The failure of mineral oil‐filled transformers has been involved in numerous fire and explosion incidents during operations. The power industry has developed online dissolved gas analysis (DGA) monitoring systems capable of diagnosing transformer faults continuously. This study has established new test procedures and pass/fail criteria to evaluate the accuracy of online H2 monitors, resulting in the creation of a new approval standard.
{"title":"Testing and approval standard development of online dissolved gas analysis monitors for oil‐filled transformers—Part I hydrogen monitors","authors":"Paul Su, Rajni Madan, Sujit Purushothaman","doi":"10.1002/prs.12636","DOIUrl":"https://doi.org/10.1002/prs.12636","url":null,"abstract":"The failure of mineral oil‐filled transformers has been involved in numerous fire and explosion incidents during operations. The power industry has developed online dissolved gas analysis (DGA) monitoring systems capable of diagnosing transformer faults continuously. This study has established new test procedures and pass/fail criteria to evaluate the accuracy of online H<jats:sub>2</jats:sub> monitors, resulting in the creation of a new approval standard.","PeriodicalId":20680,"journal":{"name":"Process Safety Progress","volume":"106 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
While the process safety principles conduct of operations, operational discipline, and operational readiness, have been a part of risk‐based process safety since the inception, recognizing the need for a formal management system connecting them and optimizing their value is a more recent concept introduced around 2010 with Walk the Line. Conduct of operations is concerned with how work is done in a manufacturing unit to produce consistent results. The philosophy behind Walk the Line is that to successfully produce consistent results, there are elements of leadership identifying the right tools, operators executing tasks correctly, and technical people monitoring results and changing the tools for continuous improvement. Each of these disciplines, management, operational, and engineering should be in place to ensure consistent performance and repeatable results. This paper reflects on the last 10 years of Walk the Line and highlights features of the conduct of operations model that supports a sustainable management system, continuous improvement, and reduction of process safety incidents.
{"title":"Ten years of walk the line","authors":"Jerry Forest","doi":"10.1002/prs.12635","DOIUrl":"https://doi.org/10.1002/prs.12635","url":null,"abstract":"While the process safety principles conduct of operations, operational discipline, and operational readiness, have been a part of risk‐based process safety since the inception, recognizing the need for a formal management system connecting them and optimizing their value is a more recent concept introduced around 2010 with <jats:italic>Walk the Line</jats:italic>. Conduct of operations is concerned with how work is done in a manufacturing unit to produce consistent results. The philosophy behind Walk the Line is that to successfully produce consistent results, there are elements of leadership identifying the right tools, operators executing tasks correctly, and technical people monitoring results and changing the tools for continuous improvement. Each of these disciplines, management, operational, and engineering should be in place to ensure consistent performance and repeatable results. This paper reflects on the last 10 years of Walk the Line and highlights features of the conduct of operations model that supports a sustainable management system, continuous improvement, and reduction of process safety incidents.","PeriodicalId":20680,"journal":{"name":"Process Safety Progress","volume":"24 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Finding articles in Process Safety Progress back issues","authors":"Albert Ness","doi":"10.1002/prs.12633","DOIUrl":"https://doi.org/10.1002/prs.12633","url":null,"abstract":"","PeriodicalId":20680,"journal":{"name":"Process Safety Progress","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141586062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Process safety practices and management systems have been in place for many years and have been widely credited for reductions in major accident risk. However, many organizations today are challenged by inadequate management system performance, resource pressures, and stagnant or declining process safety performance. Systems for managing process safety have not been fully successful in some organizations due to a variety of issues; major, frequent contributors include a lack of senior management commitment and poor safety culture. Senior management commitment and safety culture are inextricably linked, as the quality of an organization's leadership and their commitment will drive or limit the culture. Changes to improve management systems are relatively easy to implement, but extremely difficult to sustain without strong leadership commitment and total line management support. It is not just a case of changing the systems, but also changing the safety culture of the organization. Safety culture tends to be the result of everything that happened or failed to happen and represents the organization's shared values, beliefs, attitudes, and behaviors with respect to safety (occupational safety and process safety). To change the safety culture and sustain the change, leadership must care and explicitly show that they care all of the time. Only then can an organization begin to improve its culture. The first step for any organization is identifying and understanding their existing culture. This paper will present the essential features of a sound safety culture and a methodology for identifying safety culture weaknesses based upon a culture, leadership, and accountability (CLA) review protocol used at different levels of the organization. Other key steps involved in changing and sustaining an improved safety culture will also be addressed.
{"title":"Leading by example: Culture, leadership, and accountability","authors":"Michael P. Broadribb","doi":"10.1002/prs.12634","DOIUrl":"https://doi.org/10.1002/prs.12634","url":null,"abstract":"Process safety practices and management systems have been in place for many years and have been widely credited for reductions in major accident risk. However, many organizations today are challenged by inadequate management system performance, resource pressures, and stagnant or declining process safety performance. Systems for managing process safety have not been fully successful in some organizations due to a variety of issues; major, frequent contributors include a lack of senior management commitment and poor safety culture. Senior management commitment and safety culture are inextricably linked, as the quality of an organization's leadership and their commitment will drive or limit the culture. Changes to improve management systems are relatively easy to implement, but extremely difficult to sustain without strong leadership commitment and total line management support. It is not just a case of changing the systems, but also changing the safety culture of the organization. Safety culture tends to be the result of everything that happened or failed to happen and represents the organization's shared values, beliefs, attitudes, and behaviors with respect to safety (occupational safety and process safety). To change the safety culture and sustain the change, leadership must care and <jats:italic>explicitly</jats:italic> show that they care <jats:italic>all of the time</jats:italic>. Only then can an organization begin to improve its culture. The first step for any organization is identifying and understanding their existing culture. This paper will present the essential features of a sound safety culture and a methodology for identifying safety culture weaknesses based upon a culture, leadership, and accountability (CLA) review protocol used at different levels of the organization. Other key steps involved in changing and sustaining an improved safety culture will also be addressed.","PeriodicalId":20680,"journal":{"name":"Process Safety Progress","volume":"53 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141586063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naima Nehal, Mokhtaria Mekkakia‐Mehdi, Zakia Lounis, Islam H. M. Guetarni, Zoubida Lounis
Hazard studies are essential in the petrochemical industry to ensure safe operations. This article provides an in‐depth analysis of the hazards associated with a vacuum distillation unit furnace. This study aims to identify probable hazard scenarios related to furnace operation, assess the associated risks, and provide prevention and mitigation strategies. A comprehensive strategy was employed to achieve these objectives, combining two analysis methods: HAZard OPerability (HAZOP) and Failure Modes, Effects, and Criticality Analysis (FMECA). This integrated approach enables a comprehensive risk assessment to be carried out and appropriate preventive measures to be taken to maintain safe operations, including renovation work. Then, depending on the results of the two methods, it is essential to constantly evaluate equipment safety, taking into account parameters such as furnace efficiency, tube temperature, and fume temperature. Therefore, a monitoring program has been created in Python, which enables real‐time examination of the furnace's safety with these critical parameters. If safety conditions are compromised, alarms are sent to mitigate risks, particularly in case of a failure. A Bayesian model is also developed to evaluate the algorithm's results and determine renovation and failure case scenarios. This comprehensive approach improves risk assessment's reliability, precision, maintains safe and efficient industrial operations.
{"title":"HAZOP, FMECA, monitoring algorithm, and Bayesian network integrated approach for an exhaustive risk assessment and real‐time safety analysis: Case study","authors":"Naima Nehal, Mokhtaria Mekkakia‐Mehdi, Zakia Lounis, Islam H. M. Guetarni, Zoubida Lounis","doi":"10.1002/prs.12628","DOIUrl":"https://doi.org/10.1002/prs.12628","url":null,"abstract":"Hazard studies are essential in the petrochemical industry to ensure safe operations. This article provides an in‐depth analysis of the hazards associated with a vacuum distillation unit furnace. This study aims to identify probable hazard scenarios related to furnace operation, assess the associated risks, and provide prevention and mitigation strategies. A comprehensive strategy was employed to achieve these objectives, combining two analysis methods: HAZard OPerability (HAZOP) and Failure Modes, Effects, and Criticality Analysis <jats:styled-content style=\"fixed-case\">(FMECA).</jats:styled-content> This integrated approach enables a comprehensive risk assessment to be carried out and appropriate preventive measures to be taken to maintain safe operations, including renovation work. Then, depending on the results of the two methods, it is essential to constantly evaluate equipment safety, taking into account parameters such as furnace efficiency, tube temperature, and fume temperature. Therefore, a monitoring program has been created in Python, which enables real‐time examination of the furnace's safety with these critical parameters. If safety conditions are compromised, alarms are sent to mitigate risks, particularly in case of a failure. A Bayesian model is also developed to evaluate the algorithm's results and determine renovation and failure case scenarios. This comprehensive approach improves risk assessment's reliability, precision, maintains safe and efficient industrial operations.","PeriodicalId":20680,"journal":{"name":"Process Safety Progress","volume":"28 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The OSHA Combustible Dust National Emphasis Program (NEP), recent studies commissioned by the National Fire Protection Association (NFPA) Research Foundation and U.S. Chemical Safety and Hazard Investigation Board (CSB), as well as emphasis by insurance companies have brought more urgency to combustible dust safety. NFPA standards are being revised for consistency and clarity of standards for combustible dust safety. While that is a significant improvement from conditions of past decades, the situation can be improved even more by implementing risk‐based methods to help develop application‐specific explosion protection. Many facilities that handle combustible particulate solids follow prescriptive requirements of applicable NFPA standards, especially for new installations. Decisions are often driven primarily by meeting codes and standards with minimum capital cost. Legacy installations that do not meet current standards typically claim “grandfather” status as the reason for not implementing the current standard requirement or good engineering practice. The goal of this paper is to present a method of adapting the familiar process safety risk matrix to assess likelihood of a deflagration event rather than the overall the risk of a consequence. This method provides an objective basis to assist staff of a legacy facility to make decisions to prioritize capital improvement projects, to follow current good engineering practice, and to stop relying on “grandfather” status. This paper makes the broad, practical assumption that any deflagration event has serious consequences. The magnitude of those consequences may vary based on facility siting, deflagration area of effect, population of personnel in the affected area, or business criticality of affected equipment and structures. Decisions based solely on the likelihood matrix may inadvertently prioritize a more likely, but less consequential, concern over an event that may put multiple people at risk, or have serious commercial implications. Methods such as Hazard and Operability Study (HAZOP), Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA) and Layer of Protection Analysis (LOPA) are useful to more comprehensively understand risks. Flexible, outside‐the‐box thinking in applying safeguards, Independent Protection Layers (IPLs), administrative controls, and facility siting may provide a better solution than merely following prescriptive code without making the effort to fully understand the hazard.
{"title":"Benefits of customizing dust hazard controls to meet your needs","authors":"Edward Gaither","doi":"10.1002/prs.12632","DOIUrl":"https://doi.org/10.1002/prs.12632","url":null,"abstract":"The OSHA Combustible Dust National Emphasis Program (NEP), recent studies commissioned by the National Fire Protection Association (NFPA) Research Foundation and U.S. Chemical Safety and Hazard Investigation Board (CSB), as well as emphasis by insurance companies have brought more urgency to combustible dust safety. NFPA standards are being revised for consistency and clarity of standards for combustible dust safety. While that is a significant improvement from conditions of past decades, the situation can be improved even more by implementing risk‐based methods to help develop application‐specific explosion protection. Many facilities that handle combustible particulate solids follow prescriptive requirements of applicable NFPA standards, especially for new installations. Decisions are often driven primarily by meeting codes and standards with minimum capital cost. Legacy installations that do not meet current standards typically claim “grandfather” status as the reason for not implementing the current standard requirement or good engineering practice. The goal of this paper is to present a method of adapting the familiar process safety risk matrix to assess likelihood of a deflagration event rather than the overall the risk of a consequence. This method provides an objective basis to assist staff of a legacy facility to make decisions to prioritize capital improvement projects, to follow current good engineering practice, and to stop relying on “grandfather” status. This paper makes the broad, practical assumption that any deflagration event has serious consequences. The magnitude of those consequences may vary based on facility siting, deflagration area of effect, population of personnel in the affected area, or business criticality of affected equipment and structures. Decisions based solely on the likelihood matrix may inadvertently prioritize a more likely, but less consequential, concern over an event that may put multiple people at risk, or have serious commercial implications. Methods such as Hazard and Operability Study (HAZOP), Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA) and Layer of Protection Analysis (LOPA) are useful to more comprehensively understand risks. Flexible, outside‐the‐box thinking in applying safeguards, Independent Protection Layers (IPLs), administrative controls, and facility siting may provide a better solution than merely following prescriptive code without making the effort to fully understand the hazard.","PeriodicalId":20680,"journal":{"name":"Process Safety Progress","volume":"8 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To conduct a comprehensive investigation into the nail penetration thermal runaway (TR) characteristics of 16 Ah/5 Ah lithium‐ion batteries (LIBs) and their modules. The study aims to analyze the burst characteristics and examine the variations in TR behavior under specific conditions, with the goal of improving early warning and protection against LIB TR incidents. The research findings demonstrate that mechanical nail penetration can rapidly trigger TR, resulting in the highest temperature 522.3°C within 51.9 s, and the fastest is 20 s. In the case of LIB modules, a secondary temperature rise occurs, exhibiting an increased rate of up to 77%. Notably, when the battery bulges, there is a release of high‐temperature two‐phase heat flow accompanied by a significant discharge of combustible gases. This escalation increases the risk of further explosions. Moreover, the study observes repeated spray fires and the generation of a considerable amount of smoke. Additionally, the study highlights the role of sudden rise in temperature and the release of H2 as early indicators of TR. These findings provide valuable theoretical insights into the characteristics and risks of square soft LIBs, enhance safety measures, and contribute to the development of early warning systems for LIBs.
{"title":"Research on the thermal runaway characteristics and risks of square soft lithium‐ion batteries nail penetration","authors":"Jun Wang, Le Wang, Renming Pan, Xia Zhou","doi":"10.1002/prs.12613","DOIUrl":"https://doi.org/10.1002/prs.12613","url":null,"abstract":"To conduct a comprehensive investigation into the nail penetration thermal runaway (TR) characteristics of 16 Ah/5 Ah lithium‐ion batteries (LIBs) and their modules. The study aims to analyze the burst characteristics and examine the variations in TR behavior under specific conditions, with the goal of improving early warning and protection against LIB TR incidents. The research findings demonstrate that mechanical nail penetration can rapidly trigger TR, resulting in the highest temperature 522.3°C within 51.9 s, and the fastest is 20 s. In the case of LIB modules, a secondary temperature rise occurs, exhibiting an increased rate of up to 77%. Notably, when the battery bulges, there is a release of high‐temperature two‐phase heat flow accompanied by a significant discharge of combustible gases. This escalation increases the risk of further explosions. Moreover, the study observes repeated spray fires and the generation of a considerable amount of smoke. Additionally, the study highlights the role of sudden rise in temperature and the release of H2 as early indicators of TR. These findings provide valuable theoretical insights into the characteristics and risks of square soft LIBs, enhance safety measures, and contribute to the development of early warning systems for LIBs.","PeriodicalId":20680,"journal":{"name":"Process Safety Progress","volume":"209 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a comprehensive overview of the critical process safety considerations inherent in hydrometallurgical metal recovery within the lithium‐ion battery (LiB) recycling process. As hydrometallurgy application in LiB recycling is still in the early stages of development, it is crucial to identify the hazards and provide safety recommendations. Hazards related to hydrometallurgy are identified and categorized in process, toxic, fire, explosion, corrosion, environment, storage, and transport hazards. Risk reduction measures are suggested using the hierarchy of control methodology to eliminate and reduce risks to as low as reasonably practicable (ALARP), based on UK regulatory framework.
{"title":"Safety considerations for hydrometallurgical metal recovery from lithium‐ion batteries","authors":"Sakshi Jain, Seyed Mojtaba Hoseyni, Joan Cordiner","doi":"10.1002/prs.12618","DOIUrl":"https://doi.org/10.1002/prs.12618","url":null,"abstract":"This paper presents a comprehensive overview of the critical process safety considerations inherent in hydrometallurgical metal recovery within the lithium‐ion battery (LiB) recycling process. As hydrometallurgy application in LiB recycling is still in the early stages of development, it is crucial to identify the hazards and provide safety recommendations. Hazards related to hydrometallurgy are identified and categorized in process, toxic, fire, explosion, corrosion, environment, storage, and transport hazards. Risk reduction measures are suggested using the hierarchy of control methodology to eliminate and reduce risks to as low as reasonably practicable (ALARP), based on UK regulatory framework.","PeriodicalId":20680,"journal":{"name":"Process Safety Progress","volume":"41 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}