":"New optical sensors called the “D-Egg” have been developed for cost-effective instrumentation for the IceCube Upgrade. With two 8-inch high quantum efficient photomultiplier tubes (PMTs), they offer increased effective photocathode area while retaining as much of the successful IceCube Digital Optical Module design as possible. Mass production of D-Eggs has started in 2020. By the end of 2021, there will be 310 D-Eggs produced with 288 deployed in the IceCube Upgrade. The D-Egg readout system uses advanced technologies in electronics and computing power. Each of the two PMT signals is digitised using ultra-low-power 14-bit ADCs with a sampling frequency of 240 MSPS, enabling seamless and lossless event recording from single-photon signals to signals exceeding 200 PE within 10 ns, as well as flexible event triggering. In this paper, we report the single photon detection performance as well as the multiple photon recording capability of D-Eggs from the mass production line which have been evaluated with the built-in data acquisition system.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75107789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Interpretation of the spectral inhomogeneity in the 10TV region in terms of a close source 从近源角度解释10TV区域的光谱不均匀性
Pub Date : 2021-08-10 DOI: 10.22323/1.395.0166
V. Yurovsky, I. Kudryashov, F. Gasratov, Vasiliy Latonov
The description of the inhomogeneity of the cosmic ray spectrum in the region of 10 TV, which is observed in experimental data, in terms of isotropic diffusion from a single close source is considered. It is shown that such a description is possible, the area of possible localization of the source in space and time, its energy is found. The method of penalty functions is used to account for the data on the spectrum of all particles. nhe calculation of the anisotropy of the diffusion tensor for the energy range of interest in the galactic magnetic field is also shown
本文考虑了用单一近源的各向同性扩散来描述实验数据中观测到的10 TV区域宇宙射线谱的不均匀性。结果表明,这样的描述是可能的,求得了源在空间和时间上可能定位的区域,其能量。罚函数法用于解释所有粒子谱上的数据。计算了银河系磁场中感兴趣的能量范围内扩散张量的各向异性
{"title":"Interpretation of the spectral inhomogeneity in the 10TV region in terms of a close source","authors":"V. Yurovsky, I. Kudryashov, F. Gasratov, Vasiliy Latonov","doi":"10.22323/1.395.0166","DOIUrl":"https://doi.org/10.22323/1.395.0166","url":null,"abstract":"The description of the inhomogeneity of the cosmic ray spectrum in the region of 10 TV, which is observed in experimental data, in terms of isotropic diffusion from a single close source is considered. It is shown that such a description is possible, the area of possible localization of the source in space and time, its energy is found. The method of penalty functions is used to account for the data on the spectrum of all particles. nhe calculation of the anisotropy of the diffusion tensor for the energy range of interest in the galactic magnetic field is also shown","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84115752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observations of track-like neutrino events with Baikal-GVD 用Baikal-GVD观测类轨道中微子事件
Pub Date : 2021-08-10 DOI: 10.22323/1.395.1177
D. Zaborov
V.A. Allakhverdyan,a A.D. Avrorin,b A.V. Avrorin,b V.M. Aynutdinov,b R. Bannasch,c Z. Bardačová,d I.A. Belolaptikov,a I.V. Borina,a V.B. Brudanin,a,1 N.M. Budnev,e V.Y. Dik,a G.V. Domogatsky,b A.A. Doroshenko,b R. Dvornický,a,d A.N. Dyachok,e Zh.-A.M. Dzhilkibaev,b E. Eckerová,d T.V. Elzhov,a L. Fajt, f S.V. Fialkovski,g,1 A.R. Gafarov,e K.V. Golubkov,b N.S. Gorshkov,a T.I. Gress,e M.S. Katulin,a K.G. Kebkal,c O.G. Kebkal,c E.V. Khramov,a M.M. Kolbin,a K.V. Konischev,a K.A. Kopański,h A.V. Korobchenko,a A.P. Koshechkin,b V.A. Kozhin,i M.V. Kruglov,a M.K. Kryukov,b V.F. Kulepov, Pa. Malecki,h Y.M. Malyshkin,a M.B. Milenin,b R.R. Mirgazov,e D.V. Naumov,a V. Nazari,a W. Noga,h D.P. Petukhov,b E.N. Pliskovsky,a M.I. Rozanov, j V.D. Rushay,a E.V. Ryabov,e G.B. Safronov,b B.A. Shaybonov,a M.D. Shelepov,b F. Šimkovic,a,d, f A.E. Sirenko,a A.V. Skurikhin,i A.G. Solovjev,a M.N. Sorokovikov,a I. Štekl, f A.P. Stromakov,b E.O. Sushenok,a O.V. Suvorova,b V.A. Tabolenko,e B.A. Tarashansky,e Y.V. Yablokova,a S.A. Yakovlevc and D.N. Zaborovb,∗ Joint Institute for Nuclear Research, Dubna, Russia Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia EvoLogics GmbH, Berlin, Germany Comenius University, Bratislava, Slovakia Irkutsk State University, Irkutsk, Russia Czech Technical University in Prague, Prague, Czech Republic Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia Institute of Nuclear Physics of Polish Academy of Sciences (IFJ PAN), Kraków, Poland Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia St. Petersburg State Marine Technical University, St.Petersburg, Russia
{"title":"Observations of track-like neutrino events with Baikal-GVD","authors":"D. Zaborov","doi":"10.22323/1.395.1177","DOIUrl":"https://doi.org/10.22323/1.395.1177","url":null,"abstract":"V.A. Allakhverdyan,a A.D. Avrorin,b A.V. Avrorin,b V.M. Aynutdinov,b R. Bannasch,c Z. Bardačová,d I.A. Belolaptikov,a I.V. Borina,a V.B. Brudanin,a,1 N.M. Budnev,e V.Y. Dik,a G.V. Domogatsky,b A.A. Doroshenko,b R. Dvornický,a,d A.N. Dyachok,e Zh.-A.M. Dzhilkibaev,b E. Eckerová,d T.V. Elzhov,a L. Fajt, f S.V. Fialkovski,g,1 A.R. Gafarov,e K.V. Golubkov,b N.S. Gorshkov,a T.I. Gress,e M.S. Katulin,a K.G. Kebkal,c O.G. Kebkal,c E.V. Khramov,a M.M. Kolbin,a K.V. Konischev,a K.A. Kopański,h A.V. Korobchenko,a A.P. Koshechkin,b V.A. Kozhin,i M.V. Kruglov,a M.K. Kryukov,b V.F. Kulepov, Pa. Malecki,h Y.M. Malyshkin,a M.B. Milenin,b R.R. Mirgazov,e D.V. Naumov,a V. Nazari,a W. Noga,h D.P. Petukhov,b E.N. Pliskovsky,a M.I. Rozanov, j V.D. Rushay,a E.V. Ryabov,e G.B. Safronov,b B.A. Shaybonov,a M.D. Shelepov,b F. Šimkovic,a,d, f A.E. Sirenko,a A.V. Skurikhin,i A.G. Solovjev,a M.N. Sorokovikov,a I. Štekl, f A.P. Stromakov,b E.O. Sushenok,a O.V. Suvorova,b V.A. Tabolenko,e B.A. Tarashansky,e Y.V. Yablokova,a S.A. Yakovlevc and D.N. Zaborovb,∗ Joint Institute for Nuclear Research, Dubna, Russia Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia EvoLogics GmbH, Berlin, Germany Comenius University, Bratislava, Slovakia Irkutsk State University, Irkutsk, Russia Czech Technical University in Prague, Prague, Czech Republic Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia Institute of Nuclear Physics of Polish Academy of Sciences (IFJ PAN), Kraków, Poland Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia St. Petersburg State Marine Technical University, St.Petersburg, Russia","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90088511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The Science Alert Generation system of the Cherenkov Telescope Array Observatory. 切伦科夫望远镜阵列天文台的科学警报生成系统。
Pub Date : 2021-08-10 DOI: 10.22323/1.395.0937
A. Bulgarelli, S. Caroff, A. Addis, P. Aubert, L. Baroncelli, G. D. Cesare, A. DiPiano, V. Fioretti, E. García, G. Maurin, N. Parmiggiani, T. Vuillaume, I. Oya, C. Hoischen
The Cherenkov Telescope Array (CTA) Observatory, with dozens of telescopes located in both the Northern and Southern Hemispheres, will be the largest ground-based gamma-ray observatory and will provide broad energy coverage from 20 GeV to 300 TeV. The large effective area and field-of-view, coupled with the fast slewing capability and unprecedented sensitivity, make CTA a crucial instrument for the future of ground-based gamma-ray astronomy. To maximise the scientific return, the array will send alerts on transients and variable phenomena (e.g. gamma-ray burst, active galactic nuclei, gamma-ray binaries, serendipitous sources). Rapid and effective communication to the community requires a reliable and automated system to detect and issue candidate science alerts. This automation will be accomplished by the Science Alert Generation (SAG) pipeline, a key system of the CTA Observatory. SAG is part of the Array Control and Data Acquisition (ACADA) working group. The SAG working group develops the pipelines to perform data reconstruction, data quality monitoring, science monitoring and real-time alert issuing during observations to the Transients Handler functionality of ACADA. SAG is the system that performs the first real-time scientific analysis after the data acquisition. The system performs analysis on multiple time scales (from seconds to hours). SAG must issue candidate science alerts within 20 seconds from the data taking and with sensitivity at least half of the CTA nominal sensitivity. These challenging requirements must be fulfilled by managing trigger rates of tens of kHz from the arrays. Dedicated and highly optimised software and hardware architecture must thus be designed and tested. In this work, we present the general architecture of the ACADA-SAG system.
切伦科夫望远镜阵列(CTA)天文台,在北半球和南半球都有几十个望远镜,将是最大的地面伽玛射线天文台,并将提供从20 GeV到300 TeV的广泛能量覆盖。巨大的有效面积和视场,加上快速旋转能力和前所未有的灵敏度,使CTA成为未来地面伽玛射线天文学的关键仪器。为了最大限度地提高科学回报,该阵列将对瞬变和可变现象(例如伽马射线暴、活动星系核、伽马射线双星、意外来源)发出警报。快速和有效地与社区沟通需要一个可靠和自动化的系统来检测和发布候选科学警报。这种自动化将由CTA天文台的关键系统科学警报生成(SAG)管道完成。SAG是阵列控制和数据采集(ACADA)工作组的一部分。SAG工作组开发管道,以执行数据重建、数据质量监测、科学监测以及在观察ACADA的Transients Handler功能期间发出实时警报。SAG是在数据采集后进行第一次实时科学分析的系统。系统在多个时间尺度(从秒到小时)上执行分析。SAG必须在数据采集后20秒内发出候选科学警报,并且灵敏度至少为CTA标称灵敏度的一半。这些具有挑战性的要求必须通过管理来自阵列的数十kHz的触发率来满足。因此,必须设计和测试专用的和高度优化的软件和硬件架构。在这项工作中,我们提出了ACADA-SAG系统的总体架构。
{"title":"The Science Alert Generation system of the Cherenkov Telescope Array Observatory.","authors":"A. Bulgarelli, S. Caroff, A. Addis, P. Aubert, L. Baroncelli, G. D. Cesare, A. DiPiano, V. Fioretti, E. García, G. Maurin, N. Parmiggiani, T. Vuillaume, I. Oya, C. Hoischen","doi":"10.22323/1.395.0937","DOIUrl":"https://doi.org/10.22323/1.395.0937","url":null,"abstract":"The Cherenkov Telescope Array (CTA) Observatory, with dozens of telescopes located in both the Northern and Southern Hemispheres, will be the largest ground-based gamma-ray observatory and will provide broad energy coverage from 20 GeV to 300 TeV. The large effective area and field-of-view, coupled with the fast slewing capability and unprecedented sensitivity, make CTA a crucial instrument for the future of ground-based gamma-ray astronomy. To maximise the scientific return, the array will send alerts on transients and variable phenomena (e.g. gamma-ray burst, active galactic nuclei, gamma-ray binaries, serendipitous sources). Rapid and effective communication to the community requires a reliable and automated system to detect and issue candidate science alerts. This automation will be accomplished by the Science Alert Generation (SAG) pipeline, a key system of the CTA Observatory. SAG is part of the Array Control and Data Acquisition (ACADA) working group. The SAG working group develops the pipelines to perform data reconstruction, data quality monitoring, science monitoring and real-time alert issuing during observations to the Transients Handler functionality of ACADA. SAG is the system that performs the first real-time scientific analysis after the data acquisition. The system performs analysis on multiple time scales (from seconds to hours). SAG must issue candidate science alerts within 20 seconds from the data taking and with sensitivity at least half of the CTA nominal sensitivity. These challenging requirements must be fulfilled by managing trigger rates of tens of kHz from the arrays. Dedicated and highly optimised software and hardware architecture must thus be designed and tested. In this work, we present the general architecture of the ACADA-SAG system.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79166684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1