Pub Date : 2024-11-11DOI: 10.1088/2058-9565/ad8ae4
Bernd Konrad and Maxim Efremov
To advance inertial navigation, we present the scheme for a compact quantum sensor which is based on the quantum phenomenon of the angular Bloch oscillations and measuring exclusively the angular acceleration of slow external rotation. We study the dynamics of ultra-cold atoms confined in a toroidal trap with a ring-lattice along the azimuth angle, realized with the superposition of two copropagating Laguerre–Gaussian beams. In the presence of external rotation with a small angular acceleration, or a prescribed linear chirp between the two beams, the measured angular momentum of the trapped atoms exhibits a specific periodic behaviour in time, which we call as the angular Bloch oscillations. This quantum phenomenon is shown to be a key element of fruitful applications for (i) an efficient transfer of quantized angular momentum from the light to the atoms by controlling the chirp, and (ii) the direct determination of the angular acceleration of external rotation by measuring the Bloch period.
{"title":"Angular Bloch oscillations and their applications","authors":"Bernd Konrad and Maxim Efremov","doi":"10.1088/2058-9565/ad8ae4","DOIUrl":"https://doi.org/10.1088/2058-9565/ad8ae4","url":null,"abstract":"To advance inertial navigation, we present the scheme for a compact quantum sensor which is based on the quantum phenomenon of the angular Bloch oscillations and measuring exclusively the angular acceleration of slow external rotation. We study the dynamics of ultra-cold atoms confined in a toroidal trap with a ring-lattice along the azimuth angle, realized with the superposition of two copropagating Laguerre–Gaussian beams. In the presence of external rotation with a small angular acceleration, or a prescribed linear chirp between the two beams, the measured angular momentum of the trapped atoms exhibits a specific periodic behaviour in time, which we call as the angular Bloch oscillations. This quantum phenomenon is shown to be a key element of fruitful applications for (i) an efficient transfer of quantized angular momentum from the light to the atoms by controlling the chirp, and (ii) the direct determination of the angular acceleration of external rotation by measuring the Bloch period.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"32 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1088/2058-9565/ad8a85
Katerina Gratsea, Johannes Selisko, Maximilian Amsler, Christopher Wever, Thomas Eckl and Georgy Samsonidze
The variational quantum eigensolver (VQE) is one of the most promising and widely used algorithms for exploiting the capabilities of current Noisy Intermediate-Scale Quantum (NISQ) devices. However, VQE algorithms suffer from a plethora of issues, such as barren plateaus, local minima, quantum hardware noise, and limited qubit connectivity, thus posing challenges for their successful deployment on hardware and simulators. In this work, we propose a VQE optimization strategy that builds upon recent advances in the literature, and exhibits very shallow circuit depths when applied to the specific system of interest, namely a model Hamiltonian representing a cuprate superconductor. These features make our approach a favorable candidate for generating good ground state approximations on current NISQ devices. Our findings illustrate the potential of VQE algorithmic development for leveraging the full capabilities of NISQ devices.
{"title":"OnionVQE optimization strategy for ground state preparation on NISQ devices","authors":"Katerina Gratsea, Johannes Selisko, Maximilian Amsler, Christopher Wever, Thomas Eckl and Georgy Samsonidze","doi":"10.1088/2058-9565/ad8a85","DOIUrl":"https://doi.org/10.1088/2058-9565/ad8a85","url":null,"abstract":"The variational quantum eigensolver (VQE) is one of the most promising and widely used algorithms for exploiting the capabilities of current Noisy Intermediate-Scale Quantum (NISQ) devices. However, VQE algorithms suffer from a plethora of issues, such as barren plateaus, local minima, quantum hardware noise, and limited qubit connectivity, thus posing challenges for their successful deployment on hardware and simulators. In this work, we propose a VQE optimization strategy that builds upon recent advances in the literature, and exhibits very shallow circuit depths when applied to the specific system of interest, namely a model Hamiltonian representing a cuprate superconductor. These features make our approach a favorable candidate for generating good ground state approximations on current NISQ devices. Our findings illustrate the potential of VQE algorithmic development for leveraging the full capabilities of NISQ devices.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"3 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1088/2058-9565/ad8b64
Shubham Kumar, Narendra N Hegade, Murilo Henrique de Oliveira, Enrique Solano, Alejandro Gomez Cadavid and F Albarrán-Arriagada
We introduce a hardware-specific, problem-dependent digital-analog quantum algorithm of a counterdiabatic quantum dynamics tailored for optimization problems. Specifically, we focus on trapped-ion architectures, taking advantage from global Mølmer–Sørensen gates as the analog interactions complemented by digital gates, both of which are available in the state-of-the-art technologies. We show an optimal configuration of analog blocks and digital steps leading to a substantial reduction in circuit depth compared to the purely digital approach. This implies that, using the proposed encoding, we can address larger optimization problem instances, requiring more qubits, while preserving the coherence time of current devices. Furthermore, we study the minimum gate fidelity required by the analog blocks to outperform the purely digital simulation, finding that it is below the best fidelity reported in the literature. To validate the performance of the digital-analog encoding, we tackle the maximum independent set problem, showing that it requires fewer resources compared to the digital case. This hybrid co-design approach paves the way towards quantum advantage for efficient solutions of quantum optimization problems.
{"title":"Digital-analog counterdiabatic quantum optimization with trapped ions","authors":"Shubham Kumar, Narendra N Hegade, Murilo Henrique de Oliveira, Enrique Solano, Alejandro Gomez Cadavid and F Albarrán-Arriagada","doi":"10.1088/2058-9565/ad8b64","DOIUrl":"https://doi.org/10.1088/2058-9565/ad8b64","url":null,"abstract":"We introduce a hardware-specific, problem-dependent digital-analog quantum algorithm of a counterdiabatic quantum dynamics tailored for optimization problems. Specifically, we focus on trapped-ion architectures, taking advantage from global Mølmer–Sørensen gates as the analog interactions complemented by digital gates, both of which are available in the state-of-the-art technologies. We show an optimal configuration of analog blocks and digital steps leading to a substantial reduction in circuit depth compared to the purely digital approach. This implies that, using the proposed encoding, we can address larger optimization problem instances, requiring more qubits, while preserving the coherence time of current devices. Furthermore, we study the minimum gate fidelity required by the analog blocks to outperform the purely digital simulation, finding that it is below the best fidelity reported in the literature. To validate the performance of the digital-analog encoding, we tackle the maximum independent set problem, showing that it requires fewer resources compared to the digital case. This hybrid co-design approach paves the way towards quantum advantage for efficient solutions of quantum optimization problems.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"6 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1088/2058-9565/ad895c
Zewen Zhang, Roger Paredes, Bhuvanesh Sundar, David Quiroga, Anastasios Kyrillidis, Leonardo Duenas-Osorio, Guido Pagano and Kaden R A Hazzard
The SAT problem is a prototypical NP-complete problem of fundamental importance in computational complexity theory with many applications in science and engineering; as such, it has long served as an essential benchmark for classical and quantum algorithms. This study shows numerical evidence for a quadratic speedup of the Grover Quantum Approximate Optimization Algorithm (G-QAOA) over random sampling for finding all solutions to 3-SAT (All-SAT) and Max-SAT problems. G-QAOA is less resource-intensive and more adaptable for these problems than Grover’s algorithm, and it surpasses conventional QAOA in its ability to sample all solutions. We show these benefits by classical simulations of many-round G-QAOA on thousands of random 3-SAT instances. We also observe G-QAOA advantages on the IonQ Aria quantum computer for small instances, finding that current hardware suffices to determine and sample all solutions. Interestingly, a single-angle-pair constraint that uses the same pair of angles at each G-QAOA round greatly reduces the classical computational overhead of optimizing the G-QAOA angles while preserving its quadratic speedup. We also find parameter clustering of the angles. The single-angle-pair protocol and parameter clustering significantly reduce obstacles to classical optimization of the G-QAOA angles.
{"title":"Grover-QAOA for 3-SAT: quadratic speedup, fair-sampling, and parameter clustering","authors":"Zewen Zhang, Roger Paredes, Bhuvanesh Sundar, David Quiroga, Anastasios Kyrillidis, Leonardo Duenas-Osorio, Guido Pagano and Kaden R A Hazzard","doi":"10.1088/2058-9565/ad895c","DOIUrl":"https://doi.org/10.1088/2058-9565/ad895c","url":null,"abstract":"The SAT problem is a prototypical NP-complete problem of fundamental importance in computational complexity theory with many applications in science and engineering; as such, it has long served as an essential benchmark for classical and quantum algorithms. This study shows numerical evidence for a quadratic speedup of the Grover Quantum Approximate Optimization Algorithm (G-QAOA) over random sampling for finding all solutions to 3-SAT (All-SAT) and Max-SAT problems. G-QAOA is less resource-intensive and more adaptable for these problems than Grover’s algorithm, and it surpasses conventional QAOA in its ability to sample all solutions. We show these benefits by classical simulations of many-round G-QAOA on thousands of random 3-SAT instances. We also observe G-QAOA advantages on the IonQ Aria quantum computer for small instances, finding that current hardware suffices to determine and sample all solutions. Interestingly, a single-angle-pair constraint that uses the same pair of angles at each G-QAOA round greatly reduces the classical computational overhead of optimizing the G-QAOA angles while preserving its quadratic speedup. We also find parameter clustering of the angles. The single-angle-pair protocol and parameter clustering significantly reduce obstacles to classical optimization of the G-QAOA angles.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"24 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1088/2058-9565/ad8370
Nouédyn Baspin, Venkatesan Guruswami, Anirudh Krishna and Ray Li
For quantum error-correcting codes to be realizable, it is important that the qubits subject to the code constraints exhibit some form of limited connectivity. The works of Bravyi and Terhal (2009 New J. Phys.11 043029) (BT) and Bravyi et al (2010 Phys. Rev. Lett.104 050503) (BPT) established that geometric locality constrains code properties—for instance quantum codes defined by local checks on the D-dimensional lattice must obey . Baspin and Krishna (2022 Quantum6 711) studied the more general question of how the connectivity graph associated with a quantum code constrains the code parameters. These trade-offs apply to a richer class of codes compared to the BPT and BT bounds, which only capture geometrically-local codes. We extend and improve this work, establishing a tighter dimension-distance trade-off as a function of the size of separators in the connectivity graph. We also obtain a distance bound that covers all stabilizer codes with a particular separation profile, rather than only LDPC codes.
{"title":"Improved rate-distance trade-offs for quantum codes with restricted connectivity","authors":"Nouédyn Baspin, Venkatesan Guruswami, Anirudh Krishna and Ray Li","doi":"10.1088/2058-9565/ad8370","DOIUrl":"https://doi.org/10.1088/2058-9565/ad8370","url":null,"abstract":"For quantum error-correcting codes to be realizable, it is important that the qubits subject to the code constraints exhibit some form of limited connectivity. The works of Bravyi and Terhal (2009 New J. Phys.11 043029) (BT) and Bravyi et al (2010 Phys. Rev. Lett.104 050503) (BPT) established that geometric locality constrains code properties—for instance quantum codes defined by local checks on the D-dimensional lattice must obey . Baspin and Krishna (2022 Quantum6 711) studied the more general question of how the connectivity graph associated with a quantum code constrains the code parameters. These trade-offs apply to a richer class of codes compared to the BPT and BT bounds, which only capture geometrically-local codes. We extend and improve this work, establishing a tighter dimension-distance trade-off as a function of the size of separators in the connectivity graph. We also obtain a distance bound that covers all stabilizer codes with a particular separation profile, rather than only LDPC codes.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"3 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1088/2058-9565/ad7d32
Daniel Yoffe, Noga Entin, Amir Natan and Adi Makmal
Finding the ground-state energy of molecules is an important and challenging computational problem for which quantum computing can potentially find efficient solutions. The variational quantum eigensolver (VQE) is a quantum algorithm that tackles the molecular groundstate problem and is regarded as one of the flagships of quantum computing. Yet, to date, only very small molecules were computed via VQE, due to high noise levels in current quantum devices. Here we present an alternative variational quantum scheme that requires significantly less qubits than VQE. The reduction in the qubit number allows for shallower circuits to be sufficient, rendering the method more resistant to noise. The proposed algorithm, termed variational quantum selected-configuration-interaction (VQ-SCI), is based on: (a) representing the target groundstate as a superposition of Slater determinant configurations, encoded directly upon the quantum computational basis states; and (b) selecting a-priory only the most dominant configurations. This is demonstrated through a set of groundstate calculations of the H2, LiH, BeH2, H2O, NH3 and C2H4 molecules in the sto-3g basis set, performed on IBM quantum devices. We show that the VQ-SCI reaches the full configuration interaction energy within chemical accuracy using the lowest number of qubits reported to date. Moreover, when the SCI matrix is generated ‘on the fly’, the VQ-SCI requires exponentially less memory than classical SCI methods. This offers a potential remedy to a severe memory bottleneck problem in classical SCI calculations. Finally, the proposed scheme is general and can be straightforwardly applied for finding the groundstate of any Hermitian matrix, outside the chemical context.
{"title":"A qubit-efficient variational selected configuration-interaction method","authors":"Daniel Yoffe, Noga Entin, Amir Natan and Adi Makmal","doi":"10.1088/2058-9565/ad7d32","DOIUrl":"https://doi.org/10.1088/2058-9565/ad7d32","url":null,"abstract":"Finding the ground-state energy of molecules is an important and challenging computational problem for which quantum computing can potentially find efficient solutions. The variational quantum eigensolver (VQE) is a quantum algorithm that tackles the molecular groundstate problem and is regarded as one of the flagships of quantum computing. Yet, to date, only very small molecules were computed via VQE, due to high noise levels in current quantum devices. Here we present an alternative variational quantum scheme that requires significantly less qubits than VQE. The reduction in the qubit number allows for shallower circuits to be sufficient, rendering the method more resistant to noise. The proposed algorithm, termed variational quantum selected-configuration-interaction (VQ-SCI), is based on: (a) representing the target groundstate as a superposition of Slater determinant configurations, encoded directly upon the quantum computational basis states; and (b) selecting a-priory only the most dominant configurations. This is demonstrated through a set of groundstate calculations of the H2, LiH, BeH2, H2O, NH3 and C2H4 molecules in the sto-3g basis set, performed on IBM quantum devices. We show that the VQ-SCI reaches the full configuration interaction energy within chemical accuracy using the lowest number of qubits reported to date. Moreover, when the SCI matrix is generated ‘on the fly’, the VQ-SCI requires exponentially less memory than classical SCI methods. This offers a potential remedy to a severe memory bottleneck problem in classical SCI calculations. Finally, the proposed scheme is general and can be straightforwardly applied for finding the groundstate of any Hermitian matrix, outside the chemical context.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"9 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1088/2058-9565/ad8678
Feiran Wang, Nathan Cooper, Yinfeng He, Benjamin Hopton, David Johnson, Peng Zhao, Christopher J Tuck, Richard Hague, T Mark Fromhold, Ricky D Wildman, Lyudmila Turyanska and Lucia Hackermüller
Atomic vapour cells are an indispensable tool for quantum technologies (QT), but potential improvements are limited by the capacities of conventional manufacturing techniques. Using an additive manufacturing (AM) technique—vat polymerisation by digital light processing—we demonstrate, for the first time, a 3D-printed glass vapour cell. The exploitation of AM capacities allows intricate internal architectures, overprinting of 2D optoelectronical materials to create integrated sensors and surface functionalisation, while also showing the ability to tailor the optical properties of the AM glass by in-situ growth of gold nanoparticles. The produced cells achieve ultra-high vacuum of 2 × 10−9 mbar and enable Doppler-free spectroscopy; we demonstrate laser frequency stabilisation as a QT application. These results highlight the transformative role that AM can play for QT in enabling compact, optimised and integrated multi-material components and devices.
{"title":"Additive manufacturing of functionalised atomic vapour cells for next-generation quantum technologies","authors":"Feiran Wang, Nathan Cooper, Yinfeng He, Benjamin Hopton, David Johnson, Peng Zhao, Christopher J Tuck, Richard Hague, T Mark Fromhold, Ricky D Wildman, Lyudmila Turyanska and Lucia Hackermüller","doi":"10.1088/2058-9565/ad8678","DOIUrl":"https://doi.org/10.1088/2058-9565/ad8678","url":null,"abstract":"Atomic vapour cells are an indispensable tool for quantum technologies (QT), but potential improvements are limited by the capacities of conventional manufacturing techniques. Using an additive manufacturing (AM) technique—vat polymerisation by digital light processing—we demonstrate, for the first time, a 3D-printed glass vapour cell. The exploitation of AM capacities allows intricate internal architectures, overprinting of 2D optoelectronical materials to create integrated sensors and surface functionalisation, while also showing the ability to tailor the optical properties of the AM glass by in-situ growth of gold nanoparticles. The produced cells achieve ultra-high vacuum of 2 × 10−9 mbar and enable Doppler-free spectroscopy; we demonstrate laser frequency stabilisation as a QT application. These results highlight the transformative role that AM can play for QT in enabling compact, optimised and integrated multi-material components and devices.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"29 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1088/2058-9565/ad8304
Andrey A Rakhubovsky and Radim Filip
Quantum non-Gaussian states of phononic systems coupled to light are essential for fundamental studies of single-phonon mechanics and direct applications in quantum technology. Although nonclassical mechanical states have already been demonstrated, the more challenging quantum non-Gaussianity of such states remains limited. Using photon counting detection, we propose the quantum non-Gaussian generation of few-phonon states of low-temperature vibrating superfluid Helium. We predict the quantum non-Gaussian depth of such phononic states and investigate their robustness under relevant mechanical heating. As the quality of such phononic states is very high, we confirm a single-phonon bunching capability to further classify such states for future mechanical experiments. Moreover, we predict increasing capability for force sensing and thermometry for increasing heralded phonon numbers.
{"title":"Quantum non-Gaussian states of superfluid Helium vibrations","authors":"Andrey A Rakhubovsky and Radim Filip","doi":"10.1088/2058-9565/ad8304","DOIUrl":"https://doi.org/10.1088/2058-9565/ad8304","url":null,"abstract":"Quantum non-Gaussian states of phononic systems coupled to light are essential for fundamental studies of single-phonon mechanics and direct applications in quantum technology. Although nonclassical mechanical states have already been demonstrated, the more challenging quantum non-Gaussianity of such states remains limited. Using photon counting detection, we propose the quantum non-Gaussian generation of few-phonon states of low-temperature vibrating superfluid Helium. We predict the quantum non-Gaussian depth of such phononic states and investigate their robustness under relevant mechanical heating. As the quality of such phononic states is very high, we confirm a single-phonon bunching capability to further classify such states for future mechanical experiments. Moreover, we predict increasing capability for force sensing and thermometry for increasing heralded phonon numbers.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"14 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1088/2058-9565/ad8511
Timon Schapeler, Robert Schade, Michael Lass, Christian Plessl and Tim J Bartley
At large scales, quantum systems may become advantageous over their classical counterparts at performing certain tasks. Developing tools to analyze these systems at the relevant scales, in a manner consistent with quantum mechanics, is therefore critical to benchmarking performance and characterizing their operation. While classical computational approaches cannot perform like-for-like computations of quantum systems beyond a certain scale, classical high-performance computing (HPC) may nevertheless be useful for precisely these characterization and certification tasks. By developing open-source customized algorithms using HPC, we perform quantum tomography on a megascale quantum photonic detector covering a Hilbert space of 106. This requires finding 108 elements of the matrix corresponding to the positive operator valued measure, the quantum description of the detector, and is achieved in minutes of computation time. Moreover, by exploiting the structure of the problem, we achieve highly efficient parallel scaling, paving the way for quantum objects up to a system size of 1012 elements to be reconstructed using this method. In general, this shows that a consistent quantum mechanical description of quantum phenomena is applicable at everyday scales. More concretely, this enables the reconstruction of large-scale quantum sources, processes and detectors used in computation and sampling tasks, which may be necessary to prove their nonclassical character or quantum computational advantage.
{"title":"Scalable quantum detector tomography by high-performance computing","authors":"Timon Schapeler, Robert Schade, Michael Lass, Christian Plessl and Tim J Bartley","doi":"10.1088/2058-9565/ad8511","DOIUrl":"https://doi.org/10.1088/2058-9565/ad8511","url":null,"abstract":"At large scales, quantum systems may become advantageous over their classical counterparts at performing certain tasks. Developing tools to analyze these systems at the relevant scales, in a manner consistent with quantum mechanics, is therefore critical to benchmarking performance and characterizing their operation. While classical computational approaches cannot perform like-for-like computations of quantum systems beyond a certain scale, classical high-performance computing (HPC) may nevertheless be useful for precisely these characterization and certification tasks. By developing open-source customized algorithms using HPC, we perform quantum tomography on a megascale quantum photonic detector covering a Hilbert space of 106. This requires finding 108 elements of the matrix corresponding to the positive operator valued measure, the quantum description of the detector, and is achieved in minutes of computation time. Moreover, by exploiting the structure of the problem, we achieve highly efficient parallel scaling, paving the way for quantum objects up to a system size of 1012 elements to be reconstructed using this method. In general, this shows that a consistent quantum mechanical description of quantum phenomena is applicable at everyday scales. More concretely, this enables the reconstruction of large-scale quantum sources, processes and detectors used in computation and sampling tasks, which may be necessary to prove their nonclassical character or quantum computational advantage.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"12 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-20DOI: 10.1088/2058-9565/ad8512
Bo Deng, Moritz Göb, Max Masuhr, Johannes Roßnagel, Georg Jacob, Daqing Wang and Kilian Singer
We present a tapered Paul trap whose radio frequency electrodes are inclined to the symmetric axis of the endcap electrodes, resulting in a funnel-shaped trapping potential. With this configuration, a charged particle confined in this trap has its radial degrees of freedom coupled to that of the axial direction. The same design was successfully used to experimentally realize a single-atom heat engine, and with this setup amplification of zeptonewton forces was implemented. In this paper, we show the design, implementation, and characterization of such an ion trap in detail. This system offers a high level of control over the ion’s motion. Its novel features promise applications in the field of quantum thermodynamics, quantum sensing, and quantum information.
{"title":"A comprehensive study on a tapered Paul trap: from design to potential applications","authors":"Bo Deng, Moritz Göb, Max Masuhr, Johannes Roßnagel, Georg Jacob, Daqing Wang and Kilian Singer","doi":"10.1088/2058-9565/ad8512","DOIUrl":"https://doi.org/10.1088/2058-9565/ad8512","url":null,"abstract":"We present a tapered Paul trap whose radio frequency electrodes are inclined to the symmetric axis of the endcap electrodes, resulting in a funnel-shaped trapping potential. With this configuration, a charged particle confined in this trap has its radial degrees of freedom coupled to that of the axial direction. The same design was successfully used to experimentally realize a single-atom heat engine, and with this setup amplification of zeptonewton forces was implemented. In this paper, we show the design, implementation, and characterization of such an ion trap in detail. This system offers a high level of control over the ion’s motion. Its novel features promise applications in the field of quantum thermodynamics, quantum sensing, and quantum information.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"65 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}