首页 > 最新文献

Protein Science最新文献

英文 中文
Self-association and multimer formation in AtLEA4-5, a desiccation-induced intrinsically disordered protein from plants. AtLEA4-5(一种来自植物的干燥诱导型本征无序蛋白)的自结合和多聚体形成。
IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 DOI: 10.1002/pro.5192
Paulette Sofía Romero-Pérez, Laura V Martínez-Castro, Alejandro Linares, Inti Arroyo-Mosso, Nuria Sánchez-Puig, Cesar L Cuevas-Velazquez, Shahar Sukenik, Adán Guerrero, Alejandra A Covarrubias

During seed maturation, plants may experience severe desiccation, leading to the accumulation of late embryogenesis abundant (LEA) proteins. These intrinsically disordered proteins also accumulate in plant tissues under water deficit. Functional roles of LEA proteins have been proposed based on in vitro studies, where monomers are considered as the functional units. However, the potential formation of homo-oligomers has been little explored. In this work, we investigated the potential self-association of Arabidopsis thaliana group 4 LEA proteins (AtLEA4) using in vitro and in vivo approaches. LEA4 proteins represent a compelling case of study due to their high conservation throughout the plant kingdom. This protein family is characterized by a conserved N-terminal region, with a high alpha-helix propensity and invitro protective activity, as compared to the highly disordered and low-conserved C-terminal region. Our findings revealed that full-length AtLEA4 proteins oligomerize and that both terminal regions are sufficient for self-association in vitro. However, the ability of both amino and carboxy regions of AtLEA4-5 to self-associate invivo is significantly lower than that of the entire protein. Using high-resolution and quantitative fluorescence microscopy, we were able to disclose the unreported ability of LEA proteins to form high-order oligomers in planta. Additionally, we found that high-order complexes require the simultaneous engagement of both terminal regions, indicating that the entire protein is needed to attain such structural organization. This research provides valuable insights into the self-association of LEA proteins in plants and emphasizes the role of protein oligomer formation.

在种子成熟过程中,植物可能会经历严重的干燥,从而导致胚胎发生后期大量蛋白(LEA)的积累。在缺水情况下,这些内在无序蛋白也会在植物组织中积累。体外研究提出了 LEA 蛋白的功能作用,其中单体被认为是功能单位。然而,对于同源异构体的潜在形成却鲜有研究。在这项工作中,我们采用体外和体内方法研究了拟南芥第 4 组 LEA 蛋白(AtLEA4)潜在的自结合。由于 LEA4 蛋白在整个植物王国中的高度保守性,它们是一个引人注目的研究案例。与高度紊乱和低保守的 C 端区域相比,该蛋白家族的特点是 N 端区域保守,具有高的α-螺旋倾向和体内保护活性。我们的研究结果表明,全长 AtLEA4 蛋白会发生寡聚,而且两个末端区域都足以在体外进行自我结合。然而,AtLEA4-5的氨基区和羧基区在体内自结合的能力明显低于整个蛋白质。利用高分辨率和定量荧光显微镜,我们得以揭示 LEA 蛋白在植物体内形成高阶寡聚体的未报道能力。此外,我们还发现高阶复合体需要两个末端区域同时参与,这表明需要整个蛋白质才能实现这种结构组织。这项研究为了解植物中 LEA 蛋白的自我结合提供了宝贵的见解,并强调了蛋白质寡聚体形成的作用。
{"title":"Self-association and multimer formation in AtLEA4-5, a desiccation-induced intrinsically disordered protein from plants.","authors":"Paulette Sofía Romero-Pérez, Laura V Martínez-Castro, Alejandro Linares, Inti Arroyo-Mosso, Nuria Sánchez-Puig, Cesar L Cuevas-Velazquez, Shahar Sukenik, Adán Guerrero, Alejandra A Covarrubias","doi":"10.1002/pro.5192","DOIUrl":"10.1002/pro.5192","url":null,"abstract":"<p><p>During seed maturation, plants may experience severe desiccation, leading to the accumulation of late embryogenesis abundant (LEA) proteins. These intrinsically disordered proteins also accumulate in plant tissues under water deficit. Functional roles of LEA proteins have been proposed based on in vitro studies, where monomers are considered as the functional units. However, the potential formation of homo-oligomers has been little explored. In this work, we investigated the potential self-association of Arabidopsis thaliana group 4 LEA proteins (AtLEA4) using in vitro and in vivo approaches. LEA4 proteins represent a compelling case of study due to their high conservation throughout the plant kingdom. This protein family is characterized by a conserved N-terminal region, with a high alpha-helix propensity and invitro protective activity, as compared to the highly disordered and low-conserved C-terminal region. Our findings revealed that full-length AtLEA4 proteins oligomerize and that both terminal regions are sufficient for self-association in vitro. However, the ability of both amino and carboxy regions of AtLEA4-5 to self-associate invivo is significantly lower than that of the entire protein. Using high-resolution and quantitative fluorescence microscopy, we were able to disclose the unreported ability of LEA proteins to form high-order oligomers in planta. Additionally, we found that high-order complexes require the simultaneous engagement of both terminal regions, indicating that the entire protein is needed to attain such structural organization. This research provides valuable insights into the self-association of LEA proteins in plants and emphasizes the role of protein oligomer formation.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 11","pages":"e5192"},"PeriodicalIF":4.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11516066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein degradation of antizyme depends on the N-terminal degrons. 抗酶的蛋白质降解取决于 N 端脱胶子。
IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 DOI: 10.1002/pro.5199
Ju-Yi Hsieh, Pui-Ying Leong, Yi-Fang Yang, Yi-Liang Liu, Guang-Yaw Liu, Hui-Chih Hung

Antizyme (AZ) is a regulatory protein that plays a crucial role in modulating the activity of ornithine decarboxylase (ODC), which is the initial and rate-limiting enzyme in the complex pathway of polyamine biosynthesis. AZ facilitates the swift degradation of ODC, thereby modulating the levels of cellular polyamines. This study unveils a new ubiquitin-independent mechanism for AZ degradation, emphasizing the essential role of N-terminal degrons. Contrary to traditional ubiquitin-dependent degradation, our findings reveal that AZ degradation is significantly influenced by its N-terminal region. By conducting a series of experiments, including in vitro degradation assays, cycloheximide chase experiments, differential scanning calorimetry, and measurement of cellular concentrations of polyamines, we demonstrate that N-terminal truncation significantly enhances AZ's stability and facilitates the reduction of polyamine levels by accelerating ODC degradation. The removal of the N-terminal portion of AZ results in a reduced degradation rate and enhanced thermal stability of the protein, leading to a more efficient inhibition of polyamine synthesis. These findings are corroborated by the analysis of AZ isoforms, AZ1, AZ2, and AZ3, which display differential degradation patterns based on the specific N-terminal segments. This substantiates a degradation mechanism driven by an intrinsically disordered N-terminal region acting as a degron, independent of lysine ubiquitination. These results underscore the significant regulatory function of the N-terminal domain in the activity of AZ and the maintenance of polyamine homeostasis.

抗酶(AZ)是一种调节蛋白,在调节鸟氨酸脱羧酶(ODC)的活性方面起着至关重要的作用,而鸟氨酸脱羧酶是多胺生物合成复杂途径中的初始酶和限速酶。AZ 可促进 ODC 的快速降解,从而调节细胞多胺的水平。这项研究揭示了一种新的不依赖泛素的 AZ 降解机制,强调了 N 端脱胶子的重要作用。与传统的泛素依赖性降解相反,我们的研究结果表明,AZ 的降解受其 N 端区域的显著影响。通过体外降解实验、环己亚胺追逐实验、差示扫描量热法和多胺细胞浓度测量等一系列实验,我们证明了 N 端截短可显著增强 AZ 的稳定性,并通过加速 ODC 降解来促进多胺水平的降低。去除 AZ 的 N 端部分可降低降解率,增强蛋白质的热稳定性,从而更有效地抑制多胺的合成。对 AZ 异构体 AZ1、AZ2 和 AZ3 的分析证实了这些发现,它们根据特定的 N 端片段显示出不同的降解模式。这证实了一种独立于赖氨酸泛素化的降解机制,即由作为降解子的内在紊乱 N 端区域驱动的降解。这些结果强调了 N 端结构域在 AZ 活性和维持多胺平衡方面的重要调节功能。
{"title":"Protein degradation of antizyme depends on the N-terminal degrons.","authors":"Ju-Yi Hsieh, Pui-Ying Leong, Yi-Fang Yang, Yi-Liang Liu, Guang-Yaw Liu, Hui-Chih Hung","doi":"10.1002/pro.5199","DOIUrl":"10.1002/pro.5199","url":null,"abstract":"<p><p>Antizyme (AZ) is a regulatory protein that plays a crucial role in modulating the activity of ornithine decarboxylase (ODC), which is the initial and rate-limiting enzyme in the complex pathway of polyamine biosynthesis. AZ facilitates the swift degradation of ODC, thereby modulating the levels of cellular polyamines. This study unveils a new ubiquitin-independent mechanism for AZ degradation, emphasizing the essential role of N-terminal degrons. Contrary to traditional ubiquitin-dependent degradation, our findings reveal that AZ degradation is significantly influenced by its N-terminal region. By conducting a series of experiments, including in vitro degradation assays, cycloheximide chase experiments, differential scanning calorimetry, and measurement of cellular concentrations of polyamines, we demonstrate that N-terminal truncation significantly enhances AZ's stability and facilitates the reduction of polyamine levels by accelerating ODC degradation. The removal of the N-terminal portion of AZ results in a reduced degradation rate and enhanced thermal stability of the protein, leading to a more efficient inhibition of polyamine synthesis. These findings are corroborated by the analysis of AZ isoforms, AZ1, AZ2, and AZ3, which display differential degradation patterns based on the specific N-terminal segments. This substantiates a degradation mechanism driven by an intrinsically disordered N-terminal region acting as a degron, independent of lysine ubiquitination. These results underscore the significant regulatory function of the N-terminal domain in the activity of AZ and the maintenance of polyamine homeostasis.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 11","pages":"e5199"},"PeriodicalIF":4.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unique Fn3-like biosensor in σI/anti-σI factors for regulatory expression of major cellulosomal scaffoldins in Pseudobacteroides cellulosolvens. σI/抗σI因子中独特的Fn3类生物传感器,用于调控假杆菌(Pseudobacteroides cellulosolvens)中主要纤维素体支架蛋白的表达。
IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 DOI: 10.1002/pro.5193
Sheng Dong, Chao Chen, Jie Li, Ya-Jun Liu, Edward A Bayer, Raphael Lamed, Itzhak Mizrahi, Qiu Cui, Yingang Feng

Lignocellulolytic clostridia employ multiple pairs of alternative σ/anti-σ (SigI/RsgI) factors to regulate cellulosomal components for substrate-specific degradation of cellulosic biomass. The current model has proposed that RsgIs use a sensor domain to bind specific extracellular lignocellulosic components and activate cognate SigIs to initiate expression of corresponding cellulosomal enzyme genes, while expression of scaffoldins can be initiated by several different SigIs. Pseudobacteroides cellulosolvens contains the most complex known cellulosome system and the highest number of SigI-RsgI regulons yet discovered. However, the function of many RsgI sensor domains and their relationship with the various enzyme types are not fully understood. Here, we report that RsgI4 from P. cellulosolvens employs a C-terminal module that bears distant similarity to the fibronectin type III (Fn3) domain and serves as the sensor domain. Substrate-binding analysis revealed that the Fn3-like domain of RsgI4 represents a novel carbohydrate-binding module (CBM) that binds to a wide range of polysaccharide types. Structure determination further revealed that the Fn3-like domain belongs to the type B group of CBMs with a predicted concave face for substrate binding. Promoter sequence analysis of cellulosomal genes revealed that SigI4 is responsible for cellulosomal regulation of major scaffoldins rather than enzymes, consistent with the broad substrate specificity of the RsgI4 sensor domain. Notably, scaffoldins are invariably required as cellulosome components regardless of the substrate type. These findings suggest that the intricate cellulosome system of P. cellulosolvens comprises a more elaborate regulation mechanism than other bacteria and thus expands the paradigm of cellulosome regulation.

木质纤维素分解梭菌利用多对备选σ/反σ(SigI/RsgI)因子来调节纤维素体成分,以实现纤维素生物质的特定底物降解。目前的模型认为,RsgIs 利用传感器结构域结合特定的胞外木质纤维素成分,并激活同源的 SigIs,从而启动相应纤维素酶基因的表达,而支架素的表达可由多个不同的 SigIs 启动。纤维素溶文斯假杆菌(Pseudobacteroides cellulosolvens)含有已知最复杂的纤维素体系统,也是目前发现的SigI-RsgI调控子数量最多的假杆菌。然而,许多 RsgI 传感器结构域的功能及其与各种酶的关系尚未完全清楚。在这里,我们报告了来自 P. cellulosolvens 的 RsgI4 采用了一个与纤维粘连蛋白 III 型(Fn3)结构域非常相似的 C 端模块作为传感器结构域。底物结合分析表明,RsgI4 的类 Fn3 结构域代表了一种新型碳水化合物结合模块(CBM),可与多种多糖结合。结构测定进一步显示,Fn3 样结构域属于 CBM 的 B 型组,其预测凹面可用于底物结合。纤维素体基因的启动子序列分析表明,SigI4 负责主要支架素而不是酶的纤维素体调控,这与 RsgI4 传感器结构域的广泛底物特异性相一致。值得注意的是,无论底物类型如何,纤维素体都需要支架蛋白。这些发现表明,纤维素溶文斯菌错综复杂的纤维素体系统包含了比其他细菌更复杂的调控机制,从而拓展了纤维素体调控的范式。
{"title":"Unique Fn3-like biosensor in σ<sup>I</sup>/anti-σ<sup>I</sup> factors for regulatory expression of major cellulosomal scaffoldins in Pseudobacteroides cellulosolvens.","authors":"Sheng Dong, Chao Chen, Jie Li, Ya-Jun Liu, Edward A Bayer, Raphael Lamed, Itzhak Mizrahi, Qiu Cui, Yingang Feng","doi":"10.1002/pro.5193","DOIUrl":"10.1002/pro.5193","url":null,"abstract":"<p><p>Lignocellulolytic clostridia employ multiple pairs of alternative σ/anti-σ (SigI/RsgI) factors to regulate cellulosomal components for substrate-specific degradation of cellulosic biomass. The current model has proposed that RsgIs use a sensor domain to bind specific extracellular lignocellulosic components and activate cognate SigIs to initiate expression of corresponding cellulosomal enzyme genes, while expression of scaffoldins can be initiated by several different SigIs. Pseudobacteroides cellulosolvens contains the most complex known cellulosome system and the highest number of SigI-RsgI regulons yet discovered. However, the function of many RsgI sensor domains and their relationship with the various enzyme types are not fully understood. Here, we report that RsgI4 from P. cellulosolvens employs a C-terminal module that bears distant similarity to the fibronectin type III (Fn3) domain and serves as the sensor domain. Substrate-binding analysis revealed that the Fn3-like domain of RsgI4 represents a novel carbohydrate-binding module (CBM) that binds to a wide range of polysaccharide types. Structure determination further revealed that the Fn3-like domain belongs to the type B group of CBMs with a predicted concave face for substrate binding. Promoter sequence analysis of cellulosomal genes revealed that SigI4 is responsible for cellulosomal regulation of major scaffoldins rather than enzymes, consistent with the broad substrate specificity of the RsgI4 sensor domain. Notably, scaffoldins are invariably required as cellulosome components regardless of the substrate type. These findings suggest that the intricate cellulosome system of P. cellulosolvens comprises a more elaborate regulation mechanism than other bacteria and thus expands the paradigm of cellulosome regulation.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 11","pages":"e5193"},"PeriodicalIF":4.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced cellular death in liver and breast cancer cells by dual BET/BRPF1 inhibitors. BET/BRPF1 双重抑制剂可增强肝癌和乳腺癌细胞的细胞死亡。
IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 DOI: 10.1002/pro.5191
Giulia Cazzanelli, Andrea Dalle Vedove, Nicolò Sbardellati, Luca Valer, Amedeo Caflisch, Graziano Lolli

The acetylpyrrole scaffold is an acetylated lysine mimic that has been previously explored to develop bromodomain inhibitors. When tested on the hepatoma cell line Huh7 and the breast cancer cell line MDA-MB-231, a few compounds in our acetylpyrrole-thiazole library induced peculiar morphological changes, progressively causing cell death at increasing concentrations. Their evaluation on a panel of human bromodomains revealed concurrent inhibition of BRPF1 and BET bromodomains. To dissect the observed cellular effects, the acetylpyrrole derivatives were compared to JQ1 and GSK6853, chemical probes for the bromodomains of BET and BRPF1, respectively. The appearance of neurite-like extrusions, accompanied by βIII-tubulin overexpression, is caused by BET inhibition, with limited effect on cellular viability. Conversely, interference with BRPF1 induces cellular death but not phenotypic alterations. Combined treatment with JQ1 and GSK6853 showed additivity in reducing cellular viability, comparably to the acetylpyrrole-thiazole-based BET/BRPF1 inhibitors. In addition, we determined the crystallographic structures of the BRD4 and BRPF1 bromodomains in complex with the acetylpyrrole-thiazole compounds. The binding modes in the two bromodomains show similar interactions for the acetylpyrrole and different orientations of the moiety that point to the rim of the acetyl-lysine pocket.

乙酰吡咯支架是一种乙酰化赖氨酸模拟物,以前曾被用来开发溴结构域抑制剂。在对肝癌细胞系 Huh7 和乳腺癌细胞系 MDA-MB-231 进行测试时,我们的乙酰基吡咯-噻唑化合物库中的一些化合物诱发了奇特的形态变化,浓度增加时会逐渐导致细胞死亡。在对人类溴化基因组进行评估后发现,这些化合物同时抑制了 BRPF1 和 BET 溴化基因组。为了分析观察到的细胞效应,我们将乙酰吡咯衍生物与 JQ1 和 GSK6853 进行了比较。抑制 BET 会导致神经元样挤压的出现,并伴随着βⅢ-微管蛋白的过度表达,但对细胞活力的影响有限。相反,干扰 BRPF1 会诱导细胞死亡,但不会引起表型改变。JQ1和GSK6853的联合治疗在降低细胞活力方面显示出相加作用,与乙酰吡咯-噻唑类BET/BRPF1抑制剂相当。此外,我们还测定了 BRD4 和 BRPF1 溴基团与乙酰吡咯-噻唑化合物复合物的晶体结构。这两种溴结构域的结合模式显示,乙酰吡咯的相互作用相似,而指向乙酰基-赖氨酸口袋边缘的分子取向不同。
{"title":"Enhanced cellular death in liver and breast cancer cells by dual BET/BRPF1 inhibitors.","authors":"Giulia Cazzanelli, Andrea Dalle Vedove, Nicolò Sbardellati, Luca Valer, Amedeo Caflisch, Graziano Lolli","doi":"10.1002/pro.5191","DOIUrl":"10.1002/pro.5191","url":null,"abstract":"<p><p>The acetylpyrrole scaffold is an acetylated lysine mimic that has been previously explored to develop bromodomain inhibitors. When tested on the hepatoma cell line Huh7 and the breast cancer cell line MDA-MB-231, a few compounds in our acetylpyrrole-thiazole library induced peculiar morphological changes, progressively causing cell death at increasing concentrations. Their evaluation on a panel of human bromodomains revealed concurrent inhibition of BRPF1 and BET bromodomains. To dissect the observed cellular effects, the acetylpyrrole derivatives were compared to JQ1 and GSK6853, chemical probes for the bromodomains of BET and BRPF1, respectively. The appearance of neurite-like extrusions, accompanied by βIII-tubulin overexpression, is caused by BET inhibition, with limited effect on cellular viability. Conversely, interference with BRPF1 induces cellular death but not phenotypic alterations. Combined treatment with JQ1 and GSK6853 showed additivity in reducing cellular viability, comparably to the acetylpyrrole-thiazole-based BET/BRPF1 inhibitors. In addition, we determined the crystallographic structures of the BRD4 and BRPF1 bromodomains in complex with the acetylpyrrole-thiazole compounds. The binding modes in the two bromodomains show similar interactions for the acetylpyrrole and different orientations of the moiety that point to the rim of the acetyl-lysine pocket.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 11","pages":"e5191"},"PeriodicalIF":4.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversity and structural-functional insights of alpha-solenoid proteins. α-类烯醇蛋白的多样性和结构功能见解。
IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 DOI: 10.1002/pro.5189
Paula Nazarena Arrías, Zarifa Osmanli, Estefanía Peralta, Patricio Manuel Chinestrad, Alexander Miguel Monzon, Silvio C E Tosatto

Alpha-solenoids are a significant and diverse subset of structured tandem repeat proteins (STRPs) that are important in various domains of life. This review examines their structural and functional diversity and highlights their role in critical cellular processes such as signaling, apoptosis, and transcriptional regulation. Alpha-solenoids can be classified into three geometric folds: low curvature, high curvature, and corkscrew, as well as eight subfolds: ankyrin repeats; Huntingtin, elongation factor 3, protein phosphatase 2A, and target of rapamycin; armadillo repeats; tetratricopeptide repeats; pentatricopeptide repeats; Pumilio repeats; transcription activator-like; and Sel-1 and Sel-1-like repeats. These subfolds represent distinct protein families with unique structural properties and functions, highlighting the versatility of alpha-solenoids. The review also discusses their association with disease, highlighting their potential as therapeutic targets and their role in protein design. Advances in state-of-the-art structure prediction methods provide new opportunities and challenges in the functional characterization and classification of this kind of fold, emphasizing the need for continued development of methods for their identification and proper data curation and deposition in the main databases.

α-solenoids是结构串联重复蛋白(STRPs)的一个重要且多样化的亚群,在生命的各个领域都很重要。本综述探讨了它们在结构和功能上的多样性,并重点介绍了它们在信号传导、细胞凋亡和转录调控等关键细胞过程中的作用。α-solenoids可分为三种几何褶皱:低曲率、高曲率和开瓶器褶皱,以及八个亚褶皱:ankyrin重复序列;Huntingtin、伸长因子3、蛋白磷酸酶2A和雷帕霉素靶标;犰狳重复序列;四三肽重复序列;五三肽重复序列;Pumilio重复序列;类转录激活因子;以及Sel-1和Sel-1-like重复序列。这些亚结构代表了不同的蛋白质家族,具有独特的结构特性和功能,突显了α-亚磺酸的多样性。综述还讨论了它们与疾病的关系,强调了它们作为治疗靶点的潜力及其在蛋白质设计中的作用。最先进的结构预测方法的进步为这类折叠的功能表征和分类提供了新的机遇和挑战,强调了继续开发其识别方法以及适当的数据整理和存入主要数据库的必要性。
{"title":"Diversity and structural-functional insights of alpha-solenoid proteins.","authors":"Paula Nazarena Arrías, Zarifa Osmanli, Estefanía Peralta, Patricio Manuel Chinestrad, Alexander Miguel Monzon, Silvio C E Tosatto","doi":"10.1002/pro.5189","DOIUrl":"10.1002/pro.5189","url":null,"abstract":"<p><p>Alpha-solenoids are a significant and diverse subset of structured tandem repeat proteins (STRPs) that are important in various domains of life. This review examines their structural and functional diversity and highlights their role in critical cellular processes such as signaling, apoptosis, and transcriptional regulation. Alpha-solenoids can be classified into three geometric folds: low curvature, high curvature, and corkscrew, as well as eight subfolds: ankyrin repeats; Huntingtin, elongation factor 3, protein phosphatase 2A, and target of rapamycin; armadillo repeats; tetratricopeptide repeats; pentatricopeptide repeats; Pumilio repeats; transcription activator-like; and Sel-1 and Sel-1-like repeats. These subfolds represent distinct protein families with unique structural properties and functions, highlighting the versatility of alpha-solenoids. The review also discusses their association with disease, highlighting their potential as therapeutic targets and their role in protein design. Advances in state-of-the-art structure prediction methods provide new opportunities and challenges in the functional characterization and classification of this kind of fold, emphasizing the need for continued development of methods for their identification and proper data curation and deposition in the main databases.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 11","pages":"e5189"},"PeriodicalIF":4.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular and energetic analysis of the interaction and specificity of Maximin 3 with lipid membranes: In vitro and in silico assessments. Maximin 3 与脂质膜相互作用和特异性的分子和能量分析:体外和硅学评估。
IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 DOI: 10.1002/pro.5188
Pablo Luis Hernández-Adame, Brandt Bertrand, Martha Itzel Escamilla-Ruiz, Jaime Ruiz-García, Carlos Munoz-Garay

In this study, the interaction of antimicrobial peptide Maximin 3 (Max3) with three different lipid bilayer models was investigated to gain insight into its mechanism of action and membrane specificity. Bilayer perturbation assays using liposome calcein leakage dose-response curves revealed that Max3 is a selective membrane-active peptide. Dynamic light scattering recordings suggest that the peptide incorporates into the liposomal structure without producing a detergent effect. Langmuir monolayer compression assays confirmed the membrane inserting capacity of the peptide. Attenuated total reflection-Fourier transform infrared spectroscopy showed that the fingerprint signals of lipid phospholipid hydrophilic head groups and hydrophobic acyl chains are altered due to Max3-membrane interaction. On the other hand, all-atom molecular dynamics simulations (MDS) of the initial interaction with the membrane surface corroborated peptide-membrane selectivity. Peptide transmembrane MDS shed light on how the peptide differentially modifies lipid bilayer properties. Molecular mechanics Poisson-Boltzmann surface area calculations revealed a specific electrostatic interaction fingerprint of the peptide for each membrane model with which they were tested. The data generated from the in silico approach could account for some of the differences observed experimentally in the activity and selectivity of Max3.

本研究调查了抗菌肽 Maximin 3(Max3)与三种不同脂质双分子层模型的相互作用,以深入了解其作用机制和膜特异性。利用脂质体钙蓝素泄漏剂量-反应曲线进行的双分子层扰动试验表明,Max3 是一种选择性膜活性肽。动态光散射记录表明,该肽与脂质体结构结合后不会产生去污作用。朗缪尔单层压缩试验证实了多肽的膜插入能力。衰减全反射-傅立叶变换红外光谱显示,由于 Max3 与膜的相互作用,脂质磷脂亲水头基和疏水酰基链的指纹信号发生了改变。另一方面,与膜表面初始相互作用的全原子分子动力学模拟(MDS)证实了多肽的膜选择性。多肽跨膜分子动力学模拟揭示了多肽如何以不同方式改变脂质双分子层的特性。分子力学泊松-玻尔兹曼表面积计算揭示了多肽与每种膜模型测试时的特定静电相互作用指纹。硅学方法产生的数据可以解释实验中观察到的 Max3 活性和选择性的一些差异。
{"title":"Molecular and energetic analysis of the interaction and specificity of Maximin 3 with lipid membranes: In vitro and in silico assessments.","authors":"Pablo Luis Hernández-Adame, Brandt Bertrand, Martha Itzel Escamilla-Ruiz, Jaime Ruiz-García, Carlos Munoz-Garay","doi":"10.1002/pro.5188","DOIUrl":"10.1002/pro.5188","url":null,"abstract":"<p><p>In this study, the interaction of antimicrobial peptide Maximin 3 (Max3) with three different lipid bilayer models was investigated to gain insight into its mechanism of action and membrane specificity. Bilayer perturbation assays using liposome calcein leakage dose-response curves revealed that Max3 is a selective membrane-active peptide. Dynamic light scattering recordings suggest that the peptide incorporates into the liposomal structure without producing a detergent effect. Langmuir monolayer compression assays confirmed the membrane inserting capacity of the peptide. Attenuated total reflection-Fourier transform infrared spectroscopy showed that the fingerprint signals of lipid phospholipid hydrophilic head groups and hydrophobic acyl chains are altered due to Max3-membrane interaction. On the other hand, all-atom molecular dynamics simulations (MDS) of the initial interaction with the membrane surface corroborated peptide-membrane selectivity. Peptide transmembrane MDS shed light on how the peptide differentially modifies lipid bilayer properties. Molecular mechanics Poisson-Boltzmann surface area calculations revealed a specific electrostatic interaction fingerprint of the peptide for each membrane model with which they were tested. The data generated from the in silico approach could account for some of the differences observed experimentally in the activity and selectivity of Max3.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 11","pages":"e5188"},"PeriodicalIF":4.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633330/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gating residues govern ligand unbinding kinetics from the buried cavity in HIF-2α PAS-B. 门控残基控制着配体从 HIF-2α PAS-B 的埋藏腔中解除结合的动力学。
IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 DOI: 10.1002/pro.5198
Marion L Silvestrini, Riccardo Solazzo, Soumendu Boral, Melanie J Cocco, Joseph D Closson, Matteo Masetti, Kevin H Gardner, Lillian T Chong

While transcription factors have been generally perceived as "undruggable," an exception is the HIF-2 hypoxia-inducible transcription factor, which contains an internal cavity that is sufficiently large to accommodate a range of small-molecules, including the therapeutically used inhibitor belzutifan. Given the relatively long ligand residence times of these small molecules and the lack of any experimentally observed pathway connecting the cavity to solvent, there has been great interest in understanding how these drug ligands exit the buried receptor cavity. Here, we focus on the relevant PAS-B domain of hypoxia-inducible factor 2α (HIF-2α) and examine how one such small molecule (THS-017) exits from the buried cavity within this domain on the seconds-timescale using atomistic simulations and ZZ-exchange NMR. To enable the simulations, we applied the weighted ensemble path sampling strategy, which generates continuous pathways for a rare-event process [e.g., ligand (un)binding] with rigorous kinetics in orders of magnitude less computing time compared to conventional simulations. Results reveal the formation of an encounter complex intermediate and two distinct classes of pathways for ligand exit. Based on these pathways, we identified two pairs of conformational gating residues in the receptor: one for the major class (N288 and S304) and another for the minor class (L272 and M309). ZZ-exchange NMR validated the kinetic importance of N288 for ligand unbinding. Our results provide an ideal simulation dataset for rational manipulation of ligand unbinding kinetics.

虽然转录因子通常被认为是 "不可药用的",但 HIF-2 低氧诱导转录因子是个例外,它含有一个足够大的内腔,可以容纳一系列小分子,包括用于治疗的抑制剂 belzutifan。由于这些小分子配体的停留时间相对较长,而且缺乏实验观察到的连接空腔和溶剂的途径,因此人们对了解这些药物配体如何从埋藏的受体空腔中排出非常感兴趣。在这里,我们重点研究了缺氧诱导因子 2α (HIF-2α)的相关 PAS-B 结构域,并利用原子模拟和 ZZ 交换 NMR 研究了一种此类小分子(THS-017)如何在几秒钟的时间内从该结构域的埋藏腔中排出。为了进行模拟,我们采用了加权集合路径采样策略,该策略能为罕见事件过程(如配体(解除)结合)生成连续的路径,并具有严格的动力学特性,与传统模拟相比,计算时间要少几个数量级。结果显示,在配体退出过程中,会形成一个相遇复合物中间体和两类不同的路径。根据这些途径,我们确定了受体中的两对构象门控残基:一对为主要类别(N288 和 S304),另一对为次要类别(L272 和 M309)。ZZ 交换 NMR 验证了 N288 对配体解除结合的动力学重要性。我们的研究结果为配体解除结合动力学的合理操作提供了理想的模拟数据集。
{"title":"Gating residues govern ligand unbinding kinetics from the buried cavity in HIF-2α PAS-B.","authors":"Marion L Silvestrini, Riccardo Solazzo, Soumendu Boral, Melanie J Cocco, Joseph D Closson, Matteo Masetti, Kevin H Gardner, Lillian T Chong","doi":"10.1002/pro.5198","DOIUrl":"10.1002/pro.5198","url":null,"abstract":"<p><p>While transcription factors have been generally perceived as \"undruggable,\" an exception is the HIF-2 hypoxia-inducible transcription factor, which contains an internal cavity that is sufficiently large to accommodate a range of small-molecules, including the therapeutically used inhibitor belzutifan. Given the relatively long ligand residence times of these small molecules and the lack of any experimentally observed pathway connecting the cavity to solvent, there has been great interest in understanding how these drug ligands exit the buried receptor cavity. Here, we focus on the relevant PAS-B domain of hypoxia-inducible factor 2α (HIF-2α) and examine how one such small molecule (THS-017) exits from the buried cavity within this domain on the seconds-timescale using atomistic simulations and ZZ-exchange NMR. To enable the simulations, we applied the weighted ensemble path sampling strategy, which generates continuous pathways for a rare-event process [e.g., ligand (un)binding] with rigorous kinetics in orders of magnitude less computing time compared to conventional simulations. Results reveal the formation of an encounter complex intermediate and two distinct classes of pathways for ligand exit. Based on these pathways, we identified two pairs of conformational gating residues in the receptor: one for the major class (N288 and S304) and another for the minor class (L272 and M309). ZZ-exchange NMR validated the kinetic importance of N288 for ligand unbinding. Our results provide an ideal simulation dataset for rational manipulation of ligand unbinding kinetics.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 11","pages":"e5198"},"PeriodicalIF":4.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11516114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BEAN and HABAS: Polyphyletic insertions in the DNA-directed RNA polymerase. BEAN和HABAS:DNA定向RNA聚合酶中的多态插入。
IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 DOI: 10.1002/pro.5194
Claudia Alvarez-Carreño, Angela T Huynh, Anton S Petrov, Christine Orengo, Loren Dean Williams

The β and β' subunits of the RNA polymerase (RNAP) are large proteins with complex multi-domain architectures that include several insertional domains. Here, we analyze the domain organizations of RNAP-β and RNAP-β' using sequence, experimentally determined structures and AlphaFold structure predictions. We observe that lineage-specific insertional domains in bacterial RNAP-β belong to a group that we call BEAN (broadly embedded annex). We observe that lineage-specific insertional domains in bacterial RNAP-β' belong to a group that we call HABAS (hammerhead/barrel-sandwich hybrid). The BEAN domain has a characteristic three-dimensional structure composed of two square bracket-like elements that are antiparallel relative to each other. The HABAS domain contains a four-stranded open β-sheet with a GD-box-like motif in one of the β-strands and the adjoining loop. The BEAN domain is inserted not only in the bacterial RNAP-β', but also in the archaeal version of universal ribosomal protein L10. The HABAS domain is inserted in several metabolic proteins. The phylogenetic distributions of bacterial lineage-specific insertional domains of β and β' subunits of RNAP follow the Tree of Life. The presence of insertional domains can help establish a relative timeline of events in the evolution of a protein because insertion is inferred to post-date the base domain. We discuss mechanisms that might account for the discovery of homologous insertional domains in non-equivalent locations in bacteria and archaea.

RNA 聚合酶(RNAP)的 β 和 β' 亚基是大型蛋白质,具有复杂的多结构域结构,其中包括多个插入结构域。在这里,我们利用序列、实验测定的结构和 AlphaFold 结构预测分析了 RNAP-β 和 RNAP-β' 的结构域组织。我们观察到,细菌 RNAP-β 中的特异行插入结构域属于我们称之为 BEAN(广义嵌入附件)的一类。我们观察到,细菌 RNAP-β'中的行特异性插入结构域属于我们称之为 HABAS(锤头/桶状三明治混合体)的一类。BEAN 结构域具有特征性的三维结构,由两个方括号状元件组成,这两个元件相互之间是反平行的。HABAS 结构域包含一个四股开放的 β 片层,其中一条 β 链和相邻的环中有一个类似 GD 盒的图案。BEAN 结构域不仅存在于细菌的 RNAP-β'中,也存在于古生物版本的通用核糖体蛋白 L10 中。HABAS 结构域插入了多个代谢蛋白中。细菌 RNAP 的 β 和 β'亚基的特异性插入结构域的系统发育分布与生命之树一致。插入结构域的存在有助于确定蛋白质进化过程中发生事件的相对时间轴,因为插入结构域被推断为晚于基底结构域。我们讨论了在细菌和古细菌的非等同位置发现同源插入结构域的机制。
{"title":"BEAN and HABAS: Polyphyletic insertions in the DNA-directed RNA polymerase.","authors":"Claudia Alvarez-Carreño, Angela T Huynh, Anton S Petrov, Christine Orengo, Loren Dean Williams","doi":"10.1002/pro.5194","DOIUrl":"10.1002/pro.5194","url":null,"abstract":"<p><p>The β and β' subunits of the RNA polymerase (RNAP) are large proteins with complex multi-domain architectures that include several insertional domains. Here, we analyze the domain organizations of RNAP-β and RNAP-β' using sequence, experimentally determined structures and AlphaFold structure predictions. We observe that lineage-specific insertional domains in bacterial RNAP-β belong to a group that we call BEAN (broadly embedded annex). We observe that lineage-specific insertional domains in bacterial RNAP-β' belong to a group that we call HABAS (hammerhead/barrel-sandwich hybrid). The BEAN domain has a characteristic three-dimensional structure composed of two square bracket-like elements that are antiparallel relative to each other. The HABAS domain contains a four-stranded open β-sheet with a GD-box-like motif in one of the β-strands and the adjoining loop. The BEAN domain is inserted not only in the bacterial RNAP-β', but also in the archaeal version of universal ribosomal protein L10. The HABAS domain is inserted in several metabolic proteins. The phylogenetic distributions of bacterial lineage-specific insertional domains of β and β' subunits of RNAP follow the Tree of Life. The presence of insertional domains can help establish a relative timeline of events in the evolution of a protein because insertion is inferred to post-date the base domain. We discuss mechanisms that might account for the discovery of homologous insertional domains in non-equivalent locations in bacteria and archaea.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 11","pages":"e5194"},"PeriodicalIF":4.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515920/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tethered heme domains in a triheme cytochrome allow for increased electron transport distances. 三heme 细胞色素中的系链血红素域可增加电子传输距离。
IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 DOI: 10.1002/pro.5200
Benjamin W Nash, Tomás M Fernandes, Joshua A J Burton, Leonor Morgado, Jessica H van Wonderen, Dimitri A Svistunenko, Marcus J Edwards, Carlos A Salgueiro, Julea N Butt, Thomas A Clarke

Decades of research describe myriad redox enzymes that contain cofactors arranged in tightly packed chains facilitating rapid and controlled intra-protein electron transfer. Many such enzymes participate in extracellular electron transfer (EET), a process which allows microorganisms to conserve energy in anoxic environments by exploiting mineral oxides and other extracellular substrates as terminal electron acceptors. In this work, we describe the properties of the triheme cytochrome PgcA from Geobacter sulfurreducens. PgcA has been shown to play an important role in EET but is unusual in containing three CXXCH heme binding motifs that are separated by repeated (PT)x motifs, suggested to enhance binding to mineral surfaces. Using a combination of structural, electrochemical, and biophysical techniques, we experimentally demonstrate that PgcA adopts numerous conformations stretching as far as 180 Å between the ends of domains I and III, without a tightly packed cofactor chain. Furthermore, we demonstrate a distinct role for its domain III as a mineral reductase that is recharged by domains I and II. These findings show PgcA to be the first of a new class of electron transfer proteins, with redox centers separated by some nanometers but tethered together by flexible linkers, facilitating electron transfer through a tethered diffusion mechanism rather than a fixed, closely packed electron transfer chain.

数十年的研究描述了无数氧化还原酶,这些酶包含的辅助因子排列成紧密的链条,有利于快速和受控的蛋白内电子传递。许多此类酶参与细胞外电子传递(EET),这一过程使微生物能够利用矿物氧化物和其他细胞外底物作为终端电子受体,从而在缺氧环境中保存能量。在这项工作中,我们描述了来自硫化琥珀芽孢杆菌(Geobacter sulfurreducens)的三价细胞色素 PgcA 的特性。PgcA 已被证明在 EET 中发挥了重要作用,但与众不同的是,它含有三个 CXXCH 血红素结合基团,这三个基团被重复的 (PT)x 基团分隔开来,这被认为能增强与矿物表面的结合。我们结合使用了结构、电化学和生物物理技术,通过实验证明了 PgcA 可采用多种构象,在结构域 I 和结构域 III 的末端之间延伸至 180 Å,而没有紧密的辅助因子链。此外,我们还证明了其结构域 III 的独特作用,即作为矿物质还原酶,由结构域 I 和 II 进行还原。这些发现表明,PgcA 是第一种新型电子传递蛋白,其氧化还原中心之间相距约几纳米,但通过柔性连接体拴在一起,通过拴系扩散机制而不是固定、紧密的电子传递链促进电子传递。
{"title":"Tethered heme domains in a triheme cytochrome allow for increased electron transport distances.","authors":"Benjamin W Nash, Tomás M Fernandes, Joshua A J Burton, Leonor Morgado, Jessica H van Wonderen, Dimitri A Svistunenko, Marcus J Edwards, Carlos A Salgueiro, Julea N Butt, Thomas A Clarke","doi":"10.1002/pro.5200","DOIUrl":"10.1002/pro.5200","url":null,"abstract":"<p><p>Decades of research describe myriad redox enzymes that contain cofactors arranged in tightly packed chains facilitating rapid and controlled intra-protein electron transfer. Many such enzymes participate in extracellular electron transfer (EET), a process which allows microorganisms to conserve energy in anoxic environments by exploiting mineral oxides and other extracellular substrates as terminal electron acceptors. In this work, we describe the properties of the triheme cytochrome PgcA from Geobacter sulfurreducens. PgcA has been shown to play an important role in EET but is unusual in containing three CXXCH heme binding motifs that are separated by repeated (PT)<sub>x</sub> motifs, suggested to enhance binding to mineral surfaces. Using a combination of structural, electrochemical, and biophysical techniques, we experimentally demonstrate that PgcA adopts numerous conformations stretching as far as 180 Å between the ends of domains I and III, without a tightly packed cofactor chain. Furthermore, we demonstrate a distinct role for its domain III as a mineral reductase that is recharged by domains I and II. These findings show PgcA to be the first of a new class of electron transfer proteins, with redox centers separated by some nanometers but tethered together by flexible linkers, facilitating electron transfer through a tethered diffusion mechanism rather than a fixed, closely packed electron transfer chain.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 11","pages":"e5200"},"PeriodicalIF":4.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520253/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression and characterization of pantothenate energy-coupling factor transporters as an anti-infective drug target. 作为抗感染药物靶点的泛酸能量偶联因子转运体的表达和特征。
IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 DOI: 10.1002/pro.5195
Atanaz Shams, Spyridon Bousis, Eleonora Diamanti, Walid A M Elgaher, Lucie Zeimetz, Jörg Haupenthal, Dirk J Slotboom, Anna K H Hirsch

This study investigates the potential of energy-coupling factor (ECF) transporters as promising anti-infective targets to combat antimicrobial resistance (AMR). ECF transporters, a subclass of ATP-binding cassette (ABC) transporters, facilitate the uptake of B-vitamins across bacterial membranes by utilizing ATP as an energy source. Vitamins are essential cofactors for bacterial metabolism and growth, and they can either be synthesized de novo or absorbed from the environment. These transporters are considered promising drug targets, underscoring the need for further research to harness their medicinal potential and develop selective inhibitors that block vitamin uptake in bacteria. Herein, we focused on the ECF transporter for pantothenate (vitamin B5) from Streptococcus pneumoniae and the ECF transporter for folate (vitamin B9) from Lactobacillus delbrueckii as a reference protein. We also included the energizing module for pantothenate along with both full transporter complexes. Initially, we transformed and purified the transporters, followed by an assessment of their thermal stability under various buffer composition, pH, and salt concentrations. Additionally, we monitored the melting temperature over six days to confirm their stability for further assays. We then measured the binding affinities of six ECF inhibitors using surface plasmon resonance (SPR) and evaluated their inhibitory effects through in vitro assays, including bacterial growth assay, whole-cell uptake, and transport-activity assays. After determining cytotoxicity in two human cell lines, we established an in vivo infection model using Galleria mellonella larvae to further validate our findings.

本研究探讨了能量偶联因子(ECF)转运体作为抗感染靶点的潜力,以对抗抗菌素耐药性(AMR)。ECF转运体是ATP结合盒(ABC)转运体的一个亚类,它利用ATP作为能量来源,促进细菌膜对B族维生素的吸收。维生素是细菌新陈代谢和生长所必需的辅助因子,它们既可以从头合成,也可以从环境中吸收。这些转运体被认为是很有前景的药物靶点,因此需要进一步研究利用它们的药用潜力,并开发能阻止细菌吸收维生素的选择性抑制剂。在这里,我们重点研究了肺炎链球菌的泛酸(维生素 B5)ECF 转运体和德尔布鲁贝克乳杆菌的叶酸(维生素 B9)ECF 转运体作为参考蛋白。我们还将泛酸盐的活力模块与这两种完整的转运体复合物结合在一起。首先,我们对转运体进行了转化和纯化,然后评估了它们在不同缓冲液成分、pH 值和盐浓度下的热稳定性。此外,我们还对其熔化温度进行了六天的监测,以确认其在进一步检测中的稳定性。然后,我们利用表面等离子体共振(SPR)测量了六种ECF抑制剂的结合亲和力,并通过体外实验(包括细菌生长实验、全细胞吸收实验和转运活性实验)评估了它们的抑制作用。在确定了两种人体细胞系的细胞毒性后,我们利用黑嘴鸥幼虫建立了一个体内感染模型,以进一步验证我们的研究结果。
{"title":"Expression and characterization of pantothenate energy-coupling factor transporters as an anti-infective drug target.","authors":"Atanaz Shams, Spyridon Bousis, Eleonora Diamanti, Walid A M Elgaher, Lucie Zeimetz, Jörg Haupenthal, Dirk J Slotboom, Anna K H Hirsch","doi":"10.1002/pro.5195","DOIUrl":"10.1002/pro.5195","url":null,"abstract":"<p><p>This study investigates the potential of energy-coupling factor (ECF) transporters as promising anti-infective targets to combat antimicrobial resistance (AMR). ECF transporters, a subclass of ATP-binding cassette (ABC) transporters, facilitate the uptake of B-vitamins across bacterial membranes by utilizing ATP as an energy source. Vitamins are essential cofactors for bacterial metabolism and growth, and they can either be synthesized de novo or absorbed from the environment. These transporters are considered promising drug targets, underscoring the need for further research to harness their medicinal potential and develop selective inhibitors that block vitamin uptake in bacteria. Herein, we focused on the ECF transporter for pantothenate (vitamin B5) from Streptococcus pneumoniae and the ECF transporter for folate (vitamin B9) from Lactobacillus delbrueckii as a reference protein. We also included the energizing module for pantothenate along with both full transporter complexes. Initially, we transformed and purified the transporters, followed by an assessment of their thermal stability under various buffer composition, pH, and salt concentrations. Additionally, we monitored the melting temperature over six days to confirm their stability for further assays. We then measured the binding affinities of six ECF inhibitors using surface plasmon resonance (SPR) and evaluated their inhibitory effects through in vitro assays, including bacterial growth assay, whole-cell uptake, and transport-activity assays. After determining cytotoxicity in two human cell lines, we established an in vivo infection model using Galleria mellonella larvae to further validate our findings.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 11","pages":"e5195"},"PeriodicalIF":4.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521937/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Protein Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1