Pub Date : 2025-01-08DOI: 10.1088/2058-9565/ad9ed4
Luca Razzoli, Giulia Gemme, Ilia Khomchenko, Maura Sassetti, Henni Ouerdane, Dario Ferraro and Giuliano Benenti
We introduce a cyclic quantum battery QB model, based on an interacting bipartite system, weakly coupled to a thermal bath. The working cycle of the battery consists of four strokes: system thermalization, disconnection of subsystems, ergotropy extraction, and reconnection. The thermal bath acts as a charger in the thermalization stroke, while ergotropy extraction is possible because the ensuing thermal state is no longer passive after the disconnection stroke. Focusing on the case of two interacting qubits, we show that phase coherence, in the presence of non-trivial correlations between the qubits, can be exploited to reach working regimes with efficiency higher than 50% while providing finite ergotropy. Our protocol is illustrated through a simple and feasible circuit model of a cyclic superconducting QB. Furthermore, we simulate the considered cycle on superconducting IBM quantum machines. The good agreement between the theoretical and simulated results strongly suggests that our scheme for cyclic QBs can be successfully realized in superconducting quantum hardware.
{"title":"Cyclic solid-state quantum battery: thermodynamic characterization and quantum hardware simulation","authors":"Luca Razzoli, Giulia Gemme, Ilia Khomchenko, Maura Sassetti, Henni Ouerdane, Dario Ferraro and Giuliano Benenti","doi":"10.1088/2058-9565/ad9ed4","DOIUrl":"https://doi.org/10.1088/2058-9565/ad9ed4","url":null,"abstract":"We introduce a cyclic quantum battery QB model, based on an interacting bipartite system, weakly coupled to a thermal bath. The working cycle of the battery consists of four strokes: system thermalization, disconnection of subsystems, ergotropy extraction, and reconnection. The thermal bath acts as a charger in the thermalization stroke, while ergotropy extraction is possible because the ensuing thermal state is no longer passive after the disconnection stroke. Focusing on the case of two interacting qubits, we show that phase coherence, in the presence of non-trivial correlations between the qubits, can be exploited to reach working regimes with efficiency higher than 50% while providing finite ergotropy. Our protocol is illustrated through a simple and feasible circuit model of a cyclic superconducting QB. Furthermore, we simulate the considered cycle on superconducting IBM quantum machines. The good agreement between the theoretical and simulated results strongly suggests that our scheme for cyclic QBs can be successfully realized in superconducting quantum hardware.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"80 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1088/2058-9565/ada2b7
Ruiqi Zhang and Zhaohui Wei
Certifying entanglement for unknown quantum states experimentally is a fundamental problem in quantum computing and quantum physics. Because of being easy to implement, a most popular approach for this problem in modern quantum experiments is detecting target quantum states with fidelity-based entanglement witnesses. Specifically, if the fidelity between a target state and an entangled pure state exceeds a certain value, the target state can be guaranteed to be entangled. Recently, however, it has been realized that there exist so-called unfaithful quantum states, which can be entangled, but their entanglement cannot be certified by any fidelity-based entanglement witnesses. In this paper, by specific examples, we show that if one makes a slight modification to fidelity-based entanglement witnesses by combining multiple fidelities together, it is still possible to certify entanglement for unfaithful quantum states with this popular technique. Particularly, we will analyze the mathematical structure of the modified entanglement witnesses, and propose an algorithm that can search for the optimal designs for them.
{"title":"Detecting unfaithful entanglement by multiple fidelities","authors":"Ruiqi Zhang and Zhaohui Wei","doi":"10.1088/2058-9565/ada2b7","DOIUrl":"https://doi.org/10.1088/2058-9565/ada2b7","url":null,"abstract":"Certifying entanglement for unknown quantum states experimentally is a fundamental problem in quantum computing and quantum physics. Because of being easy to implement, a most popular approach for this problem in modern quantum experiments is detecting target quantum states with fidelity-based entanglement witnesses. Specifically, if the fidelity between a target state and an entangled pure state exceeds a certain value, the target state can be guaranteed to be entangled. Recently, however, it has been realized that there exist so-called unfaithful quantum states, which can be entangled, but their entanglement cannot be certified by any fidelity-based entanglement witnesses. In this paper, by specific examples, we show that if one makes a slight modification to fidelity-based entanglement witnesses by combining multiple fidelities together, it is still possible to certify entanglement for unfaithful quantum states with this popular technique. Particularly, we will analyze the mathematical structure of the modified entanglement witnesses, and propose an algorithm that can search for the optimal designs for them.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"14 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07DOI: 10.1088/2058-9565/ada08f
Wei-Kai Huang, Bongjune Kim, Teng-Jen Shih, Chia-Yu Hsu, Pei-Yu Tu, Tse-Yu Lin, Yong-Fan Chen, Chih-Sung Chuu and Ite A Yu
Utilizing the double-Λ spontaneous four-wave mixing (SFWM) process, the biphoton source generates narrow-linewidth pairs of signal and probe photons. In a medium, the signal photon propagates at nearly the speed of light in a vacuum, while the probe photon propagates as slow light. Typically, signal photons arrive at the detector first and are used as the heralding photons in conventional biphoton sources. In this work, we propose using probe photons as the heralding photons to enhance the heralding probability, an approach that has been overlooked previously. We also investigate a time-reversed double-Λ SFWM biphoton source using heated atomic vapor. Compared with the conventional biphoton source under the same experimental conditions, the time-reversed one exhibits a time-reversed temporal profile with a similar full-width-at-half-maximum linewidth of 3.4 MHz, increased the heralding efficiency by a factor of 5.3, and enhanced the detection rate by 1.3 times. With the time-reversed source, we achieved a heralding probability of 82±6% and a generation rate of (1.8 ± 0.2)× 106 pairs/s, referring to biphotons collected within polarization-maintained single-mode optical fibers. Furthermore, the time-reversed temporal profile is more suitable for quantum memory. Simulation results show that, at an optical depth of 150 (or 50), the storage efficiency of a quantum memory using the time-reversed source can reach 91% (or 81%), compared with 81% (or 67%) using the conventional source. This study demonstrates the significance of using the slow-light photon in biphoton pairs as the heralding photon for quantum operations. We have achieved a biphoton source with high heralding probability, high generation rate, and narrow linewidth in a room-temperature or hot medium.
{"title":"Time-reversed biphoton source of the double-Λ spontaneous four-wave mixing process","authors":"Wei-Kai Huang, Bongjune Kim, Teng-Jen Shih, Chia-Yu Hsu, Pei-Yu Tu, Tse-Yu Lin, Yong-Fan Chen, Chih-Sung Chuu and Ite A Yu","doi":"10.1088/2058-9565/ada08f","DOIUrl":"https://doi.org/10.1088/2058-9565/ada08f","url":null,"abstract":"Utilizing the double-Λ spontaneous four-wave mixing (SFWM) process, the biphoton source generates narrow-linewidth pairs of signal and probe photons. In a medium, the signal photon propagates at nearly the speed of light in a vacuum, while the probe photon propagates as slow light. Typically, signal photons arrive at the detector first and are used as the heralding photons in conventional biphoton sources. In this work, we propose using probe photons as the heralding photons to enhance the heralding probability, an approach that has been overlooked previously. We also investigate a time-reversed double-Λ SFWM biphoton source using heated atomic vapor. Compared with the conventional biphoton source under the same experimental conditions, the time-reversed one exhibits a time-reversed temporal profile with a similar full-width-at-half-maximum linewidth of 3.4 MHz, increased the heralding efficiency by a factor of 5.3, and enhanced the detection rate by 1.3 times. With the time-reversed source, we achieved a heralding probability of 82±6% and a generation rate of (1.8 ± 0.2)× 106 pairs/s, referring to biphotons collected within polarization-maintained single-mode optical fibers. Furthermore, the time-reversed temporal profile is more suitable for quantum memory. Simulation results show that, at an optical depth of 150 (or 50), the storage efficiency of a quantum memory using the time-reversed source can reach 91% (or 81%), compared with 81% (or 67%) using the conventional source. This study demonstrates the significance of using the slow-light photon in biphoton pairs as the heralding photon for quantum operations. We have achieved a biphoton source with high heralding probability, high generation rate, and narrow linewidth in a room-temperature or hot medium.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"76 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1088/2058-9565/ada180
Medina Bandic, Pablo le Henaff, Anabel Ovide, Pau Escofet, Sahar Ben Rached, Santiago Rodrigo, Hans van Someren, Sergi Abadal, Eduard Alarcón, Carmen G Almudever and Sebastian Feld
Application-specific quantum computers offer the most efficient means to tackle problems intractable by classical computers. Realizing these architectures necessitates a deep understanding of quantum circuit properties and their relationship to execution outcomes on quantum devices. Our study aims to perform for the first time a rigorous examination of quantum circuits by introducing graph theory-based metrics extracted from their qubit interaction graph and gate dependency graph (GDG) alongside conventional parameters describing the circuit itself. This methodology facilitates a comprehensive analysis and clustering of quantum circuits. Furthermore, it uncovers a connection between parameters rooted in both qubit interaction and GDGs, and the performance metrics for quantum circuit mapping, across a range of established quantum device and mapping configurations. Among the various device configurations, we particularly emphasize modular (i.e. multi-core) quantum computing architectures due to their high potential as a viable solution for quantum device scalability. This thorough analysis will help us to: i) identify key attributes of quantum circuits that affect the quantum circuit mapping performance metrics; ii) predict the performance on a specific chip for similar circuit structures; iii) determine preferable combinations of mapping techniques and hardware setups for specific circuits; and iv) define representative benchmark sets by clustering similarly structured circuits.
{"title":"Profiling quantum circuits for their efficient execution on single- and multi-core architectures","authors":"Medina Bandic, Pablo le Henaff, Anabel Ovide, Pau Escofet, Sahar Ben Rached, Santiago Rodrigo, Hans van Someren, Sergi Abadal, Eduard Alarcón, Carmen G Almudever and Sebastian Feld","doi":"10.1088/2058-9565/ada180","DOIUrl":"https://doi.org/10.1088/2058-9565/ada180","url":null,"abstract":"Application-specific quantum computers offer the most efficient means to tackle problems intractable by classical computers. Realizing these architectures necessitates a deep understanding of quantum circuit properties and their relationship to execution outcomes on quantum devices. Our study aims to perform for the first time a rigorous examination of quantum circuits by introducing graph theory-based metrics extracted from their qubit interaction graph and gate dependency graph (GDG) alongside conventional parameters describing the circuit itself. This methodology facilitates a comprehensive analysis and clustering of quantum circuits. Furthermore, it uncovers a connection between parameters rooted in both qubit interaction and GDGs, and the performance metrics for quantum circuit mapping, across a range of established quantum device and mapping configurations. Among the various device configurations, we particularly emphasize modular (i.e. multi-core) quantum computing architectures due to their high potential as a viable solution for quantum device scalability. This thorough analysis will help us to: i) identify key attributes of quantum circuits that affect the quantum circuit mapping performance metrics; ii) predict the performance on a specific chip for similar circuit structures; iii) determine preferable combinations of mapping techniques and hardware setups for specific circuits; and iv) define representative benchmark sets by clustering similarly structured circuits.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"34 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-30DOI: 10.1088/2058-9565/ad9be2
Thorge Müller, Tobias Stollenwerk, David Headley, Michael Epping and Frank K Wilhelm
Variational algorithms such as the quantum approximate optimization algorithm have attracted attention due to their potential for solving problems using near-term quantum computers. The ZZ interaction typically generates the primitive two-qubit gate in such algorithms applied for a time, typically a variational parameter, γ. Different compilation techniques exist with respect to the implementation of two-qubit gates. Due to the importance of the ZZ-gate, we present an error analysis comparing the continuous-angle controlled phase gate (CP) against the fixed angle controlled Z-gate (CZ). We analyze both techniques under the influence of coherent over-rotation and depolarizing noise. We show that CP and CZ compilation techniques achieve comparable ZZ-gate fidelities if the incoherent error is below 0.03% and the coherent error is below 0.8%. Thus, we argue that for small coherent and incoherent error a non-parameterized two-qubit gate such as CZ in combination with virtual Z decomposition for single-qubit gates could lead to a significant reduction in the calibration required and, therefore, a less error-prone quantum device. We show that above a coherent error of 0.04π (2%), the CZ gate fidelity depends significantly on γ.
{"title":"Coherent and non-unitary errors in ZZ-generated gates","authors":"Thorge Müller, Tobias Stollenwerk, David Headley, Michael Epping and Frank K Wilhelm","doi":"10.1088/2058-9565/ad9be2","DOIUrl":"https://doi.org/10.1088/2058-9565/ad9be2","url":null,"abstract":"Variational algorithms such as the quantum approximate optimization algorithm have attracted attention due to their potential for solving problems using near-term quantum computers. The ZZ interaction typically generates the primitive two-qubit gate in such algorithms applied for a time, typically a variational parameter, γ. Different compilation techniques exist with respect to the implementation of two-qubit gates. Due to the importance of the ZZ-gate, we present an error analysis comparing the continuous-angle controlled phase gate (CP) against the fixed angle controlled Z-gate (CZ). We analyze both techniques under the influence of coherent over-rotation and depolarizing noise. We show that CP and CZ compilation techniques achieve comparable ZZ-gate fidelities if the incoherent error is below 0.03% and the coherent error is below 0.8%. Thus, we argue that for small coherent and incoherent error a non-parameterized two-qubit gate such as CZ in combination with virtual Z decomposition for single-qubit gates could lead to a significant reduction in the calibration required and, therefore, a less error-prone quantum device. We show that above a coherent error of 0.04π (2%), the CZ gate fidelity depends significantly on γ.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"32 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-30DOI: 10.1088/2058-9565/ada08d
Luca Leonforte, Xuejian Sun, Davide Valenti, Bernardo Spagnolo, Fabrizio Illuminati, Angelo Carollo and Francesco Ciccarello
We present a general framework to tackle quantum optics problems with giant atoms, i.e. quantum emitters each coupled non-locally to a structured photonic bath (typically a lattice) of any dimension. The theory encompasses the calculation and general properties of Green’s functions, atom-photon bound states, collective master equations and decoherence-free Hamiltonians (DFHs), and is underpinned by a formalism where a giant atom is formally viewed as a normal atom lying at a fictitious location. As a major application, we provide for the first time a general criterion to predict/engineer DFHs of giant atoms, which can be applied both in and out of the photonic continuum and regardless of the structure or dimensionality of the photonic bath. This is used to show novel DFHs in 2D baths such as a square lattice, photonic graphene and an extended photonic Lieb lattice.
{"title":"Quantum optics with giant atoms in a structured photonic bath","authors":"Luca Leonforte, Xuejian Sun, Davide Valenti, Bernardo Spagnolo, Fabrizio Illuminati, Angelo Carollo and Francesco Ciccarello","doi":"10.1088/2058-9565/ada08d","DOIUrl":"https://doi.org/10.1088/2058-9565/ada08d","url":null,"abstract":"We present a general framework to tackle quantum optics problems with giant atoms, i.e. quantum emitters each coupled non-locally to a structured photonic bath (typically a lattice) of any dimension. The theory encompasses the calculation and general properties of Green’s functions, atom-photon bound states, collective master equations and decoherence-free Hamiltonians (DFHs), and is underpinned by a formalism where a giant atom is formally viewed as a normal atom lying at a fictitious location. As a major application, we provide for the first time a general criterion to predict/engineer DFHs of giant atoms, which can be applied both in and out of the photonic continuum and regardless of the structure or dimensionality of the photonic bath. This is used to show novel DFHs in 2D baths such as a square lattice, photonic graphene and an extended photonic Lieb lattice.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"33 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-30DOI: 10.1088/2058-9565/ad9cb9
Kiwmann Hwang, Hyang-Tag Lim, Yong-Su Kim, Daniel K Park and Yosep Kim
Quantum machine learning is emerging as a promising application of quantum computing due to its distinct way of encoding and processing data. It is believed that large-scale quantum machine learning demonstrates substantial advantages over classical counterparts, but a reliable scale-up is hindered by the fragile nature of quantum systems. Here we present an experimentally accessible distributed quantum machine learning scheme that integrates quantum processor units via classical communication. As a demonstration, we perform data classification tasks on eight-dimensional synthetic datasets by emulating two four-qubit processors and employing quantum convolutional neural networks. Our results indicate that incorporating classical communication notably improves classification accuracy compared to schemes without communication. Furthermore, at the tested circuit depths, we observe that the accuracy with classical communication is no less than that achieved with quantum communication. Our work provides a practical path to demonstrating large-scale quantum machine learning on intermediate-scale quantum processors by leveraging classical communication that can be implemented through currently available mid-circuit measurements.
{"title":"Distributed quantum machine learning via classical communication","authors":"Kiwmann Hwang, Hyang-Tag Lim, Yong-Su Kim, Daniel K Park and Yosep Kim","doi":"10.1088/2058-9565/ad9cb9","DOIUrl":"https://doi.org/10.1088/2058-9565/ad9cb9","url":null,"abstract":"Quantum machine learning is emerging as a promising application of quantum computing due to its distinct way of encoding and processing data. It is believed that large-scale quantum machine learning demonstrates substantial advantages over classical counterparts, but a reliable scale-up is hindered by the fragile nature of quantum systems. Here we present an experimentally accessible distributed quantum machine learning scheme that integrates quantum processor units via classical communication. As a demonstration, we perform data classification tasks on eight-dimensional synthetic datasets by emulating two four-qubit processors and employing quantum convolutional neural networks. Our results indicate that incorporating classical communication notably improves classification accuracy compared to schemes without communication. Furthermore, at the tested circuit depths, we observe that the accuracy with classical communication is no less than that achieved with quantum communication. Our work provides a practical path to demonstrating large-scale quantum machine learning on intermediate-scale quantum processors by leveraging classical communication that can be implemented through currently available mid-circuit measurements.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"28 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-30DOI: 10.1088/2058-9565/ad9d74
Matthew X Burns, Chenxu Liu, Samuel Stein, Bo Peng, Karol Kowalski and Ang Li
Observable estimation is a core primitive in NISQ-era algorithms targeting quantum chemistry applications. To reduce the state preparation overhead required for accurate estimation, recent works have proposed various simultaneous measurement schemes to lower estimator variance. Two primary grouping schemes have been proposed: full commutativity (FC) and qubit-wise commutativity (QWC), with no compelling means of interpolation. In this work we propose a generalized framework for designing and analyzing context-aware hybrid FC/QWC commutativity relations. We use our framework to propose a noise-and-connectivity aware grouping strategy: Generalized backend-Aware pauLI Commutation (GALIC). We demonstrate how GALIC interpolates between FC and QWC, maintaining estimator accuracy in Hamiltonian estimation while lowering variance by an average of 20% compared to QWC. We also explore the design space of near-term quantum devices using the GALIC framework, specifically comparing device noise levels and connectivity. We find that error suppression has a more than 10 × larger impact on device-aware estimator variance than qubit connectivity with even larger correlation differences in estimator biases.
{"title":"GALIC: hybrid multi-qubitwise pauli grouping for quantum computing measurement","authors":"Matthew X Burns, Chenxu Liu, Samuel Stein, Bo Peng, Karol Kowalski and Ang Li","doi":"10.1088/2058-9565/ad9d74","DOIUrl":"https://doi.org/10.1088/2058-9565/ad9d74","url":null,"abstract":"Observable estimation is a core primitive in NISQ-era algorithms targeting quantum chemistry applications. To reduce the state preparation overhead required for accurate estimation, recent works have proposed various simultaneous measurement schemes to lower estimator variance. Two primary grouping schemes have been proposed: full commutativity (FC) and qubit-wise commutativity (QWC), with no compelling means of interpolation. In this work we propose a generalized framework for designing and analyzing context-aware hybrid FC/QWC commutativity relations. We use our framework to propose a noise-and-connectivity aware grouping strategy: Generalized backend-Aware pauLI Commutation (GALIC). We demonstrate how GALIC interpolates between FC and QWC, maintaining estimator accuracy in Hamiltonian estimation while lowering variance by an average of 20% compared to QWC. We also explore the design space of near-term quantum devices using the GALIC framework, specifically comparing device noise levels and connectivity. We find that error suppression has a more than 10 × larger impact on device-aware estimator variance than qubit connectivity with even larger correlation differences in estimator biases.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"31 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142902025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1088/2058-9565/ada08e
Youle Wang and Xiangzhen Zhou
Predicting a protein’s three-dimensional structure from its primary amino acid sequence constitutes the protein folding problem, a pivotal challenge within computational biology. This task has been identified as a fitting domain for applying quantum annealing, an algorithmic technique posited to be faster than its classical counterparts. Nevertheless, the utility of quantum annealing is intrinsically contingent upon the spectral gap associated with the Hamiltonian of lattice proteins. This critical dependence introduces a limitation to the efficacy of these techniques, particularly in the context of simulating the intricate folding processes of proteins. In this paper, we address lattice protein folding as a polynomial unconstrained binary optimization problem, devising a hybrid quantum–classical algorithm to determine the minimum energy conformation effectively. Our method is distinguished by its logarithmic scaling with the spectral gap, conferring a significant edge over the conventional quantum annealing algorithms. The present findings indicate that the folding of lattice proteins can be achieved with a resource consumption that is polynomial in the lattice protein length, provided an ansatz state that encodes the target conformation is utilized. We also provide a simple and scalable method for preparing such states and further explore the adaptation of our method for extension to off-lattice protein models. This work paves a new avenue for surmounting complex computational biology problems via the utilization of quantum computers.
{"title":"Efficient quantum algorithm for lattice protein folding","authors":"Youle Wang and Xiangzhen Zhou","doi":"10.1088/2058-9565/ada08e","DOIUrl":"https://doi.org/10.1088/2058-9565/ada08e","url":null,"abstract":"Predicting a protein’s three-dimensional structure from its primary amino acid sequence constitutes the protein folding problem, a pivotal challenge within computational biology. This task has been identified as a fitting domain for applying quantum annealing, an algorithmic technique posited to be faster than its classical counterparts. Nevertheless, the utility of quantum annealing is intrinsically contingent upon the spectral gap associated with the Hamiltonian of lattice proteins. This critical dependence introduces a limitation to the efficacy of these techniques, particularly in the context of simulating the intricate folding processes of proteins. In this paper, we address lattice protein folding as a polynomial unconstrained binary optimization problem, devising a hybrid quantum–classical algorithm to determine the minimum energy conformation effectively. Our method is distinguished by its logarithmic scaling with the spectral gap, conferring a significant edge over the conventional quantum annealing algorithms. The present findings indicate that the folding of lattice proteins can be achieved with a resource consumption that is polynomial in the lattice protein length, provided an ansatz state that encodes the target conformation is utilized. We also provide a simple and scalable method for preparing such states and further explore the adaptation of our method for extension to off-lattice protein models. This work paves a new avenue for surmounting complex computational biology problems via the utilization of quantum computers.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"32 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1088/2058-9565/ad9ed2
Gabriele Lo Monaco, Luca Innocenti, Dario Cilluffo, Diana A Chisholm, Salvatore Lorenzo and G Massimo Palma
Quantum information scrambling (QIS) is a characteristic feature of several quantum systems, ranging from black holes to quantum communication networks. While accurately quantifying QIS is crucial to understanding many such phenomena, common approaches based on the tripartite information have limitations due to the accessibility issues of quantum mutual information, and do not always properly take into consideration the dependence on the encoding input basis. To address these issues, we propose a novel and computationally efficient QIS quantifier, based on a formulation of QIS in terms of quantum state discrimination. We show that the optimal guessing probability, which reflects the degree of QIS induced by an isometric quantum evolution, is directly connected to the accessible min-information, a generalized channel capacity based on conditional min-entropy, which can be cast as a convex program and thus computed efficiently. By applying our proposal to a range of examples with increasing complexity, we illustrate its ability to capture the multifaceted nature of QIS in all its intricacy.
{"title":"An operational definition of quantum information scrambling","authors":"Gabriele Lo Monaco, Luca Innocenti, Dario Cilluffo, Diana A Chisholm, Salvatore Lorenzo and G Massimo Palma","doi":"10.1088/2058-9565/ad9ed2","DOIUrl":"https://doi.org/10.1088/2058-9565/ad9ed2","url":null,"abstract":"Quantum information scrambling (QIS) is a characteristic feature of several quantum systems, ranging from black holes to quantum communication networks. While accurately quantifying QIS is crucial to understanding many such phenomena, common approaches based on the tripartite information have limitations due to the accessibility issues of quantum mutual information, and do not always properly take into consideration the dependence on the encoding input basis. To address these issues, we propose a novel and computationally efficient QIS quantifier, based on a formulation of QIS in terms of quantum state discrimination. We show that the optimal guessing probability, which reflects the degree of QIS induced by an isometric quantum evolution, is directly connected to the accessible min-information, a generalized channel capacity based on conditional min-entropy, which can be cast as a convex program and thus computed efficiently. By applying our proposal to a range of examples with increasing complexity, we illustrate its ability to capture the multifaceted nature of QIS in all its intricacy.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"25 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142888066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}