Pub Date : 2023-01-02DOI: 10.21285/2227-2925-2022-12-4-612-619
N. Yakovlev, S. G. Agaev
The work investigates the influence of the physicochemical properties of depressor additives on their performance in diesel fuels of various chemical and fractional compositions. Heavy, summer and marine diesel fuels were used. The following physicochemical properties of fuels were determined: cloud point, freezing point, density, viscosity, fraction composition and hydrocarbon content that formed a complex with carbamide. The content and molar mass distribution of individual n-alkanes in diesel fuels were determined. The following foreign depressant-dispersing additives were used: Dodiflow with codes 4971, 5416, 5817 and 7118, Keroflux with codes 3501, 5696a and Ofi-8863. Their active agents were isolated from the commercial additives by dialysis using semi-permeable rubber membranes. The dropping point of the active agents, their intrinsic viscosity in kerosene and the refractive index at 100 °C were identified. The content of vinyl acetate components and the degree of branching of aliphatic radicals of depressor additives were determined using infrared spectroscopy of the active agents. The relationship between the physicochemical properties of depressor-dispersing additives and their performance in diesel fuels was established. Additives characterised by a relatively high melting point, an average intrinsic viscosity and low branching of aliphatic compounds in the polymer structure exhibit the best performance in fuels. The consumption of additives to achieve the maximum depression of freezing point decreases with the transition from summer to marine fuel and further to heavy diesel fuel. A complex tкп / СВА value, comprising the ratio of the dropping points tкп and the content of vinyl acetate components in the additives, was proposed as a means of predicting the efficiency of depressant additives СВА. In the range of tкп / СВА values of 3.02–4.00 the additives have universal depressant properties. A correlation was established between the refractive index nD100 of additives and the complex value tкп / СВА (R2 = 0.975).
{"title":"Influence of physicochemical properties of depressor additives on their performance in diesel fuels","authors":"N. Yakovlev, S. G. Agaev","doi":"10.21285/2227-2925-2022-12-4-612-619","DOIUrl":"https://doi.org/10.21285/2227-2925-2022-12-4-612-619","url":null,"abstract":"The work investigates the influence of the physicochemical properties of depressor additives on their performance in diesel fuels of various chemical and fractional compositions. Heavy, summer and marine diesel fuels were used. The following physicochemical properties of fuels were determined: cloud point, freezing point, density, viscosity, fraction composition and hydrocarbon content that formed a complex with carbamide. The content and molar mass distribution of individual n-alkanes in diesel fuels were determined. The following foreign depressant-dispersing additives were used: Dodiflow with codes 4971, 5416, 5817 and 7118, Keroflux with codes 3501, 5696a and Ofi-8863. Their active agents were isolated from the commercial additives by dialysis using semi-permeable rubber membranes. The dropping point of the active agents, their intrinsic viscosity in kerosene and the refractive index at 100 °C were identified. The content of vinyl acetate components and the degree of branching of aliphatic radicals of depressor additives were determined using infrared spectroscopy of the active agents. The relationship between the physicochemical properties of depressor-dispersing additives and their performance in diesel fuels was established. Additives characterised by a relatively high melting point, an average intrinsic viscosity and low branching of aliphatic compounds in the polymer structure exhibit the best performance in fuels. The consumption of additives to achieve the maximum depression of freezing point decreases with the transition from summer to marine fuel and further to heavy diesel fuel. A complex tкп / СВА value, comprising the ratio of the dropping points tкп and the content of vinyl acetate components in the additives, was proposed as a means of predicting the efficiency of depressant additives СВА. In the range of tкп / СВА values of 3.02–4.00 the additives have universal depressant properties. A correlation was established between the refractive index nD100 of additives and the complex value tкп / СВА (R2 = 0.975).","PeriodicalId":20601,"journal":{"name":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88722745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.21285/2227-2925-2022-12-4-599-604
P. D. Timkin, A. Penzin
In this paper, a hypothetical method for locating SNPs (single nucleotide polymorphisms) on the example of the ribonuclease gene WIN was proposed. Ribonuclease comprises an enzyme that participates in defence reactions against fungal infections in soybeans, as well as other protective responses to biotic stress. Its belonging to the RNA-ases group determines the specific properties, namely the ability to degrade foreign nucleic acids. This ability provides for a general nonspecific immune response of the plant to the invasion of antigenic structures. Modern biotechnology calls for the development of molecular methods and approaches that will increase the resistance of a culture or accelerate the processes of its adaptation in the field. This problem can be solved by using technologies of SNP artificial induction in those parts of the genome that encode proteins capable of acting in protective reactions against biotic stress. In the study, 5 single-nucleotide polymorphisms were proposed using bioinformatic analysis. Since the localisation and detection of SNPs comprise a challenging task due to the presence of a single nucleotide change, in the biotechnological practice, predictive analysis is carried out in order to localise the potential sequence of occurring single-nucleotide polymorphism. Following the identification of the hypothetical SNP location, they can be further detected using complex molecular methods, such as real-time PCR or local sequencing. This technology can become a powerful tool for breeding soybean varieties having predetermined properties. Such theoretical and predictive models will allow for a quicker response to the dynamic environment under manmade load on plants.
{"title":"Bioinformatic method for determining single nucleotide polymorphisms on the example of gene WIN in Glycine max","authors":"P. D. Timkin, A. Penzin","doi":"10.21285/2227-2925-2022-12-4-599-604","DOIUrl":"https://doi.org/10.21285/2227-2925-2022-12-4-599-604","url":null,"abstract":"In this paper, a hypothetical method for locating SNPs (single nucleotide polymorphisms) on the example of the ribonuclease gene WIN was proposed. Ribonuclease comprises an enzyme that participates in defence reactions against fungal infections in soybeans, as well as other protective responses to biotic stress. Its belonging to the RNA-ases group determines the specific properties, namely the ability to degrade foreign nucleic acids. This ability provides for a general nonspecific immune response of the plant to the invasion of antigenic structures. Modern biotechnology calls for the development of molecular methods and approaches that will increase the resistance of a culture or accelerate the processes of its adaptation in the field. This problem can be solved by using technologies of SNP artificial induction in those parts of the genome that encode proteins capable of acting in protective reactions against biotic stress. In the study, 5 single-nucleotide polymorphisms were proposed using bioinformatic analysis. Since the localisation and detection of SNPs comprise a challenging task due to the presence of a single nucleotide change, in the biotechnological practice, predictive analysis is carried out in order to localise the potential sequence of occurring single-nucleotide polymorphism. Following the identification of the hypothetical SNP location, they can be further detected using complex molecular methods, such as real-time PCR or local sequencing. This technology can become a powerful tool for breeding soybean varieties having predetermined properties. Such theoretical and predictive models will allow for a quicker response to the dynamic environment under manmade load on plants.","PeriodicalId":20601,"journal":{"name":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87235125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.21285/2227-2925-2022-12-4-605-611
V. Shiretorova, S. A. Erdyneeva, L. Radnaeva
In recent years, the popularity of dietary supplements based on pine pollen has significantly increased due to over a thousand years of its use in Chinese traditional medicine and diverse biological activity. Microstrobili are harvested prior to flowering in order to obtain pine pollen, and, following its separation, waste comprising empty microstrobili in the amount of 90–95% of the mass of raw material is formed. In this work, the elemental composition of Pinus sylvestris, P. sibirica and P. pumila microstrobili obtained following the separation of pollen (empty microstrobili (EM) was determined and compared with pharmacopoeial raw material, i.e., P. sylvestris sprouts. The elemental composition was analysed using atomic absorption spectroscopy with preliminary acid mineralisation in a microwave system. A comparative analysis of the elemental composition showed that EM contains a significant amount of K (8710–10187 mg/kg), Mg (627–1079 mg/kg), Mn (129–179 mg/kg), as well as Zn (37–67 mg/kg) and Cu (7.4–10.3 mg/kg). The series of accumulation of chemical elements was identical for microstrobili and sprouts of the studied pine species (K>Mg>Ca>Mn>Fe~Zn>Na>Cu>Ni~Cr>Co>Pb>Cd>Hg). EM can be used to enrich the diet with macroand microelements such as K, Mg, Mn, Fe, Zn and Cu. The content of toxic Cd, Pb and Hg was below the maximum permissible standards for medicinal plant raw materials and dietary supplements thereof. Obtained for the first time, data on the elemental composition of EM of P. sylvestris, P. sibirica, P. pumila and sprouts of P. sibirica and P. pumila can be used for further sanitary measurements of a new type of raw material.
{"title":"Elemental composition of microstrobili and sprouts of Pinus sylvestris, Pinus sibirica and Pinus pumila","authors":"V. Shiretorova, S. A. Erdyneeva, L. Radnaeva","doi":"10.21285/2227-2925-2022-12-4-605-611","DOIUrl":"https://doi.org/10.21285/2227-2925-2022-12-4-605-611","url":null,"abstract":"In recent years, the popularity of dietary supplements based on pine pollen has significantly increased due to over a thousand years of its use in Chinese traditional medicine and diverse biological activity. Microstrobili are harvested prior to flowering in order to obtain pine pollen, and, following its separation, waste comprising empty microstrobili in the amount of 90–95% of the mass of raw material is formed. In this work, the elemental composition of Pinus sylvestris, P. sibirica and P. pumila microstrobili obtained following the separation of pollen (empty microstrobili (EM) was determined and compared with pharmacopoeial raw material, i.e., P. sylvestris sprouts. The elemental composition was analysed using atomic absorption spectroscopy with preliminary acid mineralisation in a microwave system. A comparative analysis of the elemental composition showed that EM contains a significant amount of K (8710–10187 mg/kg), Mg (627–1079 mg/kg), Mn (129–179 mg/kg), as well as Zn (37–67 mg/kg) and Cu (7.4–10.3 mg/kg). The series of accumulation of chemical elements was identical for microstrobili and sprouts of the studied pine species (K>Mg>Ca>Mn>Fe~Zn>Na>Cu>Ni~Cr>Co>Pb>Cd>Hg). EM can be used to enrich the diet with macroand microelements such as K, Mg, Mn, Fe, Zn and Cu. The content of toxic Cd, Pb and Hg was below the maximum permissible standards for medicinal plant raw materials and dietary supplements thereof. Obtained for the first time, data on the elemental composition of EM of P. sylvestris, P. sibirica, P. pumila and sprouts of P. sibirica and P. pumila can be used for further sanitary measurements of a new type of raw material.","PeriodicalId":20601,"journal":{"name":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","volume":"2014 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83384643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.21285/2227-2925-2022-12-4-576-588
I. E. Minevich, A. Nechiporenko, A. A. Goncharova, V. I. Uschapovsky
At present, hemp seeds are becoming increasingly popular as a source of nutrients. This work addressed the dynamics of macronutrients in the process of short-term germination of hempseeds by chemical and spectroscopic methods. Lyudmila 2021 cultivated hemp seeds along with hemp sprouts were used as objects of research. The germination of hemp seeds was carried out under laboratory conditions using special trays at 18–20 °C with the water added at a ratio of 2:1 for 5 days with periodic moistening. The obtained experimental data on the protein complex suggested that, in the studied interval of the germination of hemp seeds, the key hydrolytic decomposition of proteins occurs along with changes in structural components, including through the synthesis of new proteins accompanying the sprouting. The variations in such parameters as fat content, acid number and peak intensity of functional groups in the lipid fingerprint region (1745, 1157 and 1140 cm-1) indicated the accumulation of fatty acids as a result of the hydrolysis of triglycerides. The analysis of the IR spectra of hemp sprouts and the intensity of the bands of the corresponding functional groups in the carbohydrate region (1200–680 cm-1) suggested the intensive hydrolytic decomposition of polysaccharides. The variation in the content of extractive matter in the aqueous solutions of hemp sprouts indicated the accumulation and utilisation of water-soluble substances at the early stages of germination. The data on the predominance of water- and salt-soluble protein fractions indicated an increase in the biological value of hemp seeds during short-term germination.
{"title":"Study of macronutrients in hemp seeds during short-term germination","authors":"I. E. Minevich, A. Nechiporenko, A. A. Goncharova, V. I. Uschapovsky","doi":"10.21285/2227-2925-2022-12-4-576-588","DOIUrl":"https://doi.org/10.21285/2227-2925-2022-12-4-576-588","url":null,"abstract":"At present, hemp seeds are becoming increasingly popular as a source of nutrients. This work addressed the dynamics of macronutrients in the process of short-term germination of hempseeds by chemical and spectroscopic methods. Lyudmila 2021 cultivated hemp seeds along with hemp sprouts were used as objects of research. The germination of hemp seeds was carried out under laboratory conditions using special trays at 18–20 °C with the water added at a ratio of 2:1 for 5 days with periodic moistening. The obtained experimental data on the protein complex suggested that, in the studied interval of the germination of hemp seeds, the key hydrolytic decomposition of proteins occurs along with changes in structural components, including through the synthesis of new proteins accompanying the sprouting. The variations in such parameters as fat content, acid number and peak intensity of functional groups in the lipid fingerprint region (1745, 1157 and 1140 cm-1) indicated the accumulation of fatty acids as a result of the hydrolysis of triglycerides. The analysis of the IR spectra of hemp sprouts and the intensity of the bands of the corresponding functional groups in the carbohydrate region (1200–680 cm-1) suggested the intensive hydrolytic decomposition of polysaccharides. The variation in the content of extractive matter in the aqueous solutions of hemp sprouts indicated the accumulation and utilisation of water-soluble substances at the early stages of germination. The data on the predominance of water- and salt-soluble protein fractions indicated an increase in the biological value of hemp seeds during short-term germination.","PeriodicalId":20601,"journal":{"name":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76019062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-02DOI: 10.21285/2227-2925-2022-12-4-566-575
Yu.G. Sturova, A. Grishkova, V. V. Konshin
Since late 2014, following the embargo, a significant reduction in cheese import, including mould cheese, has been observed. Developing new cheese technologies comprise therefore an urgent task for the milk industry. The cheeses ripened using noble mould represent a wholesome product, rich in protein, which contains many essential amino acids, beneficial for strengthening the walls of blood vessels and reducing angiasthenia. The microorganisms in the cheese starter culture create favourable conditions for healthy microflora in the gastrointestinal tract, preventing fermentation and meteorism. The high content of vitamin B12 in these cheeses has a positive effect on the central nervous system. Any production must be economically viable, lowering the production costs. In order to increase income, and consequently the profitability of production, the method of cheese ripening using a noble mould, obtained from a mixture of whole milk and secondary protein-carbohydrate raw materials, was proposed. The influence of the type of protein-carbohydrate raw material, yeast and mould on the physicochemical and organoleptic properties of the product was investigated. The optimal ratio of raw materials (milk:buttermilk) for cheese production was determined. The relative composition of nitrogen fractions and the presence and amount of volatile fatty acids in the proposed product were also examined. It was shown that proteolysis and lipolysis processes were more intensive in the experimental cheeses produced using a noble mould, resulting in the improvement of organoleptic characteristics of the finished product. The resulting soft cheese having unique characteristics and a tangy mushroom flavour can be recommended for production in cheese factories.
{"title":"Development of biotechnology for cheese having a noble mould: A relationship between biochemical processes and product quality","authors":"Yu.G. Sturova, A. Grishkova, V. V. Konshin","doi":"10.21285/2227-2925-2022-12-4-566-575","DOIUrl":"https://doi.org/10.21285/2227-2925-2022-12-4-566-575","url":null,"abstract":"Since late 2014, following the embargo, a significant reduction in cheese import, including mould cheese, has been observed. Developing new cheese technologies comprise therefore an urgent task for the milk industry. The cheeses ripened using noble mould represent a wholesome product, rich in protein, which contains many essential amino acids, beneficial for strengthening the walls of blood vessels and reducing angiasthenia. The microorganisms in the cheese starter culture create favourable conditions for healthy microflora in the gastrointestinal tract, preventing fermentation and meteorism. The high content of vitamin B12 in these cheeses has a positive effect on the central nervous system. Any production must be economically viable, lowering the production costs. In order to increase income, and consequently the profitability of production, the method of cheese ripening using a noble mould, obtained from a mixture of whole milk and secondary protein-carbohydrate raw materials, was proposed. The influence of the type of protein-carbohydrate raw material, yeast and mould on the physicochemical and organoleptic properties of the product was investigated. The optimal ratio of raw materials (milk:buttermilk) for cheese production was determined. The relative composition of nitrogen fractions and the presence and amount of volatile fatty acids in the proposed product were also examined. It was shown that proteolysis and lipolysis processes were more intensive in the experimental cheeses produced using a noble mould, resulting in the improvement of organoleptic characteristics of the finished product. The resulting soft cheese having unique characteristics and a tangy mushroom flavour can be recommended for production in cheese factories.","PeriodicalId":20601,"journal":{"name":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89842570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.21285/2227-2925-2022-12-4-521-537
I. Topchiy, D. Stom, K. Donina, S. Alferov, I. Nechaeva, А. B. Kupchinsky, B. N. Ogarkov, Y. Petrova, E. Antonova
Industrial development has led to immense emission and accumulation of hydrophobic organic compounds (HOC) in the environment. Primarily, they include petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). The extensive use of hydrophobic pesticides in agriculture led to the contamination of soil, air and water. Many of the hydrophobic substances are dangerous for the biota due to their high toxicity and carcinogenic and mutagenic activity. In addition to their widespread use, the possible adverse effects are also determined by their resistance to decomposition, including the biological one, which defines their long-term persistence in soil, water and other media. The impact of HOC on ecosystems poses a potential threat not only to the environment but also to human health. Numerous studies were devoted to the remediation of soils polluted with HOC. The approaches to remediation can be conditionally divided into mechanical, chemical and bio-methods, with the former two being widely used in the past. Bioremediation methods proved more efficient and, as a rule, more cost-effective and environmentally friendly. In recent years, the good efficiency of solubilizing agents in bioremediation processes has been demonstrated. Various surfactants have become widely popular due to their ability to increase desorption, water solubility and microbial bioavailability of HOC. In this brief review, state-of-the-art literature data on the biodegradation of hydrophobic organic compounds using surfactants were considered.
{"title":"Use of surfactants in biodegradation of hydrophobic compounds: A review","authors":"I. Topchiy, D. Stom, K. Donina, S. Alferov, I. Nechaeva, А. B. Kupchinsky, B. N. Ogarkov, Y. Petrova, E. Antonova","doi":"10.21285/2227-2925-2022-12-4-521-537","DOIUrl":"https://doi.org/10.21285/2227-2925-2022-12-4-521-537","url":null,"abstract":"Industrial development has led to immense emission and accumulation of hydrophobic organic compounds (HOC) in the environment. Primarily, they include petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). The extensive use of hydrophobic pesticides in agriculture led to the contamination of soil, air and water. Many of the hydrophobic substances are dangerous for the biota due to their high toxicity and carcinogenic and mutagenic activity. In addition to their widespread use, the possible adverse effects are also determined by their resistance to decomposition, including the biological one, which defines their long-term persistence in soil, water and other media. The impact of HOC on ecosystems poses a potential threat not only to the environment but also to human health. Numerous studies were devoted to the remediation of soils polluted with HOC. The approaches to remediation can be conditionally divided into mechanical, chemical and bio-methods, with the former two being widely used in the past. Bioremediation methods proved more efficient and, as a rule, more cost-effective and environmentally friendly. In recent years, the good efficiency of solubilizing agents in bioremediation processes has been demonstrated. Various surfactants have become widely popular due to their ability to increase desorption, water solubility and microbial bioavailability of HOC. In this brief review, state-of-the-art literature data on the biodegradation of hydrophobic organic compounds using surfactants were considered.","PeriodicalId":20601,"journal":{"name":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81658770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.21285/2227-2925-2022-12-4-557-565
A. Kryzhko, N. N. Smagliy
Although the entomopathogenic bacteria Bacillus thuringiensis Berliner are well-known bio-agents for regulating the population of leaf-eating pests of agricultural and ornamental crops, other agricultural properties of this microorganism are promising. In this work, the growth-stimulating effect of entomopathogenic strains of B. thuringiensis on Deviz pea plants was studied. The entomopathogenic strains B. thuringiensis 685, 926 and 109-C obtained from the Crimean Collection of Microorganisms of the Crimean Agricultural Research Institute, registered online (http://www.ckp-rf.ru) with number 507484, were used as research material. The morphometric parameters of pea sprouts were evaluated following standard methods. Biochemical parameters of pea sprouts were determined for 10-day-old sprouts. The amylase activity of pea sprouts was determined by photocalorimetry; total acidity was measured by titration using 0.1 n NaOH solution; total water-soluble phenolic compounds were determined by Leventhal titrimetric method. It was found that liquid spore culture of strains B. thuringiensis 685, 926 and 109-C had a stimulating effect on the length of root and stem and the weight of 10-day-old sprouts of Deviz pea variety. Treatment with a spore suspension of all tested strains B. thuringiensis led to an increase in the content of organic acids in the sprouts by an average of 12.4% compared with that of the control. Maximum stimulating effect on amylolytic activity and synthesis of phenolic compounds in Deviz pea sprouts was achieved by treating with a spore suspension of the strain B. thuringiensis 926. The amylase activity increased on average by 41.5% when compared to that of the control, while the total content of phenolic compounds in this experiment was 2.3 times higher than that of the control. Therefore, in light of the entomopathogenic properties and the obtained data on the growth-stimulating activity of the strains of B. thuringiensis, it can be concluded that these bacteria have additional potential for their use in agriculture as a bio-agent for plant protection having a complex action.
苏云金芽孢杆菌(Bacillus thuringiensis Berliner)是众所周知的调控农业和观赏作物食叶害虫种群的生物制剂,但这种微生物的其他农业特性也很有前景。本文研究了苏云金芽孢杆菌(B. thuringiensis)昆虫致病菌株对豌豆植株的促生长作用。研究材料为苏云金芽孢杆菌685、926和109-C昆虫病原菌株,该菌株来自克里米亚农业研究所的Crimean Collection of microbiology,其在线注册编号为507484 (http://www.ckp-rf.ru)。采用标准方法对豌豆芽的形态计量学参数进行评价。测定了10 d豌豆芽的生化指标。采用光热法测定豌豆芽淀粉酶活性;用0.1 n NaOH溶液滴定测定总酸度;总水溶性酚类化合物用Leventhal滴定法测定。结果表明,苏云金芽孢杆菌685、926和109-C的液体孢子培养对德维兹豌豆品种的根、茎长和10 d芽重均有促进作用。用所有试验菌株的孢子悬浮液处理后,豆芽中有机酸的含量比对照平均增加了12.4%。苏云金芽孢杆菌926孢子悬浮液对豌豆芽的酶解活性和酚类化合物合成的刺激作用最大。淀粉酶活性比对照平均提高41.5%,酚类化合物总含量比对照提高2.3倍。因此,根据苏云金芽孢杆菌菌株的昆虫病原性和已获得的促生长活性数据,可以得出结论,这些细菌作为具有复杂作用的植物保护生物剂在农业上具有额外的潜力。
{"title":"Effect of Bacillus thuringiensis strains on growth and metabolic processes in Pisum sativum L. sprouts","authors":"A. Kryzhko, N. N. Smagliy","doi":"10.21285/2227-2925-2022-12-4-557-565","DOIUrl":"https://doi.org/10.21285/2227-2925-2022-12-4-557-565","url":null,"abstract":"Although the entomopathogenic bacteria Bacillus thuringiensis Berliner are well-known bio-agents for regulating the population of leaf-eating pests of agricultural and ornamental crops, other agricultural properties of this microorganism are promising. In this work, the growth-stimulating effect of entomopathogenic strains of B. thuringiensis on Deviz pea plants was studied. The entomopathogenic strains B. thuringiensis 685, 926 and 109-C obtained from the Crimean Collection of Microorganisms of the Crimean Agricultural Research Institute, registered online (http://www.ckp-rf.ru) with number 507484, were used as research material. The morphometric parameters of pea sprouts were evaluated following standard methods. Biochemical parameters of pea sprouts were determined for 10-day-old sprouts. The amylase activity of pea sprouts was determined by photocalorimetry; total acidity was measured by titration using 0.1 n NaOH solution; total water-soluble phenolic compounds were determined by Leventhal titrimetric method. It was found that liquid spore culture of strains B. thuringiensis 685, 926 and 109-C had a stimulating effect on the length of root and stem and the weight of 10-day-old sprouts of Deviz pea variety. Treatment with a spore suspension of all tested strains B. thuringiensis led to an increase in the content of organic acids in the sprouts by an average of 12.4% compared with that of the control. Maximum stimulating effect on amylolytic activity and synthesis of phenolic compounds in Deviz pea sprouts was achieved by treating with a spore suspension of the strain B. thuringiensis 926. The amylase activity increased on average by 41.5% when compared to that of the control, while the total content of phenolic compounds in this experiment was 2.3 times higher than that of the control. Therefore, in light of the entomopathogenic properties and the obtained data on the growth-stimulating activity of the strains of B. thuringiensis, it can be concluded that these bacteria have additional potential for their use in agriculture as a bio-agent for plant protection having a complex action.","PeriodicalId":20601,"journal":{"name":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89669220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.21285/2227-2925-2022-12-4-538-546
A. Baran
The aim of this research is to determine the effect of Althaea rosea flower gum loaded with Thymbra spicata essential oils coating on packaged beef patties during cold storage. For this purpose, samples were evaluated in terms of pH, color, thiobarbituric acid reactive substances (TBARS), and microbiological properties. In addition, texture profile analysis (TPA) was performed to evaluate the textural properties of the beef patties. The essential oil treatment to the beef patties had a significant effect (p<0.05) on the pH values at the end of storage. The coating significantly affected the L* (lightness), a* (redness) and b* (yellowness) values (p<0.05). A similar situation was also found for lipid oxidation (1.00 µmol MDA (g). The coated samples with essential oil-treated had the lowest values of total aerobic bacteria (3.29 log CFU/g), yeast and mold (2.99 log CFU/g), lactic acid bacteria (2.23 log CFU/g), and total psychrophilic bacteria (2.58 log CFU/g). While the effect of the coating on the adhesiveness, gumminess, and chewiness values of the beef patties at the end of storage was significant (p<0.05), it did not affect other textural properties. Current research has shown that Althaea rosea flower gum can be used in edible coatings and, when fortified with Thymbra spicata essential oil, can be used in muscle foods for preservation and shelf-life extension.
{"title":"Effect of Althaea rosea flower gum loaded with Thymbra spicata (Zahter) essential oil coating on shelf life and quality of beef patties (Koefte) during cold storage","authors":"A. Baran","doi":"10.21285/2227-2925-2022-12-4-538-546","DOIUrl":"https://doi.org/10.21285/2227-2925-2022-12-4-538-546","url":null,"abstract":"The aim of this research is to determine the effect of Althaea rosea flower gum loaded with Thymbra spicata essential oils coating on packaged beef patties during cold storage. For this purpose, samples were evaluated in terms of pH, color, thiobarbituric acid reactive substances (TBARS), and microbiological properties. In addition, texture profile analysis (TPA) was performed to evaluate the textural properties of the beef patties. The essential oil treatment to the beef patties had a significant effect (p<0.05) on the pH values at the end of storage. The coating significantly affected the L* (lightness), a* (redness) and b* (yellowness) values (p<0.05). A similar situation was also found for lipid oxidation (1.00 µmol MDA (g). The coated samples with essential oil-treated had the lowest values of total aerobic bacteria (3.29 log CFU/g), yeast and mold (2.99 log CFU/g), lactic acid bacteria (2.23 log CFU/g), and total psychrophilic bacteria (2.58 log CFU/g). While the effect of the coating on the adhesiveness, gumminess, and chewiness values of the beef patties at the end of storage was significant (p<0.05), it did not affect other textural properties. Current research has shown that Althaea rosea flower gum can be used in edible coatings and, when fortified with Thymbra spicata essential oil, can be used in muscle foods for preservation and shelf-life extension.","PeriodicalId":20601,"journal":{"name":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","volume":"91 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83386721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.21285/2227-2925-2022-12-4-506-513
A. Fedotov, E. Rudenko
At present, industrial and agricultural waste is often used as sorption materials for water remediation. Adsorbents obtained from sunflower husks were used for wastewater treatment from chromium (VI) ions. Studies were carried out using unmodified and modified sunflower husk and a model wastewater solution containing 10 mg/dm3 of chromium (VI) ions. Solutions of acids (H2SO4, HNO3, HCl, H3PO4) and alkalis (KOH, NaOH) were used to modify sunflower husks. The maximum sorption capacity was revealed in sunflower husks treated with sulfuric acid; thus, this modifying agent only was used in further experiments. The modification was carried out using 1–4 M solutions of H2SO4 at 30–75 °C for 30–120 min. The research results showed that the acid treatment of sunflower husks is more effective than that using alkalis. The sorption capacity of the modified sunflower husk increased up to the concentration of sulfuric acid of 3 M, followed by a further decrease. A full factorial design having 3 factors of the experiment was set, which allowed the maximum sorption capacity to be identified. The optimal modification procedure was as follows: sunflower husks are treated using 2.5 M sulfuric acid solution at 60 °C for 30 min, washed with distilled water and dried at 105 °C to a constant weight. Studies showed that adsorbents obtained from sunflower husks can be used to remove chromium (VI) ions from wastewater.
{"title":"Production of adsorbents based on sunflower husks for removal of chromium (VI) from wastewater","authors":"A. Fedotov, E. Rudenko","doi":"10.21285/2227-2925-2022-12-4-506-513","DOIUrl":"https://doi.org/10.21285/2227-2925-2022-12-4-506-513","url":null,"abstract":"At present, industrial and agricultural waste is often used as sorption materials for water remediation. Adsorbents obtained from sunflower husks were used for wastewater treatment from chromium (VI) ions. Studies were carried out using unmodified and modified sunflower husk and a model wastewater solution containing 10 mg/dm3 of chromium (VI) ions. Solutions of acids (H2SO4, HNO3, HCl, H3PO4) and alkalis (KOH, NaOH) were used to modify sunflower husks. The maximum sorption capacity was revealed in sunflower husks treated with sulfuric acid; thus, this modifying agent only was used in further experiments. The modification was carried out using 1–4 M solutions of H2SO4 at 30–75 °C for 30–120 min. The research results showed that the acid treatment of sunflower husks is more effective than that using alkalis. The sorption capacity of the modified sunflower husk increased up to the concentration of sulfuric acid of 3 M, followed by a further decrease. A full factorial design having 3 factors of the experiment was set, which allowed the maximum sorption capacity to be identified. The optimal modification procedure was as follows: sunflower husks are treated using 2.5 M sulfuric acid solution at 60 °C for 30 min, washed with distilled water and dried at 105 °C to a constant weight. Studies showed that adsorbents obtained from sunflower husks can be used to remove chromium (VI) ions from wastewater.","PeriodicalId":20601,"journal":{"name":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80055889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.21285/2227-2925-2022-12-4-498-505
V. A. Grabelnykh, I. N. Bogdanova, N. Sosnovskaya, N. V. Istomina, N. V. Russavskaya, E. Kondrashov, R. Butrik, N. A. Korchevin, I. B. Rozentsveig
The synthesis and spectral characterisation of 2-pyridylisothiuronium chloride were performed by regulating the rate of feeding 2-chloropyridine into a thiourea solution in ethyl alcohol for ensuring its low concentration in the reaction zone. According to the data of NMR spectroscopy (1H,13С,15N), the obtained compound represents an approximately equimolar mixture of two tautomers: the expected isothiuronium salt and pyridinium chloride with an isothiocarbamide substituting group in the 2nd position. The ability of isothiuronium salt to transit tautomerically to pyridinium salt is determined by the presence of two main centres, including nitrogen atoms of the isothiourea unit and a nitrogen atom of the pyridine ring. A quantum chemical analysis performed using the DFT method showed that the free energy values of the tautomers were similar, with the tautomer protonated on the nitrogen imido-atom being 2.9 (in the gas phase) and 4.7 kcal/mole (taking into account the dimethyl sulphoxide solvent DMSO at the PCM level) more advantageous as compared to the pyridinium salt. A small difference in the tautomer energies determines their formation in an approximately equimolar quantity. A rapid addition (5–10 mL/min) of 2-chloropyridine to the thiourea solution in the reaction zone creates the surplus of the reagent, acting as a base and causing splitting of the isotiuronium salt. This leads to an additional formation of bis(2-pyridyl)sulphide in the reaction medium, representing a valuable ligand for obtaining coordination compounds. The synthesised mixture of tautomers was examined as an additive to the standard nickel-plating electrolyte. In the concentration of 0.3–0.5 g/L, this additive ensured the production of bright low-porous nickel coatings at a sufficiently high current density of 5–10 A/dm2 and a current yield of 98–99 %.
{"title":"Characteristics of 2-chloropyridine and thiourea condensation. Structure of the as-formed products and their effect on coating properties during electrochemical nickel plating","authors":"V. A. Grabelnykh, I. N. Bogdanova, N. Sosnovskaya, N. V. Istomina, N. V. Russavskaya, E. Kondrashov, R. Butrik, N. A. Korchevin, I. B. Rozentsveig","doi":"10.21285/2227-2925-2022-12-4-498-505","DOIUrl":"https://doi.org/10.21285/2227-2925-2022-12-4-498-505","url":null,"abstract":"The synthesis and spectral characterisation of 2-pyridylisothiuronium chloride were performed by regulating the rate of feeding 2-chloropyridine into a thiourea solution in ethyl alcohol for ensuring its low concentration in the reaction zone. According to the data of NMR spectroscopy (1H,13С,15N), the obtained compound represents an approximately equimolar mixture of two tautomers: the expected isothiuronium salt and pyridinium chloride with an isothiocarbamide substituting group in the 2nd position. The ability of isothiuronium salt to transit tautomerically to pyridinium salt is determined by the presence of two main centres, including nitrogen atoms of the isothiourea unit and a nitrogen atom of the pyridine ring. A quantum chemical analysis performed using the DFT method showed that the free energy values of the tautomers were similar, with the tautomer protonated on the nitrogen imido-atom being 2.9 (in the gas phase) and 4.7 kcal/mole (taking into account the dimethyl sulphoxide solvent DMSO at the PCM level) more advantageous as compared to the pyridinium salt. A small difference in the tautomer energies determines their formation in an approximately equimolar quantity. A rapid addition (5–10 mL/min) of 2-chloropyridine to the thiourea solution in the reaction zone creates the surplus of the reagent, acting as a base and causing splitting of the isotiuronium salt. This leads to an additional formation of bis(2-pyridyl)sulphide in the reaction medium, representing a valuable ligand for obtaining coordination compounds. The synthesised mixture of tautomers was examined as an additive to the standard nickel-plating electrolyte. In the concentration of 0.3–0.5 g/L, this additive ensured the production of bright low-porous nickel coatings at a sufficiently high current density of 5–10 A/dm2 and a current yield of 98–99 %.","PeriodicalId":20601,"journal":{"name":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81356569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}