Pub Date : 2024-04-19DOI: 10.1016/j.pscychresns.2024.111822
Xun-Heng Wang, Peng Wu, Lihua Li
Intelligent predictive models for autistic symptoms based on neuroimaging datasets were beneficial for the precise intervention of patients with ASD. The goals of this study were twofold: investigating predictive models for autistic symptoms and discovering the brain connectivity patterns for ASD-related behaviors. To achieve these goals, we obtained a cohort of patients with ASD from the ABIDE project. The autistic symptoms were measured using the Autism Diagnostic Observation Schedule (ADOS). The anatomical MRI datasets were preprocessed using the Freesurfer package, resulting in regional morphological features. For each individual, the interregional morphological network was constructed using a novel feature distance-based method. The predictive models for autistic symptoms were built using the support vector regression (SVR) algorithm with feature selection method. The predicted autistic symptoms (i.e., ADOS social score, ADOS behavior) were significantly correlated to the original measures. The most predictive features for ADOS social scores were located in the bilateral fusiform. The most predictive features for ADOS behavior scores were located in the temporal pole and the lingual gyrus. In summary, the autistic symptoms could be predicted using the interregional morphological connectivity and machine learning. The interregional morphological connectivity could be a potential biomarker for autistic symptoms.
{"title":"Predicting individual autistic symptoms for patients with autism spectrum disorder using interregional morphological connectivity","authors":"Xun-Heng Wang, Peng Wu, Lihua Li","doi":"10.1016/j.pscychresns.2024.111822","DOIUrl":"10.1016/j.pscychresns.2024.111822","url":null,"abstract":"<div><p>Intelligent predictive models for autistic symptoms based on neuroimaging datasets were beneficial for the precise intervention of patients with ASD. The goals of this study were twofold: investigating predictive models for autistic symptoms and discovering the brain connectivity patterns for ASD-related behaviors. To achieve these goals, we obtained a cohort of patients with ASD from the ABIDE project. The autistic symptoms were measured using the Autism Diagnostic Observation Schedule (ADOS). The anatomical MRI datasets were preprocessed using the Freesurfer package, resulting in regional morphological features. For each individual, the interregional morphological network was constructed using a novel feature distance-based method. The predictive models for autistic symptoms were built using the support vector regression (SVR) algorithm with feature selection method. The predicted autistic symptoms (i.e., ADOS social score, ADOS behavior) were significantly correlated to the original measures. The most predictive features for ADOS social scores were located in the bilateral fusiform. The most predictive features for ADOS behavior scores were located in the temporal pole and the lingual gyrus. In summary, the autistic symptoms could be predicted using the interregional morphological connectivity and machine learning. The interregional morphological connectivity could be a potential biomarker for autistic symptoms.</p></div>","PeriodicalId":20776,"journal":{"name":"Psychiatry Research: Neuroimaging","volume":"341 ","pages":"Article 111822"},"PeriodicalIF":2.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140774708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-02DOI: 10.1016/j.pscychresns.2024.111813
Sara de la Salle , Hayley Bowers , Meagan Birmingham , Jennifer L. Phillips , Pierre Blier , Verner Knott
Cognitive deficits in depression are pervasive and include impairments in attention and higher-order functions but the degree to which low-level sensory processes are affected is unclear. The present work examined event-related potential (P50 and N100) features of auditory sensory gating (i.e., the ability to inhibit P50/N100 responses to redundant stimuli) and their relationship to depressive symptoms, including ruminations and dysfunctional attitudes. In 18 patients with major depressive disorder (MDD) and 18 healthy volunteers, auditory sensory gating was measured using a paired-stimulus paradigm yielding ratio (rP50, rN100) and difference (dP50, dN100) gating indices, which reflected amplitude reductions from first (S1) to second (S2) stimulus. Patients with MDD exhibited diminished rP50 and dP50 gating scores and delayed S1-N100 latencies compared to healthy volunteers. These measures were positively associated with ruminative thoughts, negative attitudes and degree of depression. Study findings implicate aberrant sensory processing in depressed patients that is related to severity of maladaptive thinking.
{"title":"Auditory P50 Sensory Gating Alterations in Major Depressive Disorder and their Relationship to Clinical Symptoms","authors":"Sara de la Salle , Hayley Bowers , Meagan Birmingham , Jennifer L. Phillips , Pierre Blier , Verner Knott","doi":"10.1016/j.pscychresns.2024.111813","DOIUrl":"10.1016/j.pscychresns.2024.111813","url":null,"abstract":"<div><p>Cognitive deficits in depression are pervasive and include impairments in attention and higher-order functions but the degree to which low-level sensory processes are affected is unclear. The present work examined event-related potential (P50 and N100) features of auditory sensory gating (i.e., the ability to inhibit P50/N100 responses to redundant stimuli) and their relationship to depressive symptoms, including ruminations and dysfunctional attitudes. In 18 patients with major depressive disorder (MDD) and 18 healthy volunteers, auditory sensory gating was measured using a paired-stimulus paradigm yielding ratio (rP50, rN100) and difference (dP50, dN100) gating indices, which reflected amplitude reductions from first (S1) to second (S2) stimulus. Patients with MDD exhibited diminished rP50 and dP50 gating scores and delayed S1-N100 latencies compared to healthy volunteers. These measures were positively associated with ruminative thoughts, negative attitudes and degree of depression. Study findings implicate aberrant sensory processing in depressed patients that is related to severity of maladaptive thinking.</p></div>","PeriodicalId":20776,"journal":{"name":"Psychiatry Research: Neuroimaging","volume":"341 ","pages":"Article 111813"},"PeriodicalIF":2.3,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140352635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-27DOI: 10.1016/j.pscychresns.2024.111811
Ruifang Cui , Xinyang Hao , Pei Huang , Mengling He , Weiyi Ma , Diankun Gong , Dezhong Yao
Previous studies have shown abnormal long-range temporal correlations in neuronal oscillations among individuals with Major Depressive Disorders, occurring during both resting states and transitions between resting and task states. However, the understanding of this effect in preclinical individuals with depression remains limited. This study investigated the association between temporal correlations of neuronal oscillations and depressive symptoms during resting and task states in preclinical individuals, specifically focusing on male action video gaming experts. Detrended fluctuation analysis (DFA), Lifetimes, and Waitingtimes were employed to explore temporal correlations across long-range and short-range scales. The results indicated widespread changes from the resting state to the task state across all frequency bands and temporal scales. Rest-task DFA changes in the alpha band exhibited a negative correlation with depressive scores at most electrodes. Significant positive correlations between DFA values and depressive scores were observed in the alpha band during the resting state but not in the task state. Similar patterns of results emerged concerning maladaptive negative emotion regulation strategies. Additionally, short-range temporal correlations in the alpha band echoed the DFA results. These findings underscore the state-dependent relationships between temporal correlations of neuronal oscillations and depressive symptoms, as well as maladaptive emotion regulation strategies, in preclinical individuals.
{"title":"Behavioral state-dependent associations between EEG temporal correlations and depressive symptoms","authors":"Ruifang Cui , Xinyang Hao , Pei Huang , Mengling He , Weiyi Ma , Diankun Gong , Dezhong Yao","doi":"10.1016/j.pscychresns.2024.111811","DOIUrl":"10.1016/j.pscychresns.2024.111811","url":null,"abstract":"<div><p>Previous studies have shown abnormal long-range temporal correlations in neuronal oscillations among individuals with Major Depressive Disorders, occurring during both resting states and transitions between resting and task states. However, the understanding of this effect in preclinical individuals with depression remains limited. This study investigated the association between temporal correlations of neuronal oscillations and depressive symptoms during resting and task states in preclinical individuals, specifically focusing on male action video gaming experts. Detrended fluctuation analysis (DFA), Lifetimes, and Waitingtimes were employed to explore temporal correlations across long-range and short-range scales. The results indicated widespread changes from the resting state to the task state across all frequency bands and temporal scales. Rest-task DFA changes in the alpha band exhibited a negative correlation with depressive scores at most electrodes. Significant positive correlations between DFA values and depressive scores were observed in the alpha band during the resting state but not in the task state. Similar patterns of results emerged concerning maladaptive negative emotion regulation strategies. Additionally, short-range temporal correlations in the alpha band echoed the DFA results. These findings underscore the state-dependent relationships between temporal correlations of neuronal oscillations and depressive symptoms, as well as maladaptive emotion regulation strategies, in preclinical individuals.</p></div>","PeriodicalId":20776,"journal":{"name":"Psychiatry Research: Neuroimaging","volume":"341 ","pages":"Article 111811"},"PeriodicalIF":2.3,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140403324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-26DOI: 10.1016/j.pscychresns.2024.111812
David H. Rosmarin , Poornima Kumar , Caroline C. Kaufman , Mia Drury , David Harper , Brent P. Forester
In this study, 32 older adults with and without mood disorders completed resting-state functional Magnetic Resonance Imaging and measures of demographics, spirituality/religion, positive and negative religious coping, and depression. Group Independent Component Analysis identified and selected three a priori resting state networks [cingulo-opercular salience (cSN), central executive (CEN) and Default Mode Networks (DMN)] within the Triple Network Mode. We investigated associations of religious coping with within- and between-network connectivity, controlling for age. Insular connectivity within the cSN was associated with negative religious coping. Religious coping was associated with anti-correlation between the DMN and CEN even when controlling for depression.
{"title":"Neurobiological correlates of religious coping among older adults with and without mood disorders: An exploratory study","authors":"David H. Rosmarin , Poornima Kumar , Caroline C. Kaufman , Mia Drury , David Harper , Brent P. Forester","doi":"10.1016/j.pscychresns.2024.111812","DOIUrl":"10.1016/j.pscychresns.2024.111812","url":null,"abstract":"<div><p>In this study, 32 older adults with and without mood disorders completed resting-state functional Magnetic Resonance Imaging and measures of demographics, spirituality/religion, positive and negative religious coping, and depression. Group Independent Component Analysis identified and selected three <em>a priori</em> resting state networks [cingulo-opercular salience (cSN), central executive (CEN) and Default Mode Networks (DMN)] within the Triple Network Mode. We investigated associations of religious coping with within- and between-network connectivity, controlling for age. Insular connectivity within the cSN was associated with negative religious coping. Religious coping was associated with anti-correlation between the DMN and CEN even when controlling for depression.</p></div>","PeriodicalId":20776,"journal":{"name":"Psychiatry Research: Neuroimaging","volume":"341 ","pages":"Article 111812"},"PeriodicalIF":2.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140406788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-26DOI: 10.1016/j.pscychresns.2024.111810
Yujie Tong , Qiwei Wang , Xiao Wang , Yuxian Xiang , Long Cheng , Xiaodong Hu , Yun Chen , Luyao Huo , Yong Xu , Sha Liu
Late-life depression is one of the most damaging mental illnesses, disrupting the normal lives of older people by causing chronic illness and cognitive impairment. Patients with late-life depression, accompanied by changes in appetite, insomnia, fatigue and guilt, are more likely to experience irritability, anxiety and somatic symptoms. It increases the risk of suicide and dementia and is a major challenge for the public health systems. The current clinical assessment, identification and effectiveness assessment of late-life depression are primarily based on history taking, mental status examination and scale scoring, which lack subjectivity and precision. Functional near-infrared spectroscopy is a rapidly developing optical imaging technology that objectively reflects the oxygenation of hemoglobin in different cerebral regions during different tasks and assesses the functional status of the cerebral cortex. This article presents a comprehensive review of the assessment of functional near-infrared spectroscopy technology in assessing depressive symptoms, social functioning, and cognitive functioning in patients with late-life depression. The use of functional near-infrared spectroscopy provides greater insight into the neurobiological mechanisms underlying depression and helps to assess these three aspects of functionality in depressed patients. In addition, the study discusses the limitations of previous research and explores potential advances in the field.
{"title":"A scoping review of functional near-infrared spectroscopy biomarkers in late-life depression: Depressive symptoms, cognitive functioning, and social functioning","authors":"Yujie Tong , Qiwei Wang , Xiao Wang , Yuxian Xiang , Long Cheng , Xiaodong Hu , Yun Chen , Luyao Huo , Yong Xu , Sha Liu","doi":"10.1016/j.pscychresns.2024.111810","DOIUrl":"https://doi.org/10.1016/j.pscychresns.2024.111810","url":null,"abstract":"<div><p>Late-life depression is one of the most damaging mental illnesses, disrupting the normal lives of older people by causing chronic illness and cognitive impairment. Patients with late-life depression, accompanied by changes in appetite, insomnia, fatigue and guilt, are more likely to experience irritability, anxiety and somatic symptoms. It increases the risk of suicide and dementia and is a major challenge for the public health systems. The current clinical assessment, identification and effectiveness assessment of late-life depression are primarily based on history taking, mental status examination and scale scoring, which lack subjectivity and precision. Functional near-infrared spectroscopy is a rapidly developing optical imaging technology that objectively reflects the oxygenation of hemoglobin in different cerebral regions during different tasks and assesses the functional status of the cerebral cortex. This article presents a comprehensive review of the assessment of functional near-infrared spectroscopy technology in assessing depressive symptoms, social functioning, and cognitive functioning in patients with late-life depression. The use of functional near-infrared spectroscopy provides greater insight into the neurobiological mechanisms underlying depression and helps to assess these three aspects of functionality in depressed patients. In addition, the study discusses the limitations of previous research and explores potential advances in the field.</p></div>","PeriodicalId":20776,"journal":{"name":"Psychiatry Research: Neuroimaging","volume":"341 ","pages":"Article 111810"},"PeriodicalIF":2.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140330792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-23DOI: 10.1016/j.pscychresns.2024.111809
Michael Amlung , Emma Marsden , Tegan Hargreaves , Lawrence H. Sweet , James G. Murphy , James MacKillop
Alcohol use disorder is associated with overvaluation of alcohol relative to other rewards, in part due to dynamic increases in value in response to alcohol-related cues. In a neuroeconomic framework, alcohol cues increase behavioral economic demand for alcohol, but the neural correlates these cue effects are unknown. This functional magnetic resonance imaging study combined a neuroeconomic alcohol purchase task with an alcohol cue exposure in 72 heavy drinkers with established sensitivity to alcohol cues (51 % female; mean age=33.74). Participants reported how many drinks they would consume from $0-$80/drink following exposure to neutral and alcohol images in a fixed order. Participants purchased significantly more drinks in the alcohol compared to the neutral condition, which was also evident for demand indices (i.e., intensity, breakpoint, Omax, elasticity; ps<0.001; ds=0.46–0.92). Alcohol purchase decisions were associated with activation in rostral middle and medial frontal gyri, anterior insula, posterior parietal cortex, and dorsal striatum, among other regions. Activation was lower across regions in the alcohol relative to neutral cue condition, potentially due to greater automaticity of choices in the presence of alcohol cues or attenuation of responses due to fixed cue order. These results contribute to growing literature using neuroeconomics to understand alcohol misuse and provide a foundation for future research investigating decision-making effects of environmental alcohol triggers.
{"title":"Neural correlates of increased alcohol demand following alcohol cue exposure in adult heavy drinkers","authors":"Michael Amlung , Emma Marsden , Tegan Hargreaves , Lawrence H. Sweet , James G. Murphy , James MacKillop","doi":"10.1016/j.pscychresns.2024.111809","DOIUrl":"10.1016/j.pscychresns.2024.111809","url":null,"abstract":"<div><p>Alcohol use disorder is associated with overvaluation of alcohol relative to other rewards, in part due to dynamic increases in value in response to alcohol-related cues. In a neuroeconomic framework, alcohol cues increase behavioral economic demand for alcohol, but the neural correlates these cue effects are unknown. This functional magnetic resonance imaging study combined a neuroeconomic alcohol purchase task with an alcohol cue exposure in 72 heavy drinkers with established sensitivity to alcohol cues (51 % female; mean age=33.74). Participants reported how many drinks they would consume from $0-$80/drink following exposure to neutral and alcohol images in a fixed order. Participants purchased significantly more drinks in the alcohol compared to the neutral condition, which was also evident for demand indices (i.e., intensity, breakpoint, Omax, elasticity; <em>p</em>s<0.001; <em>d</em>s=0.46–0.92). Alcohol purchase decisions were associated with activation in rostral middle and medial frontal gyri, anterior insula, posterior parietal cortex, and dorsal striatum, among other regions. Activation was lower across regions in the alcohol relative to neutral cue condition, potentially due to greater automaticity of choices in the presence of alcohol cues or attenuation of responses due to fixed cue order. These results contribute to growing literature using neuroeconomics to understand alcohol misuse and provide a foundation for future research investigating decision-making effects of environmental alcohol triggers.</p></div>","PeriodicalId":20776,"journal":{"name":"Psychiatry Research: Neuroimaging","volume":"340 ","pages":"Article 111809"},"PeriodicalIF":2.3,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140210779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-13DOI: 10.1016/j.pscychresns.2024.111792
Jing Qiu , Weiguo Gu , Yuan Zhang , Lei Wang , Junkang Shen
We investigated the neuroimaging changes and clinical efficacy of repetitive transcranial magnetic stimulation (rTMS) combined with antidepressants in major depressive disorder (MDD) patients. We scanned 35 patients with MDD and 27 healthy controls (HC) with resting-state functional magnetic resonance imaging (fMRI) before and after treatment. We analyzed amplitude of low-frequency fluctuation (ALFF) and the correlation with clinical variables. The rate of significant efficacy after treatment was higher in the combination treatment group than in the antidepressant group, although not statistically significant. At baseline, ALFF increased in the left middle temporal, brain stem, and left cerebellum and decreased in the right anterior cingulate (ACC), right orbital frontal cortex (OFC), and right caudate. ALFF increased in the left fusiform and decreased in the right lingual gyrus, left middle occipital gyrus, and left superior occipital gyrus after antidepressants. ALFF increased in the right ACC, right OFC, and right rectus after combination treatment. ALFF changes in the right ACC/OFC were negatively correlated with HAMD changes. After treatment, abnormal activity in some brain regions normalized, but these regions differed between the two treatment groups. rTMS combined with antidepressants therapy may improve MDD symptoms by improving neuronal activity levels in the right ACC and right OFC.
{"title":"Alterations of the amplitude of low-frequency fluctuation induced by repetitive transcranial magnetic stimulation combined with antidepressants treatment for major depressive disorder","authors":"Jing Qiu , Weiguo Gu , Yuan Zhang , Lei Wang , Junkang Shen","doi":"10.1016/j.pscychresns.2024.111792","DOIUrl":"https://doi.org/10.1016/j.pscychresns.2024.111792","url":null,"abstract":"<div><p>We investigated the neuroimaging changes and clinical efficacy of repetitive transcranial magnetic stimulation (rTMS) combined with antidepressants in major depressive disorder (MDD) patients. We scanned 35 patients with MDD and 27 healthy controls (HC) with resting-state functional magnetic resonance imaging (fMRI) before and after treatment. We analyzed amplitude of low-frequency fluctuation (ALFF) and the correlation with clinical variables. The rate of significant efficacy after treatment was higher in the combination treatment group than in the antidepressant group, although not statistically significant. At baseline, ALFF increased in the left middle temporal, brain stem, and left cerebellum and decreased in the right anterior cingulate (ACC), right orbital frontal cortex (OFC), and right caudate. ALFF increased in the left fusiform and decreased in the right lingual gyrus, left middle occipital gyrus, and left superior occipital gyrus after antidepressants. ALFF increased in the right ACC, right OFC, and right rectus after combination treatment. ALFF changes in the right ACC/OFC were negatively correlated with HAMD changes. After treatment, abnormal activity in some brain regions normalized, but these regions differed between the two treatment groups. rTMS combined with antidepressants therapy may improve MDD symptoms by improving neuronal activity levels in the right ACC and right OFC.</p></div>","PeriodicalId":20776,"journal":{"name":"Psychiatry Research: Neuroimaging","volume":"340 ","pages":"Article 111792"},"PeriodicalIF":2.3,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140113982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.1016/j.pscychresns.2024.111808
Laila Noor , Jonas Hoffmann , Tina Meller , Christian Gaser , Igor Nenadić
Borderline personality disorder (BPD) is characterised by structural and functional brain alterations. Yet, there is little data on functional connectivity (FC) across different levels of brain networks and parameters. In this study, we applied a multi-level approach to analyse abnormal functional connectivity. We analysed resting-state functional magnetic resonance imaging (fMRI) data sets of 69 subjects: 17 female BPD patients and 51 age-matched psychiatrically healthy female controls. fMRI was analysed using CONN toolbox including: a) seed-based FC analysis of amygdala connectivity, b) independent component analysis (ICA) based network analysis of intra- and inter-network FC of selected resting-state networks (DMN, SN, FPN), as well as c) graph-theory based measures of network-level characteristics. We show group-level seed FC differences with higher amygdala to contralateral (superior) occipital cortex connectivity in BPD, which correlated with schema-therapy derived measures of symptoms/traits across the entire cohort. While there was no significant group effect on DMN, SN, or FPN intra-network or inter-network FC, we show a significant group difference for local efficiency and cluster coefficient for a DMN-linked cerebellum cluster. Our findings demonstrate BPD-linked changes in FC across multiple levels of observation, which supports a multi-level analysis for future studies to consider different aspects of functional connectome alterations.
边缘型人格障碍(BPD)的特点是大脑结构和功能发生改变。然而,关于不同层次大脑网络和参数的功能连接(FC)的数据却很少。在这项研究中,我们采用了一种多层次的方法来分析异常功能连接。我们分析了 69 名受试者的静息态功能磁共振成像(fMRI)数据集:利用 CONN 工具箱对 fMRI 进行了分析,其中包括:a) 基于种子的杏仁核连通性 FC 分析;b) 基于独立成分分析 (ICA) 的选定静息态网络(DMN、SN、FPN)的网络内和网络间 FC 分析;以及 c) 基于图论的网络级特征测量。我们发现,在 BPD 患者中,杏仁核与对侧(上部)枕叶皮层的连通性较高,这与整个群体中症状/特征的图式疗法衍生测量结果相关。虽然 DMN、SN 或 FPN 网络内或网络间 FC 没有明显的群体效应,但我们发现 DMN 链接的小脑集群的局部效率和集群系数存在明显的群体差异。我们的研究结果表明,BPD 与多层次观察中的 FC 变化有关,这支持在未来的研究中进行多层次分析,以考虑功能连接组改变的不同方面。
{"title":"Amygdala functional connectivity in borderline personality disorder","authors":"Laila Noor , Jonas Hoffmann , Tina Meller , Christian Gaser , Igor Nenadić","doi":"10.1016/j.pscychresns.2024.111808","DOIUrl":"10.1016/j.pscychresns.2024.111808","url":null,"abstract":"<div><p>Borderline personality disorder (BPD) is characterised by structural and functional brain alterations. Yet, there is little data on functional connectivity (FC) across different levels of brain networks and parameters. In this study, we applied a multi-level approach to analyse abnormal functional connectivity. We analysed resting-state functional magnetic resonance imaging (fMRI) data sets of 69 subjects: 17 female BPD patients and 51 age-matched psychiatrically healthy female controls. fMRI was analysed using CONN toolbox including: a) seed-based FC analysis of amygdala connectivity, b) independent component analysis (ICA) based network analysis of intra- and inter-network FC of selected resting-state networks (DMN, SN, FPN), as well as c) graph-theory based measures of network-level characteristics. We show group-level seed FC differences with higher amygdala to contralateral (superior) occipital cortex connectivity in BPD, which correlated with schema-therapy derived measures of symptoms/traits across the entire cohort. While there was no significant group effect on DMN, SN, or FPN intra-network or inter-network FC, we show a significant group difference for local efficiency and cluster coefficient for a DMN-linked cerebellum cluster. Our findings demonstrate BPD-linked changes in FC across multiple levels of observation, which supports a multi-level analysis for future studies to consider different aspects of functional connectome alterations.</p></div>","PeriodicalId":20776,"journal":{"name":"Psychiatry Research: Neuroimaging","volume":"340 ","pages":"Article 111808"},"PeriodicalIF":2.3,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925492724000313/pdfft?md5=aff0d19967b4bfdd0095174959193822&pid=1-s2.0-S0925492724000313-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140126368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-07DOI: 10.1016/j.pscychresns.2024.111806
Akila Weerasekera , Adrian Ion-Mărgineanu , Garry P. Nolan , Maria Mody
Autism spectrum disorder (ASD) and schizophrenia (SZ) are neuropsychiatric disorders that overlap in symptoms associated with social-cognitive impairment. Alterations of the cingulate cortex, subcortical, medial-temporal, and orbitofrontal structures are frequently reported in both disorders. In this study, we examined white-matter connectivity between these structures in adults with ASD and SZ patients compared with their respective neurotypical controls and indirectly with each other, using probabilistic and local DTI tractography. This exploratory study utilized publicly available neuroimaging databases, of adults with ASD (ABIDE II; n = 28) and SZ (COBRE; n = 38), age-gender matched neurotypicals (NT) and associated phenotypic data. Tractography was performed using Freesurfer and MRtrix software, and diffusion metrics of white-matter tracts between cingulate-, orbitofrontal- cortices, subcortical structures, parahippocampal, entorhinal cortex were assessed. In ASD, atypical diffusivity parameters were found in the isthmus cingulate and parahippocampal connectivity to subcortical and rostral-anterior cingulate, which were also associated with IQ and social skills (SRS). In contrast, atypical diffusivity parameters were observed between the medial-orbitofrontal cortex and subcortical structures in SZ, and were associated with executive function (i.e., IQ, processing speed) and emotional regulation. Overall, the results suggest that defects in the isthmus cingulate, medial-orbitofrontal, and striato-limbic white matter connectivity may help unravel the neural underpinnings of executive and social-emotional dysfunction at the core of neuropsychiatric disorders.
{"title":"Subcortical-cortical white matter connectivity in adults with autism spectrum disorder and schizophrenia patients","authors":"Akila Weerasekera , Adrian Ion-Mărgineanu , Garry P. Nolan , Maria Mody","doi":"10.1016/j.pscychresns.2024.111806","DOIUrl":"10.1016/j.pscychresns.2024.111806","url":null,"abstract":"<div><p>Autism spectrum disorder (ASD) and schizophrenia (SZ) are neuropsychiatric disorders that overlap in symptoms associated with social-cognitive impairment. Alterations of the cingulate cortex, subcortical, medial-temporal, and orbitofrontal structures are frequently reported in both disorders. In this study, we examined white-matter connectivity between these structures in adults with ASD and SZ patients compared with their respective neurotypical controls and indirectly with each other, using probabilistic and local DTI tractography. This exploratory study utilized publicly available neuroimaging databases, of adults with ASD (ABIDE II; <em>n</em> = 28) and SZ (COBRE; <em>n</em> = 38), age-gender matched neurotypicals (NT) and associated phenotypic data. Tractography was performed using Freesurfer and MRtrix software, and diffusion metrics of white-matter tracts between cingulate-, orbitofrontal- cortices, subcortical structures, parahippocampal, entorhinal cortex were assessed. In ASD, atypical diffusivity parameters were found in the isthmus cingulate and parahippocampal connectivity to subcortical and rostral-anterior cingulate, which were also associated with IQ and social skills (SRS). In contrast, atypical diffusivity parameters were observed between the medial-orbitofrontal cortex and subcortical structures in SZ, and were associated with executive function (i.e., IQ, processing speed) and emotional regulation. Overall, the results suggest that defects in the isthmus cingulate, medial-orbitofrontal, and striato-limbic white matter connectivity may help unravel the neural underpinnings of executive and social-emotional dysfunction at the core of neuropsychiatric disorders.</p></div>","PeriodicalId":20776,"journal":{"name":"Psychiatry Research: Neuroimaging","volume":"340 ","pages":"Article 111806"},"PeriodicalIF":2.3,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925492724000295/pdfft?md5=fc1b608922a1164fef799a797ac86983&pid=1-s2.0-S0925492724000295-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140077588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-05DOI: 10.1016/j.pscychresns.2024.111807
Seowon Hong , Yunjeong Choi , Mun Bae Lee , Hak Young Rhee , Soonchan Park , Chang-Woo Ryu , Ah Rang Cho , Oh In Kwon , Geon-Ho Jahng
The objectives of this study were to investigate how the extra-neurite conductivity (EC) and intra-neurite conductivity (IC) were reflected in Alzheimer's disease (AD) patients compared with old cognitively normal (CN) people and patients with amnestic mild cognitive impairment (MCI) and to evaluate the association between those conductivity values and cognitive decline. To do this, high-frequency conductivity (HFC) at the Larmor frequency was obtained using MRI-based electrical property tomography (MREPT) and was decomposed into EC and IC using information of multi-shell multi-gradient direction diffusion tensor images. This prospective single-center study included 20 patients with mild or moderate AD, 25 patients with amnestic MCI, and 21 old CN participants. After decomposing EC and IC from HFC for all participants, we performed voxel-based and regions-of-interest analyses to compare conductivity between the three participant groups and to evaluate the association with either age or the Mini-Mental State Examination (MMSE) scores. We found increased EC in AD compared to CN and MCI. EC was significantly negatively associated with MMSE scores in the insula, and middle temporal gyrus. EC might be used as an imaging biomarker for helping to monitor cognitive function.
{"title":"Increased extra-neurite conductivity of brain in patients with Alzheimer's disease: A pilot study","authors":"Seowon Hong , Yunjeong Choi , Mun Bae Lee , Hak Young Rhee , Soonchan Park , Chang-Woo Ryu , Ah Rang Cho , Oh In Kwon , Geon-Ho Jahng","doi":"10.1016/j.pscychresns.2024.111807","DOIUrl":"10.1016/j.pscychresns.2024.111807","url":null,"abstract":"<div><p>The objectives of this study were to investigate how the extra-neurite conductivity (EC) and intra-neurite conductivity (IC) were reflected in Alzheimer's disease (AD) patients compared with old cognitively normal (CN) people and patients with amnestic mild cognitive impairment (MCI) and to evaluate the association between those conductivity values and cognitive decline. To do this, high-frequency conductivity (HFC) at the Larmor frequency was obtained using MRI-based electrical property tomography (MREPT) and was decomposed into EC and IC using information of multi-shell multi-gradient direction diffusion tensor images. This prospective single-center study included 20 patients with mild or moderate AD, 25 patients with amnestic MCI, and 21 old CN participants. After decomposing EC and IC from HFC for all participants, we performed voxel-based and regions-of-interest analyses to compare conductivity between the three participant groups and to evaluate the association with either age or the Mini-Mental State Examination (MMSE) scores. We found increased EC in AD compared to CN and MCI. EC was significantly negatively associated with MMSE scores in the insula, and middle temporal gyrus. EC might be used as an imaging biomarker for helping to monitor cognitive function.</p></div>","PeriodicalId":20776,"journal":{"name":"Psychiatry Research: Neuroimaging","volume":"340 ","pages":"Article 111807"},"PeriodicalIF":2.3,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925492724000301/pdfft?md5=518d5f0aa2af288abb6519d574447a97&pid=1-s2.0-S0925492724000301-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140079303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}