首页 > 最新文献

Proceedings of the IEEE最新文献

英文 中文
Future Special Issues/Special Sections of the Proceedings 论文集》未来的特刊/专栏
IF 20.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-01 DOI: 10.1109/JPROC.2024.3380213
{"title":"Future Special Issues/Special Sections of the Proceedings","authors":"","doi":"10.1109/JPROC.2024.3380213","DOIUrl":"https://doi.org/10.1109/JPROC.2024.3380213","url":null,"abstract":"","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 2","pages":"178-178"},"PeriodicalIF":20.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10496410","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proceedings of the IEEE: Stay Informed. Become Inspired. 电气和电子工程师学会论文集》:保持信息灵通。激发灵感。
IF 20.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-01 DOI: 10.1109/JPROC.2024.3380217
{"title":"Proceedings of the IEEE: Stay Informed. Become Inspired.","authors":"","doi":"10.1109/JPROC.2024.3380217","DOIUrl":"https://doi.org/10.1109/JPROC.2024.3380217","url":null,"abstract":"","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 2","pages":"C4-C4"},"PeriodicalIF":20.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10496382","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Informing Machine Perception With Psychophysics 用心理物理学指导机器感知
IF 20.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-01 DOI: 10.1109/JPROC.2024.3380905
Justin Dulay;Sonia Poltoratski;Till S. Hartmann;Samuel E. Anthony;Walter J. Scheirer
Gustav Fechner’s 1860 delineation of psychophysics, the measurement of sensation in relation to its stimulus, is widely considered to be the advent of modern psychological science. In psychophysics, a researcher parametrically varies some aspects of a stimulus and measures the resulting changes in a human subject’s experience of that stimulus; doing so gives insight into the determining relationship between a sensation and the physical input that evoked it. This approach is used heavily in perceptual domains, including signal detection, threshold measurement, and ideal observer analysis. Scientific fields, such as vision science, have always leaned heavily on the methods and procedures of psychophysics, but there is now growing appreciation of them by machine learning researchers, sparked by widening overlap between biological and artificial perception [1], [2], [3], [4], [5]. Machine perception that is guided by behavioral measurements, as opposed to guidance restricted to arbitrarily assigned human labels, has significant potential to fuel further progress in artificial intelligence (AI).
古斯塔夫-费希纳(Gustav Fechner)于 1860 年提出了心理物理学,即测量与刺激相关的感觉,这被广泛认为是现代心理科学的开端。在心理物理学中,研究人员参数化地改变刺激物的某些方面,并测量受试者对该刺激物的体验所产生的变化;这样做可以深入了解感觉与诱发感觉的物理输入之间的决定性关系。这种方法被大量用于感知领域,包括信号检测、阈值测量和理想观察者分析。视觉科学等科学领域一直以来都非常倚重心理物理学的方法和程序,但随着生物感知与人工感知之间的重叠日益扩大,机器学习研究人员现在也越来越重视心理物理学的方法和程序[1], [2], [3], [4], [5]。以行为测量为指导的机器感知,有别于局限于人类任意指定标签的指导,在推动人工智能(AI)的进一步发展方面有着巨大的潜力。
{"title":"Informing Machine Perception With Psychophysics","authors":"Justin Dulay;Sonia Poltoratski;Till S. Hartmann;Samuel E. Anthony;Walter J. Scheirer","doi":"10.1109/JPROC.2024.3380905","DOIUrl":"https://doi.org/10.1109/JPROC.2024.3380905","url":null,"abstract":"Gustav Fechner’s 1860 delineation of psychophysics, the measurement of sensation in relation to its stimulus, is widely considered to be the advent of modern psychological science. In psychophysics, a researcher parametrically varies some aspects of a stimulus and measures the resulting changes in a human subject’s experience of that stimulus; doing so gives insight into the determining relationship between a sensation and the physical input that evoked it. This approach is used heavily in perceptual domains, including signal detection, threshold measurement, and ideal observer analysis. Scientific fields, such as vision science, have always leaned heavily on the methods and procedures of psychophysics, but there is now growing appreciation of them by machine learning researchers, sparked by widening overlap between biological and artificial perception \u0000<xref>[1]</xref>\u0000, \u0000<xref>[2]</xref>\u0000, \u0000<xref>[3]</xref>\u0000, \u0000<xref>[4]</xref>\u0000, \u0000<xref>[5]</xref>\u0000. Machine perception that is guided by behavioral measurements, as opposed to guidance restricted to arbitrarily assigned human labels, has significant potential to fuel further progress in artificial intelligence (AI).","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 2","pages":"88-96"},"PeriodicalIF":20.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trustworthy Graph Neural Networks: Aspects, Methods, and Trends 可信图神经网络:方面、方法和趋势
IF 20.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-01 DOI: 10.1109/JPROC.2024.3369017
He Zhang;Bang Wu;Xingliang Yuan;Shirui Pan;Hanghang Tong;Jian Pei
Graph neural networks (GNNs) have emerged as a series of competent graph learning methods for diverse real-world scenarios, ranging from daily applications such as recommendation systems and question answering to cutting-edge technologies such as drug discovery in life sciences and n-body simulation in astrophysics. However, task performance is not the only requirement for GNNs. Performance-oriented GNNs have exhibited potential adverse effects, such as vulnerability to adversarial attacks, unexplainable discrimination against disadvantaged groups, or excessive resource consumption in edge computing environments. To avoid these unintentional harms, it is necessary to build competent GNNs characterized by trustworthiness. To this end, we propose a comprehensive roadmap to build trustworthy GNNs from the view of the various computing technologies involved. In this survey, we introduce basic concepts and comprehensively summarize existing efforts for trustworthy GNNs from six aspects, including robustness, explainability, privacy, fairness, accountability, and environmental well-being. In addition, we highlight the intricate cross-aspect relations between the above six aspects of trustworthy GNNs. Finally, we present a thorough overview of trending directions for facilitating the research and industrialization of trustworthy GNNs.
从推荐系统和问题解答等日常应用,到生命科学中的药物发现和天体物理学中的 n 体模拟等尖端技术,图神经网络(GNN)已成为一系列适用于各种现实世界场景的图学习方法。然而,任务性能并不是对 GNN 的唯一要求。以性能为导向的 GNN 表现出了潜在的不利影响,例如容易受到对抗性攻击、对弱势群体的歧视无法解释,或在边缘计算环境中过度消耗资源。为了避免这些意外伤害,有必要建立以可信为特征的合格 GNN。为此,我们从所涉及的各种计算技术的角度出发,提出了构建可信 GNN 的综合路线图。在这份调查报告中,我们介绍了基本概念,并从鲁棒性、可解释性、隐私性、公平性、问责性和环境福祉等六个方面全面总结了现有的可信 GNN。此外,我们还强调了可信 GNN 上述六个方面之间错综复杂的跨领域关系。最后,我们全面概述了促进可信 GNN 研究和产业化的趋势性方向。
{"title":"Trustworthy Graph Neural Networks: Aspects, Methods, and Trends","authors":"He Zhang;Bang Wu;Xingliang Yuan;Shirui Pan;Hanghang Tong;Jian Pei","doi":"10.1109/JPROC.2024.3369017","DOIUrl":"10.1109/JPROC.2024.3369017","url":null,"abstract":"Graph neural networks (GNNs) have emerged as a series of competent graph learning methods for diverse real-world scenarios, ranging from daily applications such as recommendation systems and question answering to cutting-edge technologies such as drug discovery in life sciences and n-body simulation in astrophysics. However, task performance is not the only requirement for GNNs. Performance-oriented GNNs have exhibited potential adverse effects, such as vulnerability to adversarial attacks, unexplainable discrimination against disadvantaged groups, or excessive resource consumption in edge computing environments. To avoid these unintentional harms, it is necessary to build competent GNNs characterized by trustworthiness. To this end, we propose a comprehensive roadmap to build trustworthy GNNs from the view of the various computing technologies involved. In this survey, we introduce basic concepts and comprehensively summarize existing efforts for trustworthy GNNs from six aspects, including robustness, explainability, privacy, fairness, accountability, and environmental well-being. In addition, we highlight the intricate cross-aspect relations between the above six aspects of trustworthy GNNs. Finally, we present a thorough overview of trending directions for facilitating the research and industrialization of trustworthy GNNs.","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 2","pages":"97-139"},"PeriodicalIF":20.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140188884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Women in Engineering 电气和电子工程师学会工程界妇女
IF 20.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-01 DOI: 10.1109/JPROC.2024.3384829
{"title":"IEEE Women in Engineering","authors":"","doi":"10.1109/JPROC.2024.3384829","DOIUrl":"https://doi.org/10.1109/JPROC.2024.3384829","url":null,"abstract":"","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 2","pages":"179-179"},"PeriodicalIF":20.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10496430","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Membership IEEE 会员
IF 20.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-01 DOI: 10.1109/JPROC.2024.3380215
{"title":"IEEE Membership","authors":"","doi":"10.1109/JPROC.2024.3380215","DOIUrl":"https://doi.org/10.1109/JPROC.2024.3380215","url":null,"abstract":"","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 2","pages":"C3-C3"},"PeriodicalIF":20.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10496406","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Foundation 电气和电子工程师学会基金会
IF 20.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-01 DOI: 10.1109/JPROC.2024.3384831
{"title":"IEEE Foundation","authors":"","doi":"10.1109/JPROC.2024.3384831","DOIUrl":"https://doi.org/10.1109/JPROC.2024.3384831","url":null,"abstract":"","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 2","pages":"180-180"},"PeriodicalIF":20.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10496419","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proceedings of the IEEE Publication Information 电气和电子工程师学会论文集》出版信息
IF 20.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-01 DOI: 10.1109/JPROC.2024.3380209
{"title":"Proceedings of the IEEE Publication Information","authors":"","doi":"10.1109/JPROC.2024.3380209","DOIUrl":"https://doi.org/10.1109/JPROC.2024.3380209","url":null,"abstract":"","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 2","pages":"C2-C2"},"PeriodicalIF":20.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10496412","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Membership IEEE 会员
IF 20.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-01-01 DOI: 10.1109/JPROC.2024.3366797
{"title":"IEEE Membership","authors":"","doi":"10.1109/JPROC.2024.3366797","DOIUrl":"https://doi.org/10.1109/JPROC.2024.3366797","url":null,"abstract":"","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 1","pages":"C3-C3"},"PeriodicalIF":20.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10458711","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Women in Engineering 电气和电子工程师学会工程界妇女
IF 20.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-01-01 DOI: 10.1109/JPROC.2024.3369195
{"title":"IEEE Women in Engineering","authors":"","doi":"10.1109/JPROC.2024.3369195","DOIUrl":"https://doi.org/10.1109/JPROC.2024.3369195","url":null,"abstract":"","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 1","pages":"84-84"},"PeriodicalIF":20.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10458709","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Proceedings of the IEEE
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1