Pub Date : 2024-10-01Epub Date: 2023-07-18DOI: 10.1007/s12602-023-10123-0
Murat Emre Terzioğlu, İhsan Bakirci
In this study, we aimed to produce a standard, more functional, and nutritious yogurt by using 5 different combinations of cow milk and goat milk and 2 types of starter cultures (classical yogurt culture and commercial probiotic culture). It was determined that the use of different milk types and different starter cultures in yogurt production had a statistically very significant effect (P < 0.01) on all physicochemical, microbiological, and biochemical properties. In addition, the storage period was effective on all parameters examined at varying rates. In the context, the use of goat milk in the experimental yogurt samples caused an increase in the ACE inhibitory activity values and the count of S. thermophilus, while the use of cow milk caused an increase in serum separation and pH values. On the other hand, serum separation, pH values, and ACE inhibitory activity and phenylalanine and leucine levels were found to be higher in the yogurts produced by using ABT-2 probiotic culture. It was observed that an increase in the levels of asparagine, aspartic acid, proline, and serine, as well as lactic acid, orotic acid, and citric acid, is higher in the yogurts produced by using classical yogurt culture. It has been concluded that the combination of goat milk and cow milk at different proportions and the use of probiotic culture together in yogurt production can produce yogurt that is more functional and richer in terms of organic compounds and essential amino acids.
{"title":"Comparison of Amino Acid Profile, ACE Inhibitory Activity, and Organic Acid Profile of Cow and Goat Yogurts Produced with Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12, and Classical Yogurt Culture.","authors":"Murat Emre Terzioğlu, İhsan Bakirci","doi":"10.1007/s12602-023-10123-0","DOIUrl":"10.1007/s12602-023-10123-0","url":null,"abstract":"<p><p>In this study, we aimed to produce a standard, more functional, and nutritious yogurt by using 5 different combinations of cow milk and goat milk and 2 types of starter cultures (classical yogurt culture and commercial probiotic culture). It was determined that the use of different milk types and different starter cultures in yogurt production had a statistically very significant effect (P < 0.01) on all physicochemical, microbiological, and biochemical properties. In addition, the storage period was effective on all parameters examined at varying rates. In the context, the use of goat milk in the experimental yogurt samples caused an increase in the ACE inhibitory activity values and the count of S. thermophilus, while the use of cow milk caused an increase in serum separation and pH values. On the other hand, serum separation, pH values, and ACE inhibitory activity and phenylalanine and leucine levels were found to be higher in the yogurts produced by using ABT-2 probiotic culture. It was observed that an increase in the levels of asparagine, aspartic acid, proline, and serine, as well as lactic acid, orotic acid, and citric acid, is higher in the yogurts produced by using classical yogurt culture. It has been concluded that the combination of goat milk and cow milk at different proportions and the use of probiotic culture together in yogurt production can produce yogurt that is more functional and richer in terms of organic compounds and essential amino acids.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"1566-1582"},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9817773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2023-07-19DOI: 10.1007/s12602-023-10125-y
H Nakibapher Jones Shangpliang, Jyoti Prakash Tamang
Consumption of naturally fermented milk (NFM) products is the dietary culture in India. The mountainous people of Arunachal Pradesh in India prepare the assorted artisanal home-made NFM products from cow and yak milk. Previously, we isolated and identified 76 strains of lactic acid bacteria (LAB) from NFM products of Arunachal Pradesh, viz. mar, chhurpi and churkam. We hypothesized that some of these LAB strains may possess probiotic potentials; hence, we investigated the probiotic potentials of these strains. On the basis of in vitro and genetic screening for probiotic attributes including haemolytic ability, 20 LAB strains were selected out of 76 strains, for further analysis. Using in silico analysis, viz. multivariate heatmap and PCA (principal component analysis) biplot, Levilactobacillus brevis AcCh91 was selected as the most promising probiotic strain, which was further characterized by the whole-genome analysis. Lev. brevis AcCh91 showed the highest survival rate of 93.38% in low pH and 86.68 ± 2.69% in low bile and the highest hydrophobicity average of 86.34 ± 5.53%. This strain also showed auto-aggregation and co-aggregation with antimicrobial properties against the pathogens, showed ability to produce beta-galactosidase and cholesterol reduction property and, most importantly, produced GABA, an important psychobiotic element. Genomic analysis of Lev. brevis AcCh91 showed the presence of genes corresponding to GABA, vitamins, amino acids, cholesterol reduction, immunomodulation, bioactive peptides and antioxidant activity. The absence of antimicrobial-resistant genes and virulence factors was observed. Hence, genome analysis supports the probiotic potentials of Lev. brevis AcCh91, which may be further investigated to understand its health-promoting properties.
{"title":"Genome Analysis of Potential Probiotic Levilactobacillus brevis AcCh91 Isolated from Indian Home-Made Fermented Milk Product (Chhurpi).","authors":"H Nakibapher Jones Shangpliang, Jyoti Prakash Tamang","doi":"10.1007/s12602-023-10125-y","DOIUrl":"10.1007/s12602-023-10125-y","url":null,"abstract":"<p><p>Consumption of naturally fermented milk (NFM) products is the dietary culture in India. The mountainous people of Arunachal Pradesh in India prepare the assorted artisanal home-made NFM products from cow and yak milk. Previously, we isolated and identified 76 strains of lactic acid bacteria (LAB) from NFM products of Arunachal Pradesh, viz. mar, chhurpi and churkam. We hypothesized that some of these LAB strains may possess probiotic potentials; hence, we investigated the probiotic potentials of these strains. On the basis of in vitro and genetic screening for probiotic attributes including haemolytic ability, 20 LAB strains were selected out of 76 strains, for further analysis. Using in silico analysis, viz. multivariate heatmap and PCA (principal component analysis) biplot, Levilactobacillus brevis AcCh91 was selected as the most promising probiotic strain, which was further characterized by the whole-genome analysis. Lev. brevis AcCh91 showed the highest survival rate of 93.38% in low pH and 86.68 ± 2.69% in low bile and the highest hydrophobicity average of 86.34 ± 5.53%. This strain also showed auto-aggregation and co-aggregation with antimicrobial properties against the pathogens, showed ability to produce beta-galactosidase and cholesterol reduction property and, most importantly, produced GABA, an important psychobiotic element. Genomic analysis of Lev. brevis AcCh91 showed the presence of genes corresponding to GABA, vitamins, amino acids, cholesterol reduction, immunomodulation, bioactive peptides and antioxidant activity. The absence of antimicrobial-resistant genes and virulence factors was observed. Hence, genome analysis supports the probiotic potentials of Lev. brevis AcCh91, which may be further investigated to understand its health-promoting properties.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"1583-1607"},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10208921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gastrointestinal (GI) infection by intestinal pathogens poses great threats to human health, and the therapeutic use of antibiotics has reached a bottleneck due to drug resistance. The developments of antimicrobial peptides produced by beneficial bacteria have drawn attention by virtue of effective, safe, and not prone to developing resistance. Though bacteriocin as antimicrobial agent in gut infection has been intensively investigated and reviewed, reviews on that of bacteriocin-producing beneficial microbes are very rare. It is important to explicitly state the prospect of bacteriocin-producing microbes in prevention of gastrointestinal infection towards their application in host. This review discusses the potential of gut as an appropriate resource for mining targeted bacteriocin-producing microbes. Then, host-related factors affecting the bacteriocin production and activity of bacteriocin-producing microbes in the gut are summarized. Accordingly, the multiple mechanisms (direct inhibition and indirect inhibition) behind the preventive effects of bacteriocin-producing microbes on gut infection are discussed. Finally, we propose several targeted strategies for the manipulation of bacteriocin-producing beneficial microbes to improve their performance in antimicrobial outcomes. We anticipate an upcoming emergence of developments and applications of bacteriocin-producing beneficial microbes as antimicrobial agent in gut infection induced by pathogenic bacteria.
{"title":"Gut Distribution, Impact Factor, and Action Mechanism of Bacteriocin-Producing Beneficial Microbes as Promising Antimicrobial Agents in Gastrointestinal Infection.","authors":"Zhen Peng, Donglin Wang, Yuyan He, Ziqi Wei, Mingyong Xie, Tao Xiong","doi":"10.1007/s12602-024-10222-6","DOIUrl":"10.1007/s12602-024-10222-6","url":null,"abstract":"<p><p>Gastrointestinal (GI) infection by intestinal pathogens poses great threats to human health, and the therapeutic use of antibiotics has reached a bottleneck due to drug resistance. The developments of antimicrobial peptides produced by beneficial bacteria have drawn attention by virtue of effective, safe, and not prone to developing resistance. Though bacteriocin as antimicrobial agent in gut infection has been intensively investigated and reviewed, reviews on that of bacteriocin-producing beneficial microbes are very rare. It is important to explicitly state the prospect of bacteriocin-producing microbes in prevention of gastrointestinal infection towards their application in host. This review discusses the potential of gut as an appropriate resource for mining targeted bacteriocin-producing microbes. Then, host-related factors affecting the bacteriocin production and activity of bacteriocin-producing microbes in the gut are summarized. Accordingly, the multiple mechanisms (direct inhibition and indirect inhibition) behind the preventive effects of bacteriocin-producing microbes on gut infection are discussed. Finally, we propose several targeted strategies for the manipulation of bacteriocin-producing beneficial microbes to improve their performance in antimicrobial outcomes. We anticipate an upcoming emergence of developments and applications of bacteriocin-producing beneficial microbes as antimicrobial agent in gut infection induced by pathogenic bacteria.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"1516-1527"},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139692713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-05-09DOI: 10.1007/s12602-024-10285-5
Solmaz Morovati, Amir Asghari Baghkheirati, Mohammad Hadi Sekhavati, Jamshid Razmyar
Lactoferrin is an antimicrobial peptide (AMP) playing a pivotal role in numerous biological processes. The primary antimicrobial efficacy of lactoferrin is associated with its N-terminal end, which contains various peptides, such as lactoferricin and lactoferrampin. In this context, our research team has developed a refined chimeric 42-mer peptide known as cLF36 over the past few years. This peptide encompasses the complete amino acid sequence of camel lactoferrampin and partial amino acid sequence of lactoferricin. The peptide's activity against human, avian, and plant bacterial pathogens has been assessed using different biological platforms, including prokaryotic (P170 and pET) and eukaryotic (HEK293) expression systems. The peptide positively influenced the growth performance and intestinal morphology of chickens challenged with pathogen bacteria. Computational methods and in vitro studies showed the peptide's antiviral effects against hepatitis C virus, influenza virus, and rotavirus. The chimeric peptide exhibited higher activity against certain tumor cell lines compared to normal cells, which may be attributed to the peptide's interaction with negatively charged glycosaminoglycans on the surface of tumor cells. Importantly, this peptide exhibited no toxicity against host cells and demonstrated remarkable thermal and protease stability in serum. In conclusion, while our investigations suggest that the chimeric peptide, cLF36, may offer potential as a candidate or complementary option to some available antibiotics, antiviral agents, and chemical pesticides, significant uncertainties remain regarding its cost-effectiveness, as well as its pharmacodynamic and pharmacokinetic characteristics, which require further elucidation.
{"title":"A Review on cLF36, a Novel Recombinant Antimicrobial Peptide-Derived Camel Lactoferrin.","authors":"Solmaz Morovati, Amir Asghari Baghkheirati, Mohammad Hadi Sekhavati, Jamshid Razmyar","doi":"10.1007/s12602-024-10285-5","DOIUrl":"10.1007/s12602-024-10285-5","url":null,"abstract":"<p><p>Lactoferrin is an antimicrobial peptide (AMP) playing a pivotal role in numerous biological processes. The primary antimicrobial efficacy of lactoferrin is associated with its N-terminal end, which contains various peptides, such as lactoferricin and lactoferrampin. In this context, our research team has developed a refined chimeric 42-mer peptide known as cLF36 over the past few years. This peptide encompasses the complete amino acid sequence of camel lactoferrampin and partial amino acid sequence of lactoferricin. The peptide's activity against human, avian, and plant bacterial pathogens has been assessed using different biological platforms, including prokaryotic (P170 and pET) and eukaryotic (HEK293) expression systems. The peptide positively influenced the growth performance and intestinal morphology of chickens challenged with pathogen bacteria. Computational methods and in vitro studies showed the peptide's antiviral effects against hepatitis C virus, influenza virus, and rotavirus. The chimeric peptide exhibited higher activity against certain tumor cell lines compared to normal cells, which may be attributed to the peptide's interaction with negatively charged glycosaminoglycans on the surface of tumor cells. Importantly, this peptide exhibited no toxicity against host cells and demonstrated remarkable thermal and protease stability in serum. In conclusion, while our investigations suggest that the chimeric peptide, cLF36, may offer potential as a candidate or complementary option to some available antibiotics, antiviral agents, and chemical pesticides, significant uncertainties remain regarding its cost-effectiveness, as well as its pharmacodynamic and pharmacokinetic characteristics, which require further elucidation.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"1886-1905"},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-03-28DOI: 10.1007/s12602-024-10247-x
Tales Fernando da Silva, Rafael de Assis Glória, Monique Ferrary Americo, Andria Dos Santos Freitas, Luis Claudio Lima de Jesus, Fernanda Alvarenga Lima Barroso, Juliana Guimarães Laguna, Nina Dias Coelho-Rocha, Laisa Macedo Tavares, Yves le Loir, Gwénaël Jan, Éric Guédon, Vasco Ariston de Carvalho Azevedo
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
{"title":"Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics.","authors":"Tales Fernando da Silva, Rafael de Assis Glória, Monique Ferrary Americo, Andria Dos Santos Freitas, Luis Claudio Lima de Jesus, Fernanda Alvarenga Lima Barroso, Juliana Guimarães Laguna, Nina Dias Coelho-Rocha, Laisa Macedo Tavares, Yves le Loir, Gwénaël Jan, Éric Guédon, Vasco Ariston de Carvalho Azevedo","doi":"10.1007/s12602-024-10247-x","DOIUrl":"10.1007/s12602-024-10247-x","url":null,"abstract":"<p><p>This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"1687-1723"},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140306621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polycystic ovary syndrome (PCOS) is one of the most common disorders among women in modern societies. A variety of factors can contribute to the development of PCOS. These women often exhibit high insulin resistance (IR), hyperandrogenism, irregular periods, and infertility. Dysbiosis of the gut microbiota (GMB) in women with PCOS has attracted the attention of many researchers. Porphyromonas spp., B. coprophilus, and F. prausnitzii are found in higher numbers in the gut of women with PCOS. Short-chain fatty acids (SCFAs), produced by the intestinal microbiota through fermentation, play an essential role in regulating metabolic activities and are helpful in reducing insulin resistance and improving PCOS symptoms. According to studies, the bacteria producing SCFAs in the gut of these women are less abundant than in healthy women. The effectiveness of using probiotic supplements has been proven to improve the condition of women with PCOS. Daily consumption of probiotics improves dysbiosis of the intestinal microbiome and increases the production of SCFAs.
{"title":"Gut Microbiota and Polycystic Ovary Syndrome (PCOS): Understanding the Pathogenesis and the Role of Probiotics as a Therapeutic Strategy.","authors":"Samaneh Salehi, Javad Allahverdy, Hadi Pourjafar, Khashayar Sarabandi, Seid Mahdi Jafari","doi":"10.1007/s12602-024-10223-5","DOIUrl":"10.1007/s12602-024-10223-5","url":null,"abstract":"<p><p>Polycystic ovary syndrome (PCOS) is one of the most common disorders among women in modern societies. A variety of factors can contribute to the development of PCOS. These women often exhibit high insulin resistance (IR), hyperandrogenism, irregular periods, and infertility. Dysbiosis of the gut microbiota (GMB) in women with PCOS has attracted the attention of many researchers. Porphyromonas spp., B. coprophilus, and F. prausnitzii are found in higher numbers in the gut of women with PCOS. Short-chain fatty acids (SCFAs), produced by the intestinal microbiota through fermentation, play an essential role in regulating metabolic activities and are helpful in reducing insulin resistance and improving PCOS symptoms. According to studies, the bacteria producing SCFAs in the gut of these women are less abundant than in healthy women. The effectiveness of using probiotic supplements has been proven to improve the condition of women with PCOS. Daily consumption of probiotics improves dysbiosis of the intestinal microbiome and increases the production of SCFAs.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"1553-1565"},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1007/s12602-024-10362-9
Khadija Bezerra Massaut, Helena Reissing Soares Vitola, Vitória Sequeira Gonçalves, Fabio Pereira Leivas Leite, Rodrigo Desessards Jardim, Ângela Nunes Moreira, Wladimir Padilha da Silva, Ângela Maria Fiorentini
The study aimed to evaluate the effects of supplementation with Lacticaseibacillus casei CSL3 in Swiss mice immunosuppressed with cyclophosphamide on immunological, biochemical, oxidative stress, and histological parameters. The animals were distributed into four groups (control, CSL3, cyclophosphamide, and CSL3 + cyclophosphamide), where two groups were treated with L. casei CSL3 (10 log CFU mL-1) for 30 days, and two groups received chemotherapy (days 27 and 30-total dose of 250 mg kg-1). Counts of lactic acid bacteria (LAB) and bile-resistant LAB in stool samples; blood count (erythrogram, leukogram, and platelets); serum total cholesterol levels; catalase enzyme activity; and thiobarbituric acid reactive substances (TBARS) levels in liver, kidney, and brain; IL-4 expression; IL-23, TNF-α, NF-κβ in the spleen; and histological changes in the liver, kidneys, and intestine were evaluated. The CSL3 + cyclophosphamide group showed a significant increase in bile-resistant LAB counts in feces (p = 0.0001), leukocyte counts, and expression of IL-23, TNF-α, and NF-κβ (p < 0.05) significantly reduced total cholesterol levels (p = 0.001) and protected liver damage of supplemented animals. For oxidative stress damage, the bacterium did not influence the results. It is concluded that the bacterium is safe at a concentration of 10 log CFU mL-1 and has probiotic potential due to its positive influence on the immune response and lipid metabolism.
{"title":"Administration of Lacticaseibacillus casei CSL3 in Swiss Mice with Immunosuppression Induced by Cyclophosphamide: Effects on Immunological, Biochemical, Oxidative Stress, and Histological Parameters.","authors":"Khadija Bezerra Massaut, Helena Reissing Soares Vitola, Vitória Sequeira Gonçalves, Fabio Pereira Leivas Leite, Rodrigo Desessards Jardim, Ângela Nunes Moreira, Wladimir Padilha da Silva, Ângela Maria Fiorentini","doi":"10.1007/s12602-024-10362-9","DOIUrl":"https://doi.org/10.1007/s12602-024-10362-9","url":null,"abstract":"<p><p>The study aimed to evaluate the effects of supplementation with Lacticaseibacillus casei CSL3 in Swiss mice immunosuppressed with cyclophosphamide on immunological, biochemical, oxidative stress, and histological parameters. The animals were distributed into four groups (control, CSL3, cyclophosphamide, and CSL3 + cyclophosphamide), where two groups were treated with L. casei CSL3 (10 log CFU mL<sup>-1</sup>) for 30 days, and two groups received chemotherapy (days 27 and 30-total dose of 250 mg kg<sup>-1</sup>). Counts of lactic acid bacteria (LAB) and bile-resistant LAB in stool samples; blood count (erythrogram, leukogram, and platelets); serum total cholesterol levels; catalase enzyme activity; and thiobarbituric acid reactive substances (TBARS) levels in liver, kidney, and brain; IL-4 expression; IL-23, TNF-α, NF-κβ in the spleen; and histological changes in the liver, kidneys, and intestine were evaluated. The CSL3 + cyclophosphamide group showed a significant increase in bile-resistant LAB counts in feces (p = 0.0001), leukocyte counts, and expression of IL-23, TNF-α, and NF-κβ (p < 0.05) significantly reduced total cholesterol levels (p = 0.001) and protected liver damage of supplemented animals. For oxidative stress damage, the bacterium did not influence the results. It is concluded that the bacterium is safe at a concentration of 10 log CFU mL<sup>-1</sup> and has probiotic potential due to its positive influence on the immune response and lipid metabolism.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1007/s12602-024-10355-8
Sajid Iqbal, Farida Begum, Mohammad Y Alfaifi, Serag Eldin I Elbehairi, Abubakar Siddique, Peter Shaw
The current study was designed to explore the biosynthetic potential of sevadicin in Bacillus pumilus species and its interaction with bacterial drug target molecules. The non-ribosomal peptide (NRP) cluster in B. pumilus SF-4 was preliminarily confirmed using PCR-based screening, and the bioactivity of strain SF-4 culture extract was assessed against a set of human pathogenic strains. The susceptibility assay showed that strain SF-4 extract had higher inhibitory concentrations (312-375 µg/mL) than ciprofloxacin. Genome mining of B. pumilus strains (n = 22) using AntiSMASH and BAGEL identified sevadicin coding biosynthetic gene cluster only in strain SF-4, constitutes of two core biosynthetic genes, three additional biosynthetic genes, two transport-related genes, and one regulatory gene. The molecular docking of sevadicin with various putative bacterial drug targets such as dihydropteroate, muramyl ligase E, topoisomerase, penicillin-binding protein, and in vitro safety analyses were conducted with detailed ADMET screening. The results showed that sevadicin makes hydrophobic interaction with MurE (PDB ID: 1E8C and 4C13) via hydrogen bonding, suggesting bacterial growth inhibition by disrupting the cell wall synthesis pathway and exhibiting a secure biosafety profile. The stability and compactness of sevadicin/MurE complexes were assessed via molecular dynamic simulation using RMSD, RMSF, and Rg. The simulation results revealed the binding stability of sevadicin/MurE complexes and indicated that the complexes can't be easily deformed. In conclusion, the current study explored the biosynthesis of sevadicin in B. pumilus for the first time and found that sevadicin inhibits bacterial growth by inhibiting cell wall synthesis via targeting the MurE enzyme and exhibits no toxicity.
{"title":"Exploring Antimicrobial Potency, ADMET, and Optimal Drug Target of a Non-ribosomal Peptide Sevadicin from Bacillus pumilus, through In Vitro Assay and Molecular Dynamics Simulation.","authors":"Sajid Iqbal, Farida Begum, Mohammad Y Alfaifi, Serag Eldin I Elbehairi, Abubakar Siddique, Peter Shaw","doi":"10.1007/s12602-024-10355-8","DOIUrl":"https://doi.org/10.1007/s12602-024-10355-8","url":null,"abstract":"<p><p>The current study was designed to explore the biosynthetic potential of sevadicin in Bacillus pumilus species and its interaction with bacterial drug target molecules. The non-ribosomal peptide (NRP) cluster in B. pumilus SF-4 was preliminarily confirmed using PCR-based screening, and the bioactivity of strain SF-4 culture extract was assessed against a set of human pathogenic strains. The susceptibility assay showed that strain SF-4 extract had higher inhibitory concentrations (312-375 µg/mL) than ciprofloxacin. Genome mining of B. pumilus strains (n = 22) using AntiSMASH and BAGEL identified sevadicin coding biosynthetic gene cluster only in strain SF-4, constitutes of two core biosynthetic genes, three additional biosynthetic genes, two transport-related genes, and one regulatory gene. The molecular docking of sevadicin with various putative bacterial drug targets such as dihydropteroate, muramyl ligase E, topoisomerase, penicillin-binding protein, and in vitro safety analyses were conducted with detailed ADMET screening. The results showed that sevadicin makes hydrophobic interaction with MurE (PDB ID: 1E8C and 4C13) via hydrogen bonding, suggesting bacterial growth inhibition by disrupting the cell wall synthesis pathway and exhibiting a secure biosafety profile. The stability and compactness of sevadicin/MurE complexes were assessed via molecular dynamic simulation using RMSD, RMSF, and Rg. The simulation results revealed the binding stability of sevadicin/MurE complexes and indicated that the complexes can't be easily deformed. In conclusion, the current study explored the biosynthesis of sevadicin in B. pumilus for the first time and found that sevadicin inhibits bacterial growth by inhibiting cell wall synthesis via targeting the MurE enzyme and exhibits no toxicity.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hepatotoxicity is one of the biggest health challenges, particularly in the context of liver diseases, often aggravated by gut microbiota dysbiosis. The gut-liver axis has been regarded as a key idea in liver health. It indicates that changes in gut flora caused by various hepatotoxicants, including alcoholism, acetaminophen, carbon tetrachloride, and thioacetamide, can affect the balance of the gut's microflora, which may lead to increased dysbiosis and intestinal permeability. As a result, bacterial endotoxins would eventually enter the bloodstream and liver, causing hepatotoxicity and inducing inflammatory reactions. Many treatments, including liver transplantation and modern drugs, can be used to address these issues. However, because of the many side effects of these approaches, scientists and medical experts are still hoping for a therapeutic approach with fewer side effects and more positive results. Thus, probiotics have become well-known as an adjunctive strategy for managing, preventing, or reducing hepatotoxicity in treating liver injury. By altering the gut microbiota, probiotics offer a secure, non-invasive, and economical way to improve liver health in the treatment of hepatotoxicity. Through various mechanisms such as regulation of gut microbiota, reduction of pathogenic overgrowth, suppression of inflammatory mediators, modification of hepatic lipid metabolism, improvement in the performance of the epithelial barrier of the gut, antioxidative effects, and modulation of mucosal immunity, probiotics play their role in the treatment and prevention of hepatotoxicity. This review highlights the mechanistic effects of probiotics in environmental toxicants-induced hepatotoxicity and current findings on this therapeutic approach's experimental and clinical trials.
{"title":"Therapeutic Role of Probiotics Against Environmental-Induced Hepatotoxicity: Mechanisms, Clinical Perspectives, Limitations, and Future.","authors":"Shehzeen Noor, Shaukat Ali, Muhammad Summer, Anfah Riaz, Laiba Nazakat, Aqsa","doi":"10.1007/s12602-024-10365-6","DOIUrl":"https://doi.org/10.1007/s12602-024-10365-6","url":null,"abstract":"<p><p>Hepatotoxicity is one of the biggest health challenges, particularly in the context of liver diseases, often aggravated by gut microbiota dysbiosis. The gut-liver axis has been regarded as a key idea in liver health. It indicates that changes in gut flora caused by various hepatotoxicants, including alcoholism, acetaminophen, carbon tetrachloride, and thioacetamide, can affect the balance of the gut's microflora, which may lead to increased dysbiosis and intestinal permeability. As a result, bacterial endotoxins would eventually enter the bloodstream and liver, causing hepatotoxicity and inducing inflammatory reactions. Many treatments, including liver transplantation and modern drugs, can be used to address these issues. However, because of the many side effects of these approaches, scientists and medical experts are still hoping for a therapeutic approach with fewer side effects and more positive results. Thus, probiotics have become well-known as an adjunctive strategy for managing, preventing, or reducing hepatotoxicity in treating liver injury. By altering the gut microbiota, probiotics offer a secure, non-invasive, and economical way to improve liver health in the treatment of hepatotoxicity. Through various mechanisms such as regulation of gut microbiota, reduction of pathogenic overgrowth, suppression of inflammatory mediators, modification of hepatic lipid metabolism, improvement in the performance of the epithelial barrier of the gut, antioxidative effects, and modulation of mucosal immunity, probiotics play their role in the treatment and prevention of hepatotoxicity. This review highlights the mechanistic effects of probiotics in environmental toxicants-induced hepatotoxicity and current findings on this therapeutic approach's experimental and clinical trials.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Type 2 diabetes (T2DM) is one of the four major types of non-communicable diseases that have become a global health concern. Water kefir is a product of a brown sugar solution fermented with kefir grains which comprises around 30 microbial species in its grains. Water kefir possesses a wide range of health benefits, including anti-hyperlipidemic effects, and reduces hypertension and blood glucose levels in animal models. Reportedly, consuming water kefir containing probiotics may enhance the intestinal barrier and positively influence the composition of the intestinal microflora. The present study aimed to evaluate the regulatory effects of Lactobacillus paracasei isolated from Malaysian water kefir grains (MWKG) on the alterations of intestinal barrier and gut microbiota in diabetic mice via histopathological analysis of the distal colon and 16S rRNA gene sequencing on fecal microbiome. Results indicated that the administration of isolated Lactobacillus paracasei from MWKG to diabetic mice ameliorated the dominant probiotic phyla in the gut microbiota. Results showed that lower dose (LD) and high dose (HD) treatments of the isolated Lactobacillus paracasei could significantly reduce inflammatory cell infiltration in the distal colon of diabetic mice. The treatments revealed a significant decrease in the relative abundance of Firmicutes in the gut, 0.27 ± 0.06% for LD and 0.34 ± 0.04% for HD, compared to untreated (UN) diabetic mice, 0.40 ± 0.02%. These results suggest that L. paracasei isolated from MWKG could serve as a potential dietary supplement against intestinal inflammation and modify gut microbiota composition in patients with T2DM.
{"title":"Modulatory Effects of Isolated Lactobacillus paracasei from Malaysian Water Kefir Grains on the Intestinal Barrier and Gut Microbiota in Diabetic Mice.","authors":"Noorshafadzilah Talib, Nurul Elyani Mohamad, Chai Ling Ho, Mas Jaffri Masarudin, Noorjahan Banu Alitheen","doi":"10.1007/s12602-024-10367-4","DOIUrl":"https://doi.org/10.1007/s12602-024-10367-4","url":null,"abstract":"<p><p>Type 2 diabetes (T2DM) is one of the four major types of non-communicable diseases that have become a global health concern. Water kefir is a product of a brown sugar solution fermented with kefir grains which comprises around 30 microbial species in its grains. Water kefir possesses a wide range of health benefits, including anti-hyperlipidemic effects, and reduces hypertension and blood glucose levels in animal models. Reportedly, consuming water kefir containing probiotics may enhance the intestinal barrier and positively influence the composition of the intestinal microflora. The present study aimed to evaluate the regulatory effects of Lactobacillus paracasei isolated from Malaysian water kefir grains (MWKG) on the alterations of intestinal barrier and gut microbiota in diabetic mice via histopathological analysis of the distal colon and 16S rRNA gene sequencing on fecal microbiome. Results indicated that the administration of isolated Lactobacillus paracasei from MWKG to diabetic mice ameliorated the dominant probiotic phyla in the gut microbiota. Results showed that lower dose (LD) and high dose (HD) treatments of the isolated Lactobacillus paracasei could significantly reduce inflammatory cell infiltration in the distal colon of diabetic mice. The treatments revealed a significant decrease in the relative abundance of Firmicutes in the gut, 0.27 ± 0.06% for LD and 0.34 ± 0.04% for HD, compared to untreated (UN) diabetic mice, 0.40 ± 0.02%. These results suggest that L. paracasei isolated from MWKG could serve as a potential dietary supplement against intestinal inflammation and modify gut microbiota composition in patients with T2DM.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}