Many birds vocalize in flight. Because wingbeat and respiratory cycles are often linked in flying vertebrates, birds in these cases must satisfy the respiratory demands of vocal production within the physiological limits imposed by flight. Using acoustic triangulation and high-speed video, we found that avian vocal production in flight exhibits a largely phasic and kinematic relationship with the power stroke. However, the sample of species showed considerable flexibility, especially those from lineages known for vocal plasticity (songbirds, parrots and hummingbirds), prompting a broader phylogenetic analysis. We thus collected data from 150 species across 12 avian orders and examined the links between wingbeat period, flight call duration and body mass. Overall, shorter wingbeat periods, controlling for ancestry and body mass, were correlated with shorter flight call durations. However, species from vocal learner lineages produced flight signals that, on average, exceeded multiple phases of their wingbeat cycle, while vocal non-learners had signal periods that were, on average, closer to the duration of their power stroke. These results raise an interesting question: is partial emancipation from respiratory constraints a necessary step in the evolution of vocal learning or an epiphenomenon? Our current study cannot provide the answer, but it does suggest several avenues for future research.
{"title":"Phylogenetic and kinematic constraints on avian flight signals","authors":"Karl S. Berg, S. Delgado, A. Mata-Betancourt","doi":"10.1098/rspb.2019.1083","DOIUrl":"https://doi.org/10.1098/rspb.2019.1083","url":null,"abstract":"Many birds vocalize in flight. Because wingbeat and respiratory cycles are often linked in flying vertebrates, birds in these cases must satisfy the respiratory demands of vocal production within the physiological limits imposed by flight. Using acoustic triangulation and high-speed video, we found that avian vocal production in flight exhibits a largely phasic and kinematic relationship with the power stroke. However, the sample of species showed considerable flexibility, especially those from lineages known for vocal plasticity (songbirds, parrots and hummingbirds), prompting a broader phylogenetic analysis. We thus collected data from 150 species across 12 avian orders and examined the links between wingbeat period, flight call duration and body mass. Overall, shorter wingbeat periods, controlling for ancestry and body mass, were correlated with shorter flight call durations. However, species from vocal learner lineages produced flight signals that, on average, exceeded multiple phases of their wingbeat cycle, while vocal non-learners had signal periods that were, on average, closer to the duration of their power stroke. These results raise an interesting question: is partial emancipation from respiratory constraints a necessary step in the evolution of vocal learning or an epiphenomenon? Our current study cannot provide the answer, but it does suggest several avenues for future research.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79012825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Living in groups affords individuals many benefits, including the opportunity to reduce stress. In mammals, such ‘social buffering’ of stress is mediated by affiliative relationships and production of the neuropeptide oxytocin, but whether these mechanisms facilitate social buffering across vertebrates remains an open question. Therefore, we evaluated whether the social environment influenced the behavioural and physiological recovery from an acute stressor in a group-living cichlid, Neolamprologus pulcher. Individual fish that recovered with their social group displayed lower cortisol levels than individuals that recovered alone. This social buffering of the stress response was associated with a tendency towards lower transcript abundance of arginine vasotocin and isotocin in the preoptic area of the brain, suggesting reduced neural activation of the stress axis. Individuals that recovered with their social group quickly resumed normal behaviour but received fewer affiliative acts following the stressor. Further experiments revealed similar cortisol levels between individuals that recovered in visual contact with their own social group and those in visual contact with a novel but non-aggressive social group. Collectively, our results suggest that affiliation and familiarity per se do not mediate social buffering in this group-living cichlid, and the behavioural and physiological mechanisms responsible for social buffering may vary across vertebrates.
{"title":"Social buffering of stress in a group-living fish","authors":"B. Culbert, K. Gilmour, S. Balshine","doi":"10.1098/rspb.2019.1626","DOIUrl":"https://doi.org/10.1098/rspb.2019.1626","url":null,"abstract":"Living in groups affords individuals many benefits, including the opportunity to reduce stress. In mammals, such ‘social buffering’ of stress is mediated by affiliative relationships and production of the neuropeptide oxytocin, but whether these mechanisms facilitate social buffering across vertebrates remains an open question. Therefore, we evaluated whether the social environment influenced the behavioural and physiological recovery from an acute stressor in a group-living cichlid, Neolamprologus pulcher. Individual fish that recovered with their social group displayed lower cortisol levels than individuals that recovered alone. This social buffering of the stress response was associated with a tendency towards lower transcript abundance of arginine vasotocin and isotocin in the preoptic area of the brain, suggesting reduced neural activation of the stress axis. Individuals that recovered with their social group quickly resumed normal behaviour but received fewer affiliative acts following the stressor. Further experiments revealed similar cortisol levels between individuals that recovered in visual contact with their own social group and those in visual contact with a novel but non-aggressive social group. Collectively, our results suggest that affiliation and familiarity per se do not mediate social buffering in this group-living cichlid, and the behavioural and physiological mechanisms responsible for social buffering may vary across vertebrates.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"56 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88385814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ian M. Traniello, Zhenqing Chen, Vikram A. Bagchi, G. Robinson
Over 600 Myr of evolutionary divergence between vertebrates and invertebrates is associated with considerable neuroanatomical variation both across and within these lineages. By contrast, valence encoding is an important behavioural trait that is evolutionarily conserved across vertebrates and invertebrates, and enables individuals to distinguish between positive (potentially beneficial) and negative (potentially harmful) situations. We tested the hypothesis that social interactions of positive and negative valence are modularly encoded in the honeybee brain (i.e. encoded in different cellular subpopulations) as in vertebrate brains. In vertebrates, neural activation patterns are distributed across distinct parts of the brain, suggesting that discrete circuits encode positive or negative stimuli. Evidence for this hypothesis would suggest a deep homology of neural organization between insects and vertebrates for valence encoding, despite vastly different brain sizes. Alternatively, overlapping localization of valenced social information in the brain would imply a ‘re-use' of circuitry in response to positive and negative social contexts, potentially to overcome the energetic constraints of a tiny brain. We used immediate early gene expression to map positively and negatively valenced social interactions in the brain of the western honeybee Apis mellifera. We found that the valence of a social signal is represented by distinct anatomical subregions of the mushroom bodies, an invertebrate sensory neuropil associated with social behaviour, multimodal sensory integration, learning and memory. Our results suggest that the modularization of valenced social information in the brain is a fundamental property of neuroanatomical organization.
{"title":"Valence of social information is encoded in different subpopulations of mushroom body Kenyon cells in the honeybee brain","authors":"Ian M. Traniello, Zhenqing Chen, Vikram A. Bagchi, G. Robinson","doi":"10.1098/rspb.2019.0901","DOIUrl":"https://doi.org/10.1098/rspb.2019.0901","url":null,"abstract":"Over 600 Myr of evolutionary divergence between vertebrates and invertebrates is associated with considerable neuroanatomical variation both across and within these lineages. By contrast, valence encoding is an important behavioural trait that is evolutionarily conserved across vertebrates and invertebrates, and enables individuals to distinguish between positive (potentially beneficial) and negative (potentially harmful) situations. We tested the hypothesis that social interactions of positive and negative valence are modularly encoded in the honeybee brain (i.e. encoded in different cellular subpopulations) as in vertebrate brains. In vertebrates, neural activation patterns are distributed across distinct parts of the brain, suggesting that discrete circuits encode positive or negative stimuli. Evidence for this hypothesis would suggest a deep homology of neural organization between insects and vertebrates for valence encoding, despite vastly different brain sizes. Alternatively, overlapping localization of valenced social information in the brain would imply a ‘re-use' of circuitry in response to positive and negative social contexts, potentially to overcome the energetic constraints of a tiny brain. We used immediate early gene expression to map positively and negatively valenced social interactions in the brain of the western honeybee Apis mellifera. We found that the valence of a social signal is represented by distinct anatomical subregions of the mushroom bodies, an invertebrate sensory neuropil associated with social behaviour, multimodal sensory integration, learning and memory. Our results suggest that the modularization of valenced social information in the brain is a fundamental property of neuroanatomical organization.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86260493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advances in understanding non-genetic inheritance have prompted broader interest in environmental effects. One way in which such effects may influence adaptation is via the transmission of acquired habitat biases. Here I explore how natal experience influences adult host orientation in the oligophagous passion vine butterfly Heliconius charithonia. As an exemplar of the ‘pupal mating' system, this species poses novelty among diurnal Lepidoptera for the extent to which male as well as female reproductive behaviours are guided by olfactory host cues. I sampled wild adult females breeding exclusively upon Passiflora incarnata, assigned their offspring to develop either upon this species or its local alternative Passiflora suberosa, and then assessed the behaviour of F1 adults in a large rainforest enclosure. Despite the fact that juvenile performance was superior upon P. incarnata, females oviposited preferentially upon their assigned natal species. Mate-seeking males also indicated a bias for the proximity of their natal host, and there was evidence for assortative mating based upon host treatment, although these data are less robust. This study is, to my knowledge, the first to support Hopkins' hostplant principle in butterflies, and points to inducible host preferences capable of reinforcing ecological segregation and ultimately accelerating evolutionary divergence in sympatry.
{"title":"Manipulation of natal host modifies adult reproductive behaviour in the butterfly Heliconius charithonia","authors":"D. Kemp","doi":"10.1098/rspb.2019.1225","DOIUrl":"https://doi.org/10.1098/rspb.2019.1225","url":null,"abstract":"Advances in understanding non-genetic inheritance have prompted broader interest in environmental effects. One way in which such effects may influence adaptation is via the transmission of acquired habitat biases. Here I explore how natal experience influences adult host orientation in the oligophagous passion vine butterfly Heliconius charithonia. As an exemplar of the ‘pupal mating' system, this species poses novelty among diurnal Lepidoptera for the extent to which male as well as female reproductive behaviours are guided by olfactory host cues. I sampled wild adult females breeding exclusively upon Passiflora incarnata, assigned their offspring to develop either upon this species or its local alternative Passiflora suberosa, and then assessed the behaviour of F1 adults in a large rainforest enclosure. Despite the fact that juvenile performance was superior upon P. incarnata, females oviposited preferentially upon their assigned natal species. Mate-seeking males also indicated a bias for the proximity of their natal host, and there was evidence for assortative mating based upon host treatment, although these data are less robust. This study is, to my knowledge, the first to support Hopkins' hostplant principle in butterflies, and points to inducible host preferences capable of reinforcing ecological segregation and ultimately accelerating evolutionary divergence in sympatry.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"76 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88366069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Kishida, Yasuhiro Go, Shoji Tatsumoto, Kaori Tatsumi, Shigehiro Kuraku, M. Toda
Marine amniotes, a polyphyletic group, provide an excellent opportunity for studying convergent evolution. Their sense of smell tends to degenerate, but this process has not been explored by comparing fully aquatic species with their amphibious relatives in an evolutionary context. Here, we sequenced the genomes of fully aquatic and amphibious sea snakes and identified repertoires of chemosensory receptor genes involved in olfaction. Snakes possess large numbers of the olfactory receptor (OR) genes and the type-2 vomeronasal receptor (V2R) genes, and expression profiling in the olfactory tissues suggests that snakes use the ORs in the main olfactory system (MOS) and the V2Rs in the vomeronasal system (VNS). The number of OR genes has decreased in sea snakes, and fully aquatic species lost MOS which is responsible for detecting airborne odours. By contrast, sea snakes including fully aquatic species retain a number of V2R genes and a well-developed VNS for smelling underwater. This study suggests that the sense of smell also degenerated in sea snakes, particularly in fully aquatic species, but their residual olfactory capability is distinct from that of other fully aquatic amniotes. Amphibious species show an intermediate status between terrestrial and fully aquatic snakes, implying their importance in understanding the process of aquatic adaptation.
{"title":"Loss of olfaction in sea snakes provides new perspectives on the aquatic adaptation of amniotes","authors":"T. Kishida, Yasuhiro Go, Shoji Tatsumoto, Kaori Tatsumi, Shigehiro Kuraku, M. Toda","doi":"10.1098/rspb.2019.1828","DOIUrl":"https://doi.org/10.1098/rspb.2019.1828","url":null,"abstract":"Marine amniotes, a polyphyletic group, provide an excellent opportunity for studying convergent evolution. Their sense of smell tends to degenerate, but this process has not been explored by comparing fully aquatic species with their amphibious relatives in an evolutionary context. Here, we sequenced the genomes of fully aquatic and amphibious sea snakes and identified repertoires of chemosensory receptor genes involved in olfaction. Snakes possess large numbers of the olfactory receptor (OR) genes and the type-2 vomeronasal receptor (V2R) genes, and expression profiling in the olfactory tissues suggests that snakes use the ORs in the main olfactory system (MOS) and the V2Rs in the vomeronasal system (VNS). The number of OR genes has decreased in sea snakes, and fully aquatic species lost MOS which is responsible for detecting airborne odours. By contrast, sea snakes including fully aquatic species retain a number of V2R genes and a well-developed VNS for smelling underwater. This study suggests that the sense of smell also degenerated in sea snakes, particularly in fully aquatic species, but their residual olfactory capability is distinct from that of other fully aquatic amniotes. Amphibious species show an intermediate status between terrestrial and fully aquatic snakes, implying their importance in understanding the process of aquatic adaptation.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"56 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72648325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shengru Wu, W. Guo, Xinyi Li, Yanli Liu, Yulong Li, Xinyu Lei, Junhu Yao, Xiaojun Yang
Increasing evidence indicates that paternal diet can result in metabolic changes in offspring, but the definite mechanism remains unclear in birds. Here, we fed breeder cocks five different diets containing 0, 0.25, 1.25, 2.50 and 5.00 mg kg−1 folate throughout life. Paternal folate supplementation (FS) was beneficial to the growth and organ development of broiler offspring. Most importantly, the lipid and glucose metabolism of breeder cocks and broiler offspring were affected by paternal FS, according to biochemical and metabolomic analyses. We further employed global analyses of hepatic and spermatozoal messenger RNA (mRNA), long non-coding RNA (lncRNA) and micro RNA (miRNA). Some key genes involved in the glycolysis or gluconeogenesis pathway and the PPAR signalling pathway, including PEPCK, ANGPTL4 and THRSP, were regulated by differentially expressed hepatic and spermatozoal miRNAs and lncRNAs in breeder cocks and broiler offspring. Moreover, the expression of ANGPTL4 could also be regulated by differentially expressed miRNAs and lncRNAs in spermatozoa via competitive endogenous RNA (ceRNA) mechanisms. Overall, this model suggests that paternal folate could transgenerationally regulate lipid and glucose metabolism in broiler offspring and the epigenetic transmission may involve altered spermatozoal miRNAs and lncRNAs.
越来越多的证据表明,父亲的饮食可以导致后代的代谢变化,但在鸟类中明确的机制尚不清楚。在本研究中,我们终生给种鸡饲喂5种不同的饲粮,分别含有0、0.25、1.25、2.50和5.00 mg kg - 1叶酸。父本补充叶酸(FS)有利于肉鸡子代的生长和器官发育。最重要的是,根据生化和代谢组学分析,父亲FS对种鸡和肉鸡后代的脂质和葡萄糖代谢有影响。我们进一步对肝脏和精子的信使RNA (mRNA)、长链非编码RNA (lncRNA)和微RNA (miRNA)进行了全局分析。在种鸡和肉鸡后代中,参与糖酵解或糖异生途径和PPAR信号通路的关键基因,包括PEPCK、ANGPTL4和THRSP,受到肝脏和精子mirna和lncrna差异表达的调控。此外,ANGPTL4的表达也可以通过竞争内源性RNA (ceRNA)机制受到精子中差异表达的mirna和lncrna的调控。综上所述,该模型表明,父本叶酸可以跨代调节肉鸡后代的脂质和糖代谢,其表观遗传传递可能涉及精子mirna和lncrna的改变。
{"title":"Paternal chronic folate supplementation induced the transgenerational inheritance of acquired developmental and metabolic changes in chickens","authors":"Shengru Wu, W. Guo, Xinyi Li, Yanli Liu, Yulong Li, Xinyu Lei, Junhu Yao, Xiaojun Yang","doi":"10.1098/rspb.2019.1653","DOIUrl":"https://doi.org/10.1098/rspb.2019.1653","url":null,"abstract":"Increasing evidence indicates that paternal diet can result in metabolic changes in offspring, but the definite mechanism remains unclear in birds. Here, we fed breeder cocks five different diets containing 0, 0.25, 1.25, 2.50 and 5.00 mg kg−1 folate throughout life. Paternal folate supplementation (FS) was beneficial to the growth and organ development of broiler offspring. Most importantly, the lipid and glucose metabolism of breeder cocks and broiler offspring were affected by paternal FS, according to biochemical and metabolomic analyses. We further employed global analyses of hepatic and spermatozoal messenger RNA (mRNA), long non-coding RNA (lncRNA) and micro RNA (miRNA). Some key genes involved in the glycolysis or gluconeogenesis pathway and the PPAR signalling pathway, including PEPCK, ANGPTL4 and THRSP, were regulated by differentially expressed hepatic and spermatozoal miRNAs and lncRNAs in breeder cocks and broiler offspring. Moreover, the expression of ANGPTL4 could also be regulated by differentially expressed miRNAs and lncRNAs in spermatozoa via competitive endogenous RNA (ceRNA) mechanisms. Overall, this model suggests that paternal folate could transgenerationally regulate lipid and glucose metabolism in broiler offspring and the epigenetic transmission may involve altered spermatozoal miRNAs and lncRNAs.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"85 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85573166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modelling ecological niches of migratory animals requires incorporating a temporal dimension, in addition to space. Here, we introduce an approach to model multigenerational migratory insects using time-partitioned environmental variables (by months and years) and time- and behaviour-partitioned records (breeding records to model reproductive habitat). We apply this methodology to modelling the Palearctic-African migratory cycle of the Painted Lady butterfly (Vanessa cardui), based on data encompassing 36 years (646 breeding sites from 30 countries). Each breeding record is linked to a particular time (month and year), and the associated values of the bioclimatic variables are used for an ensemble modelling strategy, to finally obtain monthly projections. The results show obligated movements, mostly latitudinal, for the species' successive generations across the overall range, and only scattered locations show high probabilities of reproduction year-round. The southernmost reproductive areas estimated for the Palearctic-African migratory pool reach equatorial latitudes from December to February. We thus propose a potential distribution for the winter ‘missing generations' that would expand the V. cardui migration cycle to encompass about 15 000 km in latitude, from northernmost Europe to equatorial Africa. In summer, Europe represents the major temporary resource for V. cardui, while January and February show the lowest overall suitability values, and they are potentially the most vulnerable period for the species to suffer yearly bottlenecks. In summary, we demonstrate the potential of the proposed niche modelling strategy to investigate migratory movements of insects.
{"title":"Spatio-temporal ecological niche modelling of multigenerational insect migrations","authors":"M. Menchetti, M. Guéguen, Gerard Talavera","doi":"10.1098/rspb.2019.1583","DOIUrl":"https://doi.org/10.1098/rspb.2019.1583","url":null,"abstract":"Modelling ecological niches of migratory animals requires incorporating a temporal dimension, in addition to space. Here, we introduce an approach to model multigenerational migratory insects using time-partitioned environmental variables (by months and years) and time- and behaviour-partitioned records (breeding records to model reproductive habitat). We apply this methodology to modelling the Palearctic-African migratory cycle of the Painted Lady butterfly (Vanessa cardui), based on data encompassing 36 years (646 breeding sites from 30 countries). Each breeding record is linked to a particular time (month and year), and the associated values of the bioclimatic variables are used for an ensemble modelling strategy, to finally obtain monthly projections. The results show obligated movements, mostly latitudinal, for the species' successive generations across the overall range, and only scattered locations show high probabilities of reproduction year-round. The southernmost reproductive areas estimated for the Palearctic-African migratory pool reach equatorial latitudes from December to February. We thus propose a potential distribution for the winter ‘missing generations' that would expand the V. cardui migration cycle to encompass about 15 000 km in latitude, from northernmost Europe to equatorial Africa. In summer, Europe represents the major temporary resource for V. cardui, while January and February show the lowest overall suitability values, and they are potentially the most vulnerable period for the species to suffer yearly bottlenecks. In summary, we demonstrate the potential of the proposed niche modelling strategy to investigate migratory movements of insects.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80177661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Fattebert, M. Perrig, B. Naef-Daenzer, M. Grüebler
Equivocal knowledge of the phase-specific drivers of natal dispersal remains a major deficit in understanding causes and consequences of dispersal and thus, spatial dynamics within and between populations. We performed a field experiment combining partial cross-fostering of nestlings and nestling food supplementation in little owls (Athene noctua). This approach disentangled the effect of nestling origin from the effect of the rearing environment on dispersal behaviour, while simultaneously investigating the effect of food availability in the rearing environment. We radio-tracked fledglings to quantify the timing of pre-emigration forays and emigration, foray and transfer duration, and the dispersal distances. Dispersal characteristics of the pre-emigration phase were affected by the rearing environment rather than by the origin of nestlings. In food-poor habitats, supplemented individuals emigrated later than unsupplemented individuals. By contrast, transfer duration and distance were influenced by the birds' origin rather than by their rearing environment. We found no correlation between timing of emigration and transfer duration or distance. We conclude that food supply to the nestlings and other characteristics of the rearing environment modulate the timing of emigration, while innate traits associated with the nestling origin affect the transfer phases after emigration. The dispersal behaviours of juveniles prior and after emigration, therefore, were related to different determinants, and are suggested to form different life-history traits.
{"title":"Experimentally disentangling intrinsic and extrinsic drivers of natal dispersal in a nocturnal raptor","authors":"J. Fattebert, M. Perrig, B. Naef-Daenzer, M. Grüebler","doi":"10.1098/rspb.2019.1537","DOIUrl":"https://doi.org/10.1098/rspb.2019.1537","url":null,"abstract":"Equivocal knowledge of the phase-specific drivers of natal dispersal remains a major deficit in understanding causes and consequences of dispersal and thus, spatial dynamics within and between populations. We performed a field experiment combining partial cross-fostering of nestlings and nestling food supplementation in little owls (Athene noctua). This approach disentangled the effect of nestling origin from the effect of the rearing environment on dispersal behaviour, while simultaneously investigating the effect of food availability in the rearing environment. We radio-tracked fledglings to quantify the timing of pre-emigration forays and emigration, foray and transfer duration, and the dispersal distances. Dispersal characteristics of the pre-emigration phase were affected by the rearing environment rather than by the origin of nestlings. In food-poor habitats, supplemented individuals emigrated later than unsupplemented individuals. By contrast, transfer duration and distance were influenced by the birds' origin rather than by their rearing environment. We found no correlation between timing of emigration and transfer duration or distance. We conclude that food supply to the nestlings and other characteristics of the rearing environment modulate the timing of emigration, while innate traits associated with the nestling origin affect the transfer phases after emigration. The dispersal behaviours of juveniles prior and after emigration, therefore, were related to different determinants, and are suggested to form different life-history traits.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74410271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guille Peguero, J. Sardans, D. Asensio, M. Fernández‐Martínez, A. Gargallo‐Garriga, O. Grau, J. Llusià, O. Margalef, Laura Márquez, R. Ogaya, Ifigenia Urbina, Elodie A. Courtois, C. Stahl, Leandro Van Langenhove, L. Verryckt, Andreas Richter, I. Janssens, J. Peñuelas
Soil fauna is a key control of the decomposition rate of leaf litter, yet its interactions with litter quality and the soil environment remain elusive. We conducted a litter decomposition experiment across different topographic levels within the landscape replicated in two rainforest sites providing natural gradients in soil fertility to test the hypothesis that low nutrient availability in litter and soil increases the strength of fauna control over litter decomposition. We crossed these data with a large dataset of 44 variables characterizing the biotic and abiotic microenvironment of each sampling point and found that microbe-driven carbon (C) and nitrogen (N) losses from leaf litter were 10.1 and 17.9% lower, respectively, in the nutrient-poorest site, but this among-site difference was equalized when meso- and macrofauna had access to the litterbags. Further, on average, soil fauna enhanced the rate of litter decomposition by 22.6%, and this contribution consistently increased as nutrient availability in the microenvironment declined. Our results indicate that nutrient scarcity increases the importance of soil fauna on C and N cycling in tropical rainforests. Further, soil fauna is able to equalize differences in microbial decomposition potential, thus buffering to a remarkable extent nutrient shortages at an ecosystem level.
{"title":"Nutrient scarcity strengthens soil fauna control over leaf litter decomposition in tropical rainforests","authors":"Guille Peguero, J. Sardans, D. Asensio, M. Fernández‐Martínez, A. Gargallo‐Garriga, O. Grau, J. Llusià, O. Margalef, Laura Márquez, R. Ogaya, Ifigenia Urbina, Elodie A. Courtois, C. Stahl, Leandro Van Langenhove, L. Verryckt, Andreas Richter, I. Janssens, J. Peñuelas","doi":"10.1098/rspb.2019.1300","DOIUrl":"https://doi.org/10.1098/rspb.2019.1300","url":null,"abstract":"Soil fauna is a key control of the decomposition rate of leaf litter, yet its interactions with litter quality and the soil environment remain elusive. We conducted a litter decomposition experiment across different topographic levels within the landscape replicated in two rainforest sites providing natural gradients in soil fertility to test the hypothesis that low nutrient availability in litter and soil increases the strength of fauna control over litter decomposition. We crossed these data with a large dataset of 44 variables characterizing the biotic and abiotic microenvironment of each sampling point and found that microbe-driven carbon (C) and nitrogen (N) losses from leaf litter were 10.1 and 17.9% lower, respectively, in the nutrient-poorest site, but this among-site difference was equalized when meso- and macrofauna had access to the litterbags. Further, on average, soil fauna enhanced the rate of litter decomposition by 22.6%, and this contribution consistently increased as nutrient availability in the microenvironment declined. Our results indicate that nutrient scarcity increases the importance of soil fauna on C and N cycling in tropical rainforests. Further, soil fauna is able to equalize differences in microbial decomposition potential, thus buffering to a remarkable extent nutrient shortages at an ecosystem level.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75022530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In an evolutionary context, trusted signals or cues provide individuals with the opportunity to manipulate them to their advantage by deceiving others. The deceived can then respond to the deception by either ignoring the signals or cues or evolving means of deception–detection. If the latter happens, it can result in an arms race between deception and detection. Here, we formally analyse these possibilities in the context of cue-mimicry in prey–predator interactions. We demonstrate that two extrinsic parameters control whether and for how long an arms race continues: the benefits of deception, and the cost of ignoring signals and cues and having an indiscriminate response. As long as the cost of new forms of deception is less than its benefits and the cost of new forms of detection is less than the cost of an indiscriminate response, an arms race results in the perpetual evolution of better forms of detection and deception. When novel forms of deception or detection become too costly to evolve, the population settles on a polymorphic equilibrium involving multiple strategies of deception and honesty, and multiple strategies of detection and trust.
{"title":"A sheep in wolf’s clothing: levels of deceit and detection in the evolution of cue-mimicry","authors":"Shahab Zareyan, S. Otto, C. Hauert","doi":"10.1098/rspb.2019.1425","DOIUrl":"https://doi.org/10.1098/rspb.2019.1425","url":null,"abstract":"In an evolutionary context, trusted signals or cues provide individuals with the opportunity to manipulate them to their advantage by deceiving others. The deceived can then respond to the deception by either ignoring the signals or cues or evolving means of deception–detection. If the latter happens, it can result in an arms race between deception and detection. Here, we formally analyse these possibilities in the context of cue-mimicry in prey–predator interactions. We demonstrate that two extrinsic parameters control whether and for how long an arms race continues: the benefits of deception, and the cost of ignoring signals and cues and having an indiscriminate response. As long as the cost of new forms of deception is less than its benefits and the cost of new forms of detection is less than the cost of an indiscriminate response, an arms race results in the perpetual evolution of better forms of detection and deception. When novel forms of deception or detection become too costly to evolve, the population settles on a polymorphic equilibrium involving multiple strategies of deception and honesty, and multiple strategies of detection and trust.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"281 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80152540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}