Pub Date : 2025-12-01Epub Date: 2024-08-22DOI: 10.1007/s12602-024-10349-6
Xia He, Weijun Chen, Xiaoni Zhou, Gang Hu, Jing Wei, Yan Liu, Liping Cai, Zhi Zhang, Tingtao Chen
Chronic endometritis (CE) is common in patients with infertility, and it is challenging to treat with antibiotics as bacteria often acquire resistance to the antibiotics, which leads to frequent recurrence of the condition. Probiotics, especially Lactobacillus species, are known for their usefulness in treating reproductive infections. This study evaluated Lactobacillus crispatus chen 01 (L. crispatus chen 01) isolated from healthy women who were 22-30 years old and married with children. In vitro experiments showed that L. crispatus chen 01 inhibited pathogens and reduced inflammation in CE mice by downregulating inflammatory proteins (TLR, MyD88, and p65/p-p65; L + Abx vs M, P < 0.01), improving histopathological features, and inhibiting bacterial growth. It also regulated endometrial processes, such as enhancing embryo implantation (BMP2 and Wnt4, L + Abx vs M, P < 0.01) via the Wnt/β-catenin pathway, leading to increased pregnancy rates (L + Abx vs M, 100% vs 0%) in mice. In clinical trials, L. crispatus chen 01 improved progesterone levels (P = 0.0038), pregnancy rates (C vs Abx + L. c, 76.19% vs 87.18%), and pathological changes in CE patients. The findings from this study identify the administration of L. crispatus chen 01 as a promising intervention for CE that could improve pregnancy rates.
慢性子宫内膜炎(CE)是不孕症患者的常见病,由于细菌经常对抗生素产生抗药性,导致病情经常复发,因此用抗生素治疗具有挑战性。益生菌,尤其是乳酸杆菌,因其在治疗生殖感染方面的作用而闻名。本研究评估了从 22-30 岁已婚并育有子女的健康女性体内分离出来的脆片乳杆菌陈 01(L. crispatus chen 01)。体外实验表明,Crispatus chen 01 通过下调炎症蛋白(TLR、MyD88 和 p65/p-p65;L + Abx vs M,P<0.05),抑制病原体并减轻 CE 小鼠的炎症反应。
{"title":"The Therapeutic Potential of Lactobacillus crispatus for Chronic Endometritis: A Comprehensive Clinical Trial and Experimental Investigation.","authors":"Xia He, Weijun Chen, Xiaoni Zhou, Gang Hu, Jing Wei, Yan Liu, Liping Cai, Zhi Zhang, Tingtao Chen","doi":"10.1007/s12602-024-10349-6","DOIUrl":"10.1007/s12602-024-10349-6","url":null,"abstract":"<p><p>Chronic endometritis (CE) is common in patients with infertility, and it is challenging to treat with antibiotics as bacteria often acquire resistance to the antibiotics, which leads to frequent recurrence of the condition. Probiotics, especially Lactobacillus species, are known for their usefulness in treating reproductive infections. This study evaluated Lactobacillus crispatus chen 01 (L. crispatus chen 01) isolated from healthy women who were 22-30 years old and married with children. In vitro experiments showed that L. crispatus chen 01 inhibited pathogens and reduced inflammation in CE mice by downregulating inflammatory proteins (TLR, MyD88, and p65/p-p65; L + Abx vs M, P < 0.01), improving histopathological features, and inhibiting bacterial growth. It also regulated endometrial processes, such as enhancing embryo implantation (BMP2 and Wnt4, L + Abx vs M, P < 0.01) via the Wnt/β-catenin pathway, leading to increased pregnancy rates (L + Abx vs M, 100% vs 0%) in mice. In clinical trials, L. crispatus chen 01 improved progesterone levels (P = 0.0038), pregnancy rates (C vs Abx + L. c, 76.19% vs 87.18%), and pathological changes in CE patients. The findings from this study identify the administration of L. crispatus chen 01 as a promising intervention for CE that could improve pregnancy rates.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"4047-4065"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2024-07-13DOI: 10.1007/s12602-024-10323-2
Bin Chen, Yang Yang, Zhenhua Wang, Xixi Dai, Yuheng Cao, Mengwei Zhang, Dongmei Zhang, Xueqin Ni, Yan Zeng, Kangcheng Pan
Duck viral hepatitis, primarily caused by duck hepatitis A virus type 1 (DHAV-1), poses a significant threat to the global duck industry. Bacillus subtilis is commonly utilized as a safe probiotic in the development of mucosal vaccines. In this study, a recombinant strain of B. subtilis, designated as B. subtilis RV, was constructed to display the DHAV-1 capsid protein VP1 on its spore surface using the outer coat protein B as an anchoring agent. The immunogenicity of this recombinant strain was evaluated in a mouse model through mixed feeding immunization. The results indicated that B. subtilis RV could elicit specific systemic and mucosal immune responses in mice, as evidenced by the high levels of serum IgG, intestinal secretory IgA, and potent virus-neutralizing antibodies produced. Furthermore, the recombinant strain significantly upregulated the expression levels of IL-2, IL-6, IL-10, TNF-α, and IFN-γ in the intestinal mucosa. Thus, the recombinant strain maintained the balance of the Th1/Th2 immune response and demonstrated an excellent mucosal immune adjuvant function. In summary, this study suggests that B. subtilis RV can be a novel alternative for effectively controlling DHAV-1 infection as a vaccine-based feed additive.
{"title":"Surface Display of Duck Hepatitis A Virus Type 1 VP1 Protein on Bacillus subtilis Spores Elicits Specific Systemic and Mucosal Immune Responses on Mice.","authors":"Bin Chen, Yang Yang, Zhenhua Wang, Xixi Dai, Yuheng Cao, Mengwei Zhang, Dongmei Zhang, Xueqin Ni, Yan Zeng, Kangcheng Pan","doi":"10.1007/s12602-024-10323-2","DOIUrl":"10.1007/s12602-024-10323-2","url":null,"abstract":"<p><p>Duck viral hepatitis, primarily caused by duck hepatitis A virus type 1 (DHAV-1), poses a significant threat to the global duck industry. Bacillus subtilis is commonly utilized as a safe probiotic in the development of mucosal vaccines. In this study, a recombinant strain of B. subtilis, designated as B. subtilis RV, was constructed to display the DHAV-1 capsid protein VP1 on its spore surface using the outer coat protein B as an anchoring agent. The immunogenicity of this recombinant strain was evaluated in a mouse model through mixed feeding immunization. The results indicated that B. subtilis RV could elicit specific systemic and mucosal immune responses in mice, as evidenced by the high levels of serum IgG, intestinal secretory IgA, and potent virus-neutralizing antibodies produced. Furthermore, the recombinant strain significantly upregulated the expression levels of IL-2, IL-6, IL-10, TNF-α, and IFN-γ in the intestinal mucosa. Thus, the recombinant strain maintained the balance of the Th1/Th2 immune response and demonstrated an excellent mucosal immune adjuvant function. In summary, this study suggests that B. subtilis RV can be a novel alternative for effectively controlling DHAV-1 infection as a vaccine-based feed additive.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"3873-3886"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lactiplantibacillus plantarum (Lpb. plantarum), as a safe probiotic microorganism, has been documented for its production of multiple bioactive compounds, such as exopolysaccharides (EPS), which have been used in the treatment of many gastrointestinal diseases, including gastric ulcers. The present study aims to investigate the prophylactic and antiulcerogenic effects of the potential probiotic Lbp. plantarum E1K2R2 and its EPS against ibuprofen-induced gastric ulcer. A gastric ulcer model was established by feeding fasted rats with ibuprofen at a single dose (200 mg/kg body weight). The Lpb. plantarum E1K2R2 (109 CFU), its EPS (200 mg/kg bw), and the anti-ulcer reference drug (omeprazole) (20 mg/kg bw) were separately used to feed rats for seven consecutive days before ibuprofen administration. The mechanisms were meticulously examined, focusing on the anti-secretory activity and mucus production as well as the anti-inflammatory and antioxidant activities. The findings revealed that the gastro-preventive effect of Lbp. plantarum E1K2R2 (88.43%) was higher than that of the EPS (66.26%) and close to that of omeprazole (89.87%). This effect was achieved through similar mechanisms, including regulation of the secretory activity, augmentation of mucus production, mitigation of inflammation, and enhancement of the gastric mucosa's antioxidant capacity. Moreover, it was found that Lbp. plantarum E1K2R2 and its EPS induce the activities of gastric antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and S-transferase (GST); enhance glutathione (GSH) content; and reduce mucosal nitric oxide (NO), myeloperoxidase (MPO), and malondialdehyde (MDA) levels. Furthermore, histopathological and hematological examinations confirmed that both pre-treatments could effectively maintain the structural integrity of the gastric mucosa and improve some hematological parameters, respectively. This implies that Lpb. plantarum E1K2R2 and its EPS possess the potential to counteract ibuprofen-associated gastric ulcers, leveraging a variety of protective mechanisms.
{"title":"Prophylactic Effect and Antiulcerogenic Potential of Probiotic Lactiplantibacillus plantarum E1K2R2 and its Exopolysaccharide Against Ibuprofen-Induced Acute Gastric Ulcer.","authors":"Nadia Aliouche, Mohamed Sifour, Widad Kebsa, Tarek Khennouf, Feriha Ercan, Houria Ouled-Haddar","doi":"10.1007/s12602-024-10321-4","DOIUrl":"10.1007/s12602-024-10321-4","url":null,"abstract":"<p><p>Lactiplantibacillus plantarum (Lpb. plantarum), as a safe probiotic microorganism, has been documented for its production of multiple bioactive compounds, such as exopolysaccharides (EPS), which have been used in the treatment of many gastrointestinal diseases, including gastric ulcers. The present study aims to investigate the prophylactic and antiulcerogenic effects of the potential probiotic Lbp. plantarum E1K2R2 and its EPS against ibuprofen-induced gastric ulcer. A gastric ulcer model was established by feeding fasted rats with ibuprofen at a single dose (200 mg/kg body weight). The Lpb. plantarum E1K2R2 (10<sup>9</sup> CFU), its EPS (200 mg/kg bw), and the anti-ulcer reference drug (omeprazole) (20 mg/kg bw) were separately used to feed rats for seven consecutive days before ibuprofen administration. The mechanisms were meticulously examined, focusing on the anti-secretory activity and mucus production as well as the anti-inflammatory and antioxidant activities. The findings revealed that the gastro-preventive effect of Lbp. plantarum E1K2R2 (88.43%) was higher than that of the EPS (66.26%) and close to that of omeprazole (89.87%). This effect was achieved through similar mechanisms, including regulation of the secretory activity, augmentation of mucus production, mitigation of inflammation, and enhancement of the gastric mucosa's antioxidant capacity. Moreover, it was found that Lbp. plantarum E1K2R2 and its EPS induce the activities of gastric antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and S-transferase (GST); enhance glutathione (GSH) content; and reduce mucosal nitric oxide (NO), myeloperoxidase (MPO), and malondialdehyde (MDA) levels. Furthermore, histopathological and hematological examinations confirmed that both pre-treatments could effectively maintain the structural integrity of the gastric mucosa and improve some hematological parameters, respectively. This implies that Lpb. plantarum E1K2R2 and its EPS possess the potential to counteract ibuprofen-associated gastric ulcers, leveraging a variety of protective mechanisms.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"3887-3902"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2024-08-01DOI: 10.1007/s12602-024-10335-y
Ling-Kang Bu, Pan-Pan Jia, Wen-Bo Huo, De-Sheng Pei
Autism spectrum disorder (ASD) is a neurodevelopmental disorder; the prevalence of which has been on the rise with unknown causes. Alterations in the gut-brain axis have been widely recognized in ASD patients, and probiotics are considered to potentially benefit the rescuing of autism-like behaviors. However, the effectiveness and mechanisms of multiple probiotics on zebrafish models are still not clearly revealed. This study aims to use the germ-free (GF) and conventionally raised (CR) AB wild-type zebrafish and the mutant Tbr1b-/- and Katnal2-/- lines as human-linked ASD animal models to evaluate the effects of multiple probiotics on mitigating developmental and behavioral defects. Results showed that the addition of probiotics increased the basic important developmental indexes, such as body length, weight, and survival rate of treated zebrafish. Moreover, the Lactobacillus plantarum and Lactobacillus rhamnosus affected the behavior of CR zebrafish by increasing their mobility, lowering the GF zebrafish manic, and mitigating transgenic zebrafish abnormal behavior. Moreover, the expression levels of key genes related to gamma-aminobutyric acid (GABA), dopamine (DA), and serotonin (5-HT) as important neuropathways to influence the appearance and development of autism-related disorders, including gad1b, tph1a, htr3a, th, and slc6a3, were significantly activated by some of the probiotics' treatment at some extent. Taken together, this study indicates the beneficial effects of different probiotics, which may provide a novel understanding of probiotic function in related diseases' therapy.
{"title":"Assessment of Probiotics' Impact on Neurodevelopmental and Behavioral Responses in Zebrafish Models: Implications for Autism Spectrum Disorder Therapy.","authors":"Ling-Kang Bu, Pan-Pan Jia, Wen-Bo Huo, De-Sheng Pei","doi":"10.1007/s12602-024-10335-y","DOIUrl":"10.1007/s12602-024-10335-y","url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is a neurodevelopmental disorder; the prevalence of which has been on the rise with unknown causes. Alterations in the gut-brain axis have been widely recognized in ASD patients, and probiotics are considered to potentially benefit the rescuing of autism-like behaviors. However, the effectiveness and mechanisms of multiple probiotics on zebrafish models are still not clearly revealed. This study aims to use the germ-free (GF) and conventionally raised (CR) AB wild-type zebrafish and the mutant Tbr1b<sup>-/-</sup> and Katnal2<sup>-/-</sup> lines as human-linked ASD animal models to evaluate the effects of multiple probiotics on mitigating developmental and behavioral defects. Results showed that the addition of probiotics increased the basic important developmental indexes, such as body length, weight, and survival rate of treated zebrafish. Moreover, the Lactobacillus plantarum and Lactobacillus rhamnosus affected the behavior of CR zebrafish by increasing their mobility, lowering the GF zebrafish manic, and mitigating transgenic zebrafish abnormal behavior. Moreover, the expression levels of key genes related to gamma-aminobutyric acid (GABA), dopamine (DA), and serotonin (5-HT) as important neuropathways to influence the appearance and development of autism-related disorders, including gad1b, tph1a, htr3a, th, and slc6a3, were significantly activated by some of the probiotics' treatment at some extent. Taken together, this study indicates the beneficial effects of different probiotics, which may provide a novel understanding of probiotic function in related diseases' therapy.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"3944-3959"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigated the beneficial effects of probiotic Bifidobacterium animalis TISTR 2591 on the regulation of blood glucose and its possible mechanisms in a rat model of type 2 diabetes. The type 2 diabetic-Sprague Dawley rats were established by the combination of a high-fat diet and a low dose of streptozotocin. After 4 weeks of treatment with 2 × 108 CFU/ml of B. animalis TISTR 2591, fasting blood glucose (FBG), oral glucose tolerance, serum insulin, and pancreatic and hepatic histopathology were determined. Liver lipid accumulation, glycogen content, and gluconeogenic protein expression were evaluated. Oxidative stress and inflammatory status were determined. B. animalis TISTR 2591 significantly reduced FBG levels and improved glucose tolerance and serum insulin in the diabetic rats. Structural damage of the pancreas and liver was ameliorated in the B. animalis TISTR 2591-treated diabetic rats. In addition, significant decreases in hepatic fat accumulation, glycogen content, and phosphoenolpyruvate carboxykinase-1 protein expression were found in the diabetic rats treated with B. animalis TISTR 2591. The diabetic rats showed a significant reduction of inflammation following B. animalis TISTR 2591 supplementation, as demonstrated by decreasing hepatic NF-κB protein expression and serum and liver TNF-α levels. The B. animalis TISTR 2591 significantly decreased MDA levels and increased antioxidant SOD and GPx activities in the diabetic rats. In conclusion, B. animalis TISTR 2591 was shown to be effective in controlling glucose homeostasis and improving glucose tolerance in the diabetic rats. These beneficial activities were attributed to reducing oxidative and inflammatory status and modulating hepatic glucose metabolism.
{"title":"Antidiabetic Effect of Bifidobacterium animalis TISTR 2591 in a Rat Model of Type 2 Diabetes.","authors":"Wanthanee Hanchang, Sivamoke Dissook, Navinee Wongmanee, Worarat Rojanaverawong, Natthawut Charoenphon, Kamonthip Pakaew, Jaruwan Sitdhipol, Thanaphol Thanagornyothin, Pongsathon Phapugrangkul, Susakul Palakawong Na Ayudthaya, Pennapa Chonpathompikunlert","doi":"10.1007/s12602-024-10377-2","DOIUrl":"10.1007/s12602-024-10377-2","url":null,"abstract":"<p><p>This study investigated the beneficial effects of probiotic Bifidobacterium animalis TISTR 2591 on the regulation of blood glucose and its possible mechanisms in a rat model of type 2 diabetes. The type 2 diabetic-Sprague Dawley rats were established by the combination of a high-fat diet and a low dose of streptozotocin. After 4 weeks of treatment with 2 × 10<sup>8</sup> CFU/ml of B. animalis TISTR 2591, fasting blood glucose (FBG), oral glucose tolerance, serum insulin, and pancreatic and hepatic histopathology were determined. Liver lipid accumulation, glycogen content, and gluconeogenic protein expression were evaluated. Oxidative stress and inflammatory status were determined. B. animalis TISTR 2591 significantly reduced FBG levels and improved glucose tolerance and serum insulin in the diabetic rats. Structural damage of the pancreas and liver was ameliorated in the B. animalis TISTR 2591-treated diabetic rats. In addition, significant decreases in hepatic fat accumulation, glycogen content, and phosphoenolpyruvate carboxykinase-1 protein expression were found in the diabetic rats treated with B. animalis TISTR 2591. The diabetic rats showed a significant reduction of inflammation following B. animalis TISTR 2591 supplementation, as demonstrated by decreasing hepatic NF-κB protein expression and serum and liver TNF-α levels. The B. animalis TISTR 2591 significantly decreased MDA levels and increased antioxidant SOD and GPx activities in the diabetic rats. In conclusion, B. animalis TISTR 2591 was shown to be effective in controlling glucose homeostasis and improving glucose tolerance in the diabetic rats. These beneficial activities were attributed to reducing oxidative and inflammatory status and modulating hepatic glucose metabolism.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"4298-4313"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2024-11-28DOI: 10.1007/s12602-024-10407-z
Hua Xie, Tianfei Yu, Qiwen Zhou, Kai Na, Shuang Lu, Li Zhang, Xiaohua Guo
The probiotic effects of Bacillus are strain-specific and dependent on both spore and vegetative forms, but the distinct contributions of these forms to probiotic functionality are not well understood. This study aimed to evaluate and compare the impacts of vegetative forms and spores of Bacillus subtilis and Bacillus licheniformis on probiotic functions in vitro and in vivo. We systematically assessed the anaerobic metabolic capabilities and the potential to enhance the intestinal barrier function of four Bacillus strains, leading to the selection of Bacillus subtilis X22 and Bacillus licheniformis N-3 for detailed investigation. Utilizing in vitro fermentation with murine fecal microbiota, we observed that the spores form of Bacillus licheniformis N-3 noticeably positively regulated the gut microbiota under anaerobic conditions. Concurrently, both spore and vegetative forms of Bacillus licheniformis N-3 and Bacillus subtilis X22 demonstrated the ability to prevent pathogen adhesion, reduce inflammation, combat oxidative stress, and promote cellular autophagy to reduce apoptosis in response to enterotoxigenic Escherichia coli (ETEC) infection in the IPEC-J2 cell model. As a facultative anaerobe, Bacillus licheniformis N-3 exhibited a tendency toward superior regulatory capacity in enhancing the anti-infective activity of IPEC-J2 cells in vitro. In the pathogens challenge mouse model, B. licheniformis N-3 effectively preserved the integrity of jejunal tissue and enhanced the expression of glycoproteins in goblet cells. Moreover, B. licheniformis N-3 strengthened the epithelial barrier by increasing the levels of Occludin and Claudin-1 in the jejunum, thus promoting overall intestinal health. This research offers new insights into strain selection and the life cycle utilization of Bacillus probiotics.
{"title":"Comparative Evaluation of Spores and Vegetative Forms of Bacillus subtilis and Bacillus licheniformis on Probiotic Functionality In Vitro and In Vivo.","authors":"Hua Xie, Tianfei Yu, Qiwen Zhou, Kai Na, Shuang Lu, Li Zhang, Xiaohua Guo","doi":"10.1007/s12602-024-10407-z","DOIUrl":"10.1007/s12602-024-10407-z","url":null,"abstract":"<p><p>The probiotic effects of Bacillus are strain-specific and dependent on both spore and vegetative forms, but the distinct contributions of these forms to probiotic functionality are not well understood. This study aimed to evaluate and compare the impacts of vegetative forms and spores of Bacillus subtilis and Bacillus licheniformis on probiotic functions in vitro and in vivo. We systematically assessed the anaerobic metabolic capabilities and the potential to enhance the intestinal barrier function of four Bacillus strains, leading to the selection of Bacillus subtilis X22 and Bacillus licheniformis N-3 for detailed investigation. Utilizing in vitro fermentation with murine fecal microbiota, we observed that the spores form of Bacillus licheniformis N-3 noticeably positively regulated the gut microbiota under anaerobic conditions. Concurrently, both spore and vegetative forms of Bacillus licheniformis N-3 and Bacillus subtilis X22 demonstrated the ability to prevent pathogen adhesion, reduce inflammation, combat oxidative stress, and promote cellular autophagy to reduce apoptosis in response to enterotoxigenic Escherichia coli (ETEC) infection in the IPEC-J2 cell model. As a facultative anaerobe, Bacillus licheniformis N-3 exhibited a tendency toward superior regulatory capacity in enhancing the anti-infective activity of IPEC-J2 cells in vitro. In the pathogens challenge mouse model, B. licheniformis N-3 effectively preserved the integrity of jejunal tissue and enhanced the expression of glycoproteins in goblet cells. Moreover, B. licheniformis N-3 strengthened the epithelial barrier by increasing the levels of Occludin and Claudin-1 in the jejunum, thus promoting overall intestinal health. This research offers new insights into strain selection and the life cycle utilization of Bacillus probiotics.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"4709-4727"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helicobacter pylori (H. pylori) infection poses significant risks for gastric cancer and intestinal inflammation, yet effective prevention strategies for intestinal inflammation remain elusive. Here, we aimed to investigate the protective effects and underlying mechanisms of Lactiplantibacillus plantarum ZJ316 (L. plantarum ZJ316) in a mouse model of H. pylori-induced intestinal inflammation. The reverse transcription‑quantitative polymerase chain reaction (RT-qPCR) analysis showed that treatment with L. plantarum ZJ316 significantly upregulated the mRNA levels of tight junction proteins, including Zonula occludens-1 (ZO-1), Occludin, and Claudin-1, while simultaneously decreasing the expression levels of pro-inflammatory cytokines interleukin-1β (IL-1β), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α). Additionally, 16S rDNA sequencing analysis revealed that administration of L. plantarum ZJ316 reduced relative abundance of pathogenic bacteria, Staphylococcus and Desulfovibrio by 69% and 42%, respectively, while enhancing beneficial bacteria including Ligilactobacillus, Akkermansia, and Lactobacillus associated with short-chain fatty acids (SCFAs) synthesis by 88%, 85%, and 16%, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis confirmed L. plantarum ZJ316 restored SCFA levels reduced by H. pylori infection. In vitro, L. plantarum ZJ316 inhibited the IκBα/NF-κB pathway, thereby reducing TNF-α and IL-8 production in HT-29 cells following H. pylori infection. These findings collectively suggest that L. plantarum ZJ316 ameliorates H. pylori-induced intestinal inflammation by enhancing gut barrier function, improving flora structure, increasing SCFA levels, and mitigating inflammation through NF-κB pathway inhibition, offering promise for therapeutic development.
幽门螺杆菌(Helicobacter pylori, H. pylori)感染具有显著的胃癌和肠道炎症风险,但有效的肠道炎症预防策略尚不明确。本研究旨在探讨植物乳杆菌ZJ316 (L. plantarum ZJ316)对幽门螺杆菌诱导的小鼠肠道炎症模型的保护作用及其机制。逆转录-定量聚合酶链反应(RT-qPCR)分析显示,植物L. plantarum ZJ316处理显著上调紧密连接蛋白(Zonula Occludin -1, ZO-1)、Occludin和Claudin-1) mRNA水平,同时降低促炎细胞因子白介素-1β (IL-1β)、干扰素-γ (IFN-γ)和肿瘤坏死因子-α (TNF-α)的表达水平。此外,16S rDNA测序分析显示,L. plantarum ZJ316使病原菌、葡萄球菌和Desulfovibrio的相对丰度分别降低了69%和42%,而与短链脂肪酸(SCFAs)合成相关的有益菌包括Ligilactobacillus、Akkermansia和Lactobacillus的相对丰度分别提高了88%、85%和16%。气相色谱-质谱(GC-MS)分析证实,植物乳杆菌ZJ316可恢复幽门螺杆菌感染后降低的SCFA水平。在体外,L. plantarum ZJ316抑制IκBα/NF-κB通路,从而降低幽门螺杆菌感染后HT-29细胞中TNF-α和IL-8的产生。综上所述,植物乳杆菌ZJ316可通过增强肠道屏障功能、改善菌群结构、提高SCFA水平、抑制NF-κB通路减轻炎症等途径改善幽门螺杆菌诱导的肠道炎症,具有良好的治疗前景。
{"title":"Lactiplantibacillus plantarum ZJ316 Alleviates Helicobacter pylori-Induced Intestinal Inflammation by Sustaining Intestinal Homeostasis.","authors":"Shiying Wu, Fangtong Wei, Yongqiang Chen, Ziqi Chen, Yuenuo Luo, Jiayi Fan, Yang Xu, Mingyang Hu, Ping Li, Qing Gu","doi":"10.1007/s12602-025-10474-w","DOIUrl":"10.1007/s12602-025-10474-w","url":null,"abstract":"<p><p>Helicobacter pylori (H. pylori) infection poses significant risks for gastric cancer and intestinal inflammation, yet effective prevention strategies for intestinal inflammation remain elusive. Here, we aimed to investigate the protective effects and underlying mechanisms of Lactiplantibacillus plantarum ZJ316 (L. plantarum ZJ316) in a mouse model of H. pylori-induced intestinal inflammation. The reverse transcription‑quantitative polymerase chain reaction (RT-qPCR) analysis showed that treatment with L. plantarum ZJ316 significantly upregulated the mRNA levels of tight junction proteins, including Zonula occludens-1 (ZO-1), Occludin, and Claudin-1, while simultaneously decreasing the expression levels of pro-inflammatory cytokines interleukin-1β (IL-1β), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α). Additionally, 16S rDNA sequencing analysis revealed that administration of L. plantarum ZJ316 reduced relative abundance of pathogenic bacteria, Staphylococcus and Desulfovibrio by 69% and 42%, respectively, while enhancing beneficial bacteria including Ligilactobacillus, Akkermansia, and Lactobacillus associated with short-chain fatty acids (SCFAs) synthesis by 88%, 85%, and 16%, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis confirmed L. plantarum ZJ316 restored SCFA levels reduced by H. pylori infection. In vitro, L. plantarum ZJ316 inhibited the IκBα/NF-κB pathway, thereby reducing TNF-α and IL-8 production in HT-29 cells following H. pylori infection. These findings collectively suggest that L. plantarum ZJ316 ameliorates H. pylori-induced intestinal inflammation by enhancing gut barrier function, improving flora structure, increasing SCFA levels, and mitigating inflammation through NF-κB pathway inhibition, offering promise for therapeutic development.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"5195-5212"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-02-13DOI: 10.1007/s12602-025-10469-7
S Neelima, M V Anju, K Archana, V V Anooja, P P Athira, M R Revathy, M Dhaneesha, A Muneer, T P Sajeevan, S Muhammed Musthafa, I S Bright Singh, S Muraleedharan Nair, Rosamma Philip
Availability of novel antimicrobial agents is an urgent necessity to combat the growing threat posed by multidrug-resistant bacteria, prompting exploration of marine antimicrobial peptides (AMPs) as potential solutions. Crustacean AMPs are equitably diverse in terms of structure and function, making them consistent templates for novel antimicrobials. From Scylla olivacea gill transcriptome cDNA, a putative Crustin AMP sequence of 333 nucleotides, encoding a 111 amino acid Crustin Type-I isoform was identified. The mature peptide encoding region was cloned and recombinantly expressed in E. coli using Luria Bertani (LB) broth, yielding approximately 0.9 mg/L peptide. This cationic (+6.25) peptide with amphipathic properties (34% hydrophobicity) exhibited antibacterial effects against Gram-positive and Gram-negative strains, with MIC 16 μM against Vibrio spp. The identified modes of actions included disruption of bacterial membranes, membrane potential dissipation, and induction of ROS. Scanning electron microscopy (SEM) analysis revealed bacterial lysis and structural damage. Being non-toxic to mammalian cells (CHO-K1) and non-haemolytic, So-Crustin qualifies to be safe for therapeutic applications. It was quite stable under different physio-chemical/biological conditions, including temperature, pH, NaCl concentrations and proteases like trypsin and proteinase K. This study emphasizes So-Crustin's potential as a safe and effective antibacterial agent.
{"title":"A Novel Type I Crustin Isoform from Scylla olivacea and its Antibacterial Potential: Membrane Depolarization, Disruption, and Induction of Reactive Oxygen Species as Modes of Action.","authors":"S Neelima, M V Anju, K Archana, V V Anooja, P P Athira, M R Revathy, M Dhaneesha, A Muneer, T P Sajeevan, S Muhammed Musthafa, I S Bright Singh, S Muraleedharan Nair, Rosamma Philip","doi":"10.1007/s12602-025-10469-7","DOIUrl":"10.1007/s12602-025-10469-7","url":null,"abstract":"<p><p>Availability of novel antimicrobial agents is an urgent necessity to combat the growing threat posed by multidrug-resistant bacteria, prompting exploration of marine antimicrobial peptides (AMPs) as potential solutions. Crustacean AMPs are equitably diverse in terms of structure and function, making them consistent templates for novel antimicrobials. From Scylla olivacea gill transcriptome cDNA, a putative Crustin AMP sequence of 333 nucleotides, encoding a 111 amino acid Crustin Type-I isoform was identified. The mature peptide encoding region was cloned and recombinantly expressed in E. coli using Luria Bertani (LB) broth, yielding approximately 0.9 mg/L peptide. This cationic (+6.25) peptide with amphipathic properties (34% hydrophobicity) exhibited antibacterial effects against Gram-positive and Gram-negative strains, with MIC 16 μM against Vibrio spp. The identified modes of actions included disruption of bacterial membranes, membrane potential dissipation, and induction of ROS. Scanning electron microscopy (SEM) analysis revealed bacterial lysis and structural damage. Being non-toxic to mammalian cells (CHO-K1) and non-haemolytic, So-Crustin qualifies to be safe for therapeutic applications. It was quite stable under different physio-chemical/biological conditions, including temperature, pH, NaCl concentrations and proteases like trypsin and proteinase K. This study emphasizes So-Crustin's potential as a safe and effective antibacterial agent.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"5213-5234"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2024-12-28DOI: 10.1007/s12602-024-10441-x
Chaeyeon Park, Ok-Jin Park, Yeongkag Kwon, Jueun Lee, Cheol-Heui Yun, Seung Hyun Han
Probiotics are known to have favorable effects on human health. Nevertheless, probiotics are not always beneficial and can cause unintended adverse effects such as bacteremia and/or inflammation in immunocompromised patients. In the present study, we investigated the effects of probiotics on the regulation of bone metabolism under different health conditions and delivery routes. Intragastric administration of Lactiplantibacillus plantarum to ovariectomized mouse models for mimicking post-menopausal osteoporosis in humans substantially ameliorated osteoporosis by increasing bone and mineral density. In contrast, such effects did not occur in normal healthy mice under the same condition. Interestingly, however, intraperitoneal administration of L. plantarum induced bone destruction by increasing osteoclast differentiation and decreasing osteoblast differentiation. Furthermore, when L. plantarum was implanted into mouse calvarial bone, it potently augmented bone resorption. Concordantly, L. plantarum upregulated osteoclastogenesis and downregulated osteoblastogenesis in in vitro experiments. These results suggest that L. plantarum can have distinct roles in the regulation of bone metabolism depending on bone health and the delivery route.
{"title":"Differential Regulatory Effects of Probiotics on Bone Metabolism by the Status of Bone Health and Delivery Route.","authors":"Chaeyeon Park, Ok-Jin Park, Yeongkag Kwon, Jueun Lee, Cheol-Heui Yun, Seung Hyun Han","doi":"10.1007/s12602-024-10441-x","DOIUrl":"10.1007/s12602-024-10441-x","url":null,"abstract":"<p><p>Probiotics are known to have favorable effects on human health. Nevertheless, probiotics are not always beneficial and can cause unintended adverse effects such as bacteremia and/or inflammation in immunocompromised patients. In the present study, we investigated the effects of probiotics on the regulation of bone metabolism under different health conditions and delivery routes. Intragastric administration of Lactiplantibacillus plantarum to ovariectomized mouse models for mimicking post-menopausal osteoporosis in humans substantially ameliorated osteoporosis by increasing bone and mineral density. In contrast, such effects did not occur in normal healthy mice under the same condition. Interestingly, however, intraperitoneal administration of L. plantarum induced bone destruction by increasing osteoclast differentiation and decreasing osteoblast differentiation. Furthermore, when L. plantarum was implanted into mouse calvarial bone, it potently augmented bone resorption. Concordantly, L. plantarum upregulated osteoclastogenesis and downregulated osteoblastogenesis in in vitro experiments. These results suggest that L. plantarum can have distinct roles in the regulation of bone metabolism depending on bone health and the delivery route.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"4911-4921"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12634773/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142897054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2024-07-04DOI: 10.1007/s12602-024-10318-z
Arezou Rouhi, Fereshteh Falah, Marjan Azghandi, Behrooz Alizadeh Behbahani, Farideh Tabatabaei-Yazdi, Salam A Ibrahim, Enes Dertli, Alireza Vasiee
Listeria monocytogenes is a notable food-borne pathogen that has the ability to create biofilms on different food processing surfaces, making it more resilient to disinfectants and posing a greater risk to human health. This study assessed melittin peptide's anti-biofilm and anti-pathogenicity effects on L. monocytogenes ATCC 19115. Melittin showed minimum inhibitory concenteration (MIC) of 100 μg/mL against this strain and scanning electron microscopy images confirmed its antimicrobial efficacy. The OD measurement demonstrated that melittin exhibited a strong proficiency in inhibiting biofilms and disrupting pre-formed biofilms at concentrations ranging from 1/8MIC to 2MIC and this amount was 92.59 ± 1.01% to 7.17 ± 0.31% and 100% to 11.50 ± 0.53%, respectively. Peptide also reduced hydrophobicity and self-aggregation of L. monocytogenes by 35.25% and 14.38% at MIC. Melittin also significantly reduced adhesion to HT-29 and Caco-2 cells by 61.33% and 59%, and inhibited invasion of HT-29 and Caco-2 cells by 49.33% and 40.66% for L. monocytogenes at the MIC value. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) revealed melittin's impact on gene expression, notably decreasing inlB (44%) and agrA (45%) gene expression in L. monocytogenes. flaA and hly genes also exhibited reduced expression. Also, significant changes were observed in sigB and prfA gene expression. These results underscore melittin's potential in combating bacterial infections and biofilm-related challenges in the food industry.
{"title":"Investigating the Effect of Melittin Peptide in Preventing Biofilm Formation, Adhesion and Expression of Virulence Genes in Listeria monocytogenes.","authors":"Arezou Rouhi, Fereshteh Falah, Marjan Azghandi, Behrooz Alizadeh Behbahani, Farideh Tabatabaei-Yazdi, Salam A Ibrahim, Enes Dertli, Alireza Vasiee","doi":"10.1007/s12602-024-10318-z","DOIUrl":"10.1007/s12602-024-10318-z","url":null,"abstract":"<p><p>Listeria monocytogenes is a notable food-borne pathogen that has the ability to create biofilms on different food processing surfaces, making it more resilient to disinfectants and posing a greater risk to human health. This study assessed melittin peptide's anti-biofilm and anti-pathogenicity effects on L. monocytogenes ATCC 19115. Melittin showed minimum inhibitory concenteration (MIC) of 100 μg/mL against this strain and scanning electron microscopy images confirmed its antimicrobial efficacy. The OD measurement demonstrated that melittin exhibited a strong proficiency in inhibiting biofilms and disrupting pre-formed biofilms at concentrations ranging from 1/8MIC to 2MIC and this amount was 92.59 ± 1.01% to 7.17 ± 0.31% and 100% to 11.50 ± 0.53%, respectively. Peptide also reduced hydrophobicity and self-aggregation of L. monocytogenes by 35.25% and 14.38% at MIC. Melittin also significantly reduced adhesion to HT-29 and Caco-2 cells by 61.33% and 59%, and inhibited invasion of HT-29 and Caco-2 cells by 49.33% and 40.66% for L. monocytogenes at the MIC value. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) revealed melittin's impact on gene expression, notably decreasing inlB (44%) and agrA (45%) gene expression in L. monocytogenes. flaA and hly genes also exhibited reduced expression. Also, significant changes were observed in sigB and prfA gene expression. These results underscore melittin's potential in combating bacterial infections and biofilm-related challenges in the food industry.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"3861-3872"},"PeriodicalIF":4.4,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}