Pub Date : 2021-01-01DOI: 10.1007/978-3-030-67696-4_12
Danilo B Medinas, Younis Hazari, Claudio Hetz
Endoplasmic reticulum (ER) stress is a prominent cellular alteration of diseases impacting the nervous system that are associated to the accumulation of misfolded and aggregated protein species during aging. The unfolded protein response (UPR) is the main pathway mediating adaptation to ER stress, but it can also trigger deleterious cascades of inflammation and cell death leading to cell dysfunction and neurodegeneration. Genetic and pharmacological studies in experimental models shed light into molecular pathways possibly contributing to ER stress and the UPR activation in human neuropathies. Most of experimental models are, however, based on the overexpression of mutant proteins causing familial forms of these diseases or the administration of neurotoxins that induce pathology in young animals. Whether the mechanisms uncovered in these models are relevant for the etiology of the vast majority of age-related sporadic forms of neurodegenerative diseases is an open question. Here, we provide a systematic analysis of the current evidence linking ER stress to human pathology and the main mechanisms elucidated in experimental models. Furthermore, we highlight the recent association of metabolic syndrome to increased risk to undergo neurodegeneration, where ER stress arises as a common denominator in the pathogenic crosstalk between peripheral organs and the nervous system.
{"title":"Disruption of Endoplasmic Reticulum Proteostasis in Age-Related Nervous System Disorders.","authors":"Danilo B Medinas, Younis Hazari, Claudio Hetz","doi":"10.1007/978-3-030-67696-4_12","DOIUrl":"https://doi.org/10.1007/978-3-030-67696-4_12","url":null,"abstract":"<p><p>Endoplasmic reticulum (ER) stress is a prominent cellular alteration of diseases impacting the nervous system that are associated to the accumulation of misfolded and aggregated protein species during aging. The unfolded protein response (UPR) is the main pathway mediating adaptation to ER stress, but it can also trigger deleterious cascades of inflammation and cell death leading to cell dysfunction and neurodegeneration. Genetic and pharmacological studies in experimental models shed light into molecular pathways possibly contributing to ER stress and the UPR activation in human neuropathies. Most of experimental models are, however, based on the overexpression of mutant proteins causing familial forms of these diseases or the administration of neurotoxins that induce pathology in young animals. Whether the mechanisms uncovered in these models are relevant for the etiology of the vast majority of age-related sporadic forms of neurodegenerative diseases is an open question. Here, we provide a systematic analysis of the current evidence linking ER stress to human pathology and the main mechanisms elucidated in experimental models. Furthermore, we highlight the recent association of metabolic syndrome to increased risk to undergo neurodegeneration, where ER stress arises as a common denominator in the pathogenic crosstalk between peripheral organs and the nervous system.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"59 ","pages":"239-278"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39029002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-74889-0_3
Eva Šatović Vukšić, Miroslav Plohl
Noncoding DNA sequences repeated in tandem or satellite DNAs make an integral part of every eukaryotic genome. Development and application of new methodological approaches through time enabled gradual improvement in understanding of structural and functional roles of these sequences, early misconsidered as "junk DNA". Advancing approaches started adding novel insights into details of their existence on the genomic scale, traditionally hard to access due to difficulties in analyzing long arrays of nearly identical tandem repeats of a satellite DNA. In turn, broadened views opened space for the development of new concepts on satellite DNA biology, highlighting also specificities coming from different groups of organisms. Observed diversities in different aspects and in organizational forms of these sequences proclaimed a need for a versatile pool of model organisms. Peculiarities of satellite DNAs populating genomes of bivalve mollusks, an important group of marine and fresh-water organisms, add to the diversity of organizational principles and associated roles in which tandemly repeated sequences contribute to the genomes.
{"title":"Exploring Satellite DNAs: Specificities of Bivalve Mollusks Genomes.","authors":"Eva Šatović Vukšić, Miroslav Plohl","doi":"10.1007/978-3-030-74889-0_3","DOIUrl":"https://doi.org/10.1007/978-3-030-74889-0_3","url":null,"abstract":"<p><p>Noncoding DNA sequences repeated in tandem or satellite DNAs make an integral part of every eukaryotic genome. Development and application of new methodological approaches through time enabled gradual improvement in understanding of structural and functional roles of these sequences, early misconsidered as \"junk DNA\". Advancing approaches started adding novel insights into details of their existence on the genomic scale, traditionally hard to access due to difficulties in analyzing long arrays of nearly identical tandem repeats of a satellite DNA. In turn, broadened views opened space for the development of new concepts on satellite DNA biology, highlighting also specificities coming from different groups of organisms. Observed diversities in different aspects and in organizational forms of these sequences proclaimed a need for a versatile pool of model organisms. Peculiarities of satellite DNAs populating genomes of bivalve mollusks, an important group of marine and fresh-water organisms, add to the diversity of organizational principles and associated roles in which tandemly repeated sequences contribute to the genomes.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"60 ","pages":"57-83"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39306376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-74889-0_5
Manuel A Garrido-Ramos
The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.
{"title":"The Genomics of Plant Satellite DNA.","authors":"Manuel A Garrido-Ramos","doi":"10.1007/978-3-030-74889-0_5","DOIUrl":"https://doi.org/10.1007/978-3-030-74889-0_5","url":null,"abstract":"<p><p>The twenty-first century began with a certain indifference to the research of satellite DNA (satDNA). Neither genome sequencing projects were able to accurately encompass the study of satDNA nor classic methodologies were able to go further in undertaking a better comprehensive study of the whole set of satDNA sequences of a genome. Nonetheless, knowledge of satDNA has progressively advanced during this century with the advent of new analytical techniques. The enormous advantages that genome-wide approaches have brought to its analysis have now stimulated a renewed interest in the study of satDNA. At this point, we can look back and try to assess more accurately many of the key questions that were left unsolved in the past about this enigmatic and important component of the genome. I review here the understanding gathered on plant satDNAs over the last few decades with an eye on the near future.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"60 ","pages":"103-143"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39306795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-67696-4_10
Mari McMahon, Afshin Samali, Eric Chevet
The endoplasmic reticulum, as the site of synthesis for proteins in the secretory pathway has evolved select machineries to ensure the correct folding and modification of proteins. However, sometimes these quality control mechanisms fail and proteins are misfolded. Other factors, such as nutrient deprivation, hypoxia or an increased demand on protein synthesis can also cause the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. There are mechanisms that recognise and deal with this accumulation of protein through degradation and/or export. Many diseases are associated with aberrant quality control mechanisms, and among these, cancer has emerged as a group of diseases that rely on endoplasmic reticulum homeostasis to sustain development and growth. The knowledge of how protein quality control operates in cancer has identified opportunities for these pathways to be pharmacologically targeted, which could lead to newer or more effective treatments in the future.
{"title":"Maintenance of Endoplasmic Reticulum Protein Homeostasis in Cancer: Friend or Foe.","authors":"Mari McMahon, Afshin Samali, Eric Chevet","doi":"10.1007/978-3-030-67696-4_10","DOIUrl":"https://doi.org/10.1007/978-3-030-67696-4_10","url":null,"abstract":"<p><p>The endoplasmic reticulum, as the site of synthesis for proteins in the secretory pathway has evolved select machineries to ensure the correct folding and modification of proteins. However, sometimes these quality control mechanisms fail and proteins are misfolded. Other factors, such as nutrient deprivation, hypoxia or an increased demand on protein synthesis can also cause the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. There are mechanisms that recognise and deal with this accumulation of protein through degradation and/or export. Many diseases are associated with aberrant quality control mechanisms, and among these, cancer has emerged as a group of diseases that rely on endoplasmic reticulum homeostasis to sustain development and growth. The knowledge of how protein quality control operates in cancer has identified opportunities for these pathways to be pharmacologically targeted, which could lead to newer or more effective treatments in the future.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"59 ","pages":"197-214"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38961754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-74889-0_7
Pia Mihìc, Sabrine Hédouin, Claire Francastel
Centromeres are chromosomal regions that are essential for the faithful transmission of genetic material through each cell division. They represent the chromosomal platform on which assembles a protein complex, the kinetochore, which mediates attachment to the mitotic spindle. In most organisms, centromeres assemble on large arrays of tandem satellite repeats, although their DNA sequences and organization are highly divergent among species. It has become evident that centromeres are not defined by underlying DNA sequences, but are instead epigenetically defined by the deposition of the centromere-specific histone H3 variant, CENP-A. In addition, and although long regarded as silent chromosomal loci, centromeres are in fact transcriptionally competent in most species, yet at low levels in normal somatic cells, but where the resulting transcripts participate in centromere architecture, identity, and function. In this chapter, we discuss the various roles proposed for centromere transcription and their transcripts, and the potential molecular mechanisms involved. We also discuss pathological cases in which unscheduled transcription of centromeric repeats or aberrant accumulation of their transcripts are pathological signatures of chromosomal instability diseases. In sum, tight regulation of centromeric satellite repeats transcription is critical for healthy development and tissue homeostasis, and thus prevents the emergence of disease states.
{"title":"Centromeres Transcription and Transcripts for Better and for Worse.","authors":"Pia Mihìc, Sabrine Hédouin, Claire Francastel","doi":"10.1007/978-3-030-74889-0_7","DOIUrl":"https://doi.org/10.1007/978-3-030-74889-0_7","url":null,"abstract":"<p><p>Centromeres are chromosomal regions that are essential for the faithful transmission of genetic material through each cell division. They represent the chromosomal platform on which assembles a protein complex, the kinetochore, which mediates attachment to the mitotic spindle. In most organisms, centromeres assemble on large arrays of tandem satellite repeats, although their DNA sequences and organization are highly divergent among species. It has become evident that centromeres are not defined by underlying DNA sequences, but are instead epigenetically defined by the deposition of the centromere-specific histone H3 variant, CENP-A. In addition, and although long regarded as silent chromosomal loci, centromeres are in fact transcriptionally competent in most species, yet at low levels in normal somatic cells, but where the resulting transcripts participate in centromere architecture, identity, and function. In this chapter, we discuss the various roles proposed for centromere transcription and their transcripts, and the potential molecular mechanisms involved. We also discuss pathological cases in which unscheduled transcription of centromeric repeats or aberrant accumulation of their transcripts are pathological signatures of chromosomal instability diseases. In sum, tight regulation of centromeric satellite repeats transcription is critical for healthy development and tissue homeostasis, and thus prevents the emergence of disease states.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"60 ","pages":"169-201"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39306381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-67696-4_14
Łukasz Kaczmarek
Tardigrada (also known as "water bears") are hydrophilous microinvertebrates with a bilaterally symmetrical body and four pairs of legs usually terminating with claws. Water bears are quite complex animals and range from 50 to 1200 μm in length. Their body is divided into a head segment and four trunk segments, each bearing a pair of legs. They inhabit almost all terrestrial and aquatic environments, from the ocean depths to highest mountains ranges. However, one of their best known and unusual features is their capability for cryptobiosis. In this state tardigrades are able to survive extremely low and high temperatures and atmospheric pressures, complete lack of water, high doses of radiation, high concentrations of toxins and even a cosmic vacuum. The cellular mechanisms enabling cryptobiosis are poorly understood, although it appears the synthesis of certain types of molecules (sugars and proteins) enable the prevention of cellular damage at different levels. The endoplasmic reticulum (ER) is a morphologically and functionally diverse organelle able to integrate multiple extracellular and internal signals and generate adaptive cellular responses. However, the ER morphology and activity in the case of tardigrades has been studied rarely and in the context of oogenesis, functioning of the digestive system, and in the role and function of storage cells. Thus, there are no direct studies on the contribution of the ER in the ability of this organism to cope with environmental stress during cryptobiosis. Nevertheless, it is highly probable that the ER has a crucial role in this uncommon process. Since water bears are easy to handle laboratory animals, they may represent an ideal model organism to uncover the important role of the ER in the cell response to extreme environmental stress conditions.
{"title":"Tardigrada: An Emerging Animal Model to Study the Endoplasmic Reticulum Stress Response to Environmental Extremes.","authors":"Łukasz Kaczmarek","doi":"10.1007/978-3-030-67696-4_14","DOIUrl":"https://doi.org/10.1007/978-3-030-67696-4_14","url":null,"abstract":"<p><p>Tardigrada (also known as \"water bears\") are hydrophilous microinvertebrates with a bilaterally symmetrical body and four pairs of legs usually terminating with claws. Water bears are quite complex animals and range from 50 to 1200 μm in length. Their body is divided into a head segment and four trunk segments, each bearing a pair of legs. They inhabit almost all terrestrial and aquatic environments, from the ocean depths to highest mountains ranges. However, one of their best known and unusual features is their capability for cryptobiosis. In this state tardigrades are able to survive extremely low and high temperatures and atmospheric pressures, complete lack of water, high doses of radiation, high concentrations of toxins and even a cosmic vacuum. The cellular mechanisms enabling cryptobiosis are poorly understood, although it appears the synthesis of certain types of molecules (sugars and proteins) enable the prevention of cellular damage at different levels. The endoplasmic reticulum (ER) is a morphologically and functionally diverse organelle able to integrate multiple extracellular and internal signals and generate adaptive cellular responses. However, the ER morphology and activity in the case of tardigrades has been studied rarely and in the context of oogenesis, functioning of the digestive system, and in the role and function of storage cells. Thus, there are no direct studies on the contribution of the ER in the ability of this organism to cope with environmental stress during cryptobiosis. Nevertheless, it is highly probable that the ER has a crucial role in this uncommon process. Since water bears are easy to handle laboratory animals, they may represent an ideal model organism to uncover the important role of the ER in the cell response to extreme environmental stress conditions.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"59 ","pages":"305-327"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39029004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-67696-4_4
Wen-An Wang, Nicolas Demaurex
The endoplasmic reticulum (ER) Ca2+ sensor stromal interaction molecule 1 (STIM1) interacts with ORAI Ca2+ channels at the plasma membrane to regulate immune and muscle cell function. The conformational changes underlying STIM1 activation, translocation, and ORAI1 trapping and gating, are stringently regulated by post-translational modifications and accessory proteins. Here, we review the recent progress in the identification and characterization of ER and cytosolic proteins interacting with STIM1 to control its activation and deactivation during store-operated Ca2+ entry (SOCE).
{"title":"Proteins Interacting with STIM1 and Store-Operated Ca<sup>2+</sup> Entry.","authors":"Wen-An Wang, Nicolas Demaurex","doi":"10.1007/978-3-030-67696-4_4","DOIUrl":"https://doi.org/10.1007/978-3-030-67696-4_4","url":null,"abstract":"<p><p>The endoplasmic reticulum (ER) Ca<sup>2+</sup> sensor stromal interaction molecule 1 (STIM1) interacts with ORAI Ca<sup>2+</sup> channels at the plasma membrane to regulate immune and muscle cell function. The conformational changes underlying STIM1 activation, translocation, and ORAI1 trapping and gating, are stringently regulated by post-translational modifications and accessory proteins. Here, we review the recent progress in the identification and characterization of ER and cytosolic proteins interacting with STIM1 to control its activation and deactivation during store-operated Ca<sup>2+</sup> entry (SOCE).</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"59 ","pages":"51-97"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38961750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-67696-4_7
Arunkumar Venkatesan, Leslie S Satin, Malini Raghavan
The endoplasmic reticulum (ER) is an organelle that mediates the proper folding and assembly of proteins destined for the cell surface, the extracellular space and subcellular compartments such as the lysosomes. The ER contains a wide range of molecular chaperones to handle the folding requirements of a diverse set of proteins that traffic through this compartment. The lectin-like chaperones calreticulin and calnexin are an important class of structurally-related chaperones relevant for the folding and assembly of many N-linked glycoproteins. Despite the conserved mechanism of action of these two chaperones in nascent protein recognition and folding, calreticulin has unique functions in cellular calcium signaling and in the immune response. The ER-related functions of calreticulin in the assembly of major histocompatibility complex (MHC) class I molecules are well-studied and provide many insights into the modes of substrate and co-chaperone recognition by calreticulin. Calreticulin is also detectable on the cell surface under some conditions, where it induces the phagocytosis of apoptotic cells. Furthermore, mutations of calreticulin induce cell transformation in myeloproliferative neoplasms (MPN). Studies of the functions of the mutant calreticulin in cell transformation and immunity have provided many insights into the normal biology of calreticulin, which are discussed.
{"title":"Roles of Calreticulin in Protein Folding, Immunity, Calcium Signaling and Cell Transformation.","authors":"Arunkumar Venkatesan, Leslie S Satin, Malini Raghavan","doi":"10.1007/978-3-030-67696-4_7","DOIUrl":"https://doi.org/10.1007/978-3-030-67696-4_7","url":null,"abstract":"<p><p>The endoplasmic reticulum (ER) is an organelle that mediates the proper folding and assembly of proteins destined for the cell surface, the extracellular space and subcellular compartments such as the lysosomes. The ER contains a wide range of molecular chaperones to handle the folding requirements of a diverse set of proteins that traffic through this compartment. The lectin-like chaperones calreticulin and calnexin are an important class of structurally-related chaperones relevant for the folding and assembly of many N-linked glycoproteins. Despite the conserved mechanism of action of these two chaperones in nascent protein recognition and folding, calreticulin has unique functions in cellular calcium signaling and in the immune response. The ER-related functions of calreticulin in the assembly of major histocompatibility complex (MHC) class I molecules are well-studied and provide many insights into the modes of substrate and co-chaperone recognition by calreticulin. Calreticulin is also detectable on the cell surface under some conditions, where it induces the phagocytosis of apoptotic cells. Furthermore, mutations of calreticulin induce cell transformation in myeloproliferative neoplasms (MPN). Studies of the functions of the mutant calreticulin in cell transformation and immunity have provided many insights into the normal biology of calreticulin, which are discussed.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"59 ","pages":"145-162"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8969281/pdf/nihms-1788910.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38961751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-74889-0_8
Vladimir Paar, Ines Vlahović, Marija Rosandić, Matko Glunčić
Here we present three interesting novel human Higher-Order Repeats (HORs) discovered using the HOR-searching method with GRM algorithm: (a) The novel Neuroblastoma Breakpoint Family gene (NBPF) 3mer HOR, discovered applying GRM algorithm to human chromosome 1 (Paar et al., Mol Biol Evol 28:1877-1892, 2011). NBPF 3mer HOR is based on previously known ~1.6 kb NBPF primary repeat monomers (known as DUF1220 domain) in human chromosome 1, but the NBPF HOR was not known before its discovery by using GRM. It should be stressed that the NBPF HOR presents a unique human-specific pattern, distinguishing human from nonhuman primates. (b) The novel quartic HOR (2mer⊃2mer⊃9mer) discovered using the GRM algorithm for analysis of hornerin genes in human chromosome 1 (Paar et al., Mol Biol Evol 28:1877-1892, 2011). This quartic HOR is based on 39 bp hornerin primary repeat monomer in human chromosome 1. To our knowledge, this is the first known case of quartic HOR, with four levels of hierarchy of HOR organization. (c) The novel 33mer alpha satellite HOR in human chromosome 21, discovered using the GRM algorithm (Glunčić et al., Sci Rep 9:12629, 2019). This 33mer HOR in the smallest human chromosome is the largest alpha satellite HOR copy among all 22 somatic human chromosomes. Moreover, the same 33mer HOR is present in the hg38 human genome assembly of four human chromosomes: 21, 22, 13, and 14. We point out that the DUF1220 encoding genomic structures in NBPF genes in human chromosome 1, recently studied and related to the brain evolution and pathologies and cognitive aptitude, can be considered in the framework of the general concept of HORs, already extensively studied in genomics, especially in the centromeric region.
{"title":"Global Repeat Map (GRM): Advantageous Method for Discovery of Largest Higher-Order Repeats (HORs) in Neuroblastoma Breakpoint Family (NBPF) Genes, in Hornerin Exon and in Chromosome 21 Centromere.","authors":"Vladimir Paar, Ines Vlahović, Marija Rosandić, Matko Glunčić","doi":"10.1007/978-3-030-74889-0_8","DOIUrl":"https://doi.org/10.1007/978-3-030-74889-0_8","url":null,"abstract":"<p><p>Here we present three interesting novel human Higher-Order Repeats (HORs) discovered using the HOR-searching method with GRM algorithm: (a) The novel Neuroblastoma Breakpoint Family gene (NBPF) 3mer HOR, discovered applying GRM algorithm to human chromosome 1 (Paar et al., Mol Biol Evol 28:1877-1892, 2011). NBPF 3mer HOR is based on previously known ~1.6 kb NBPF primary repeat monomers (known as DUF1220 domain) in human chromosome 1, but the NBPF HOR was not known before its discovery by using GRM. It should be stressed that the NBPF HOR presents a unique human-specific pattern, distinguishing human from nonhuman primates. (b) The novel quartic HOR (2mer⊃2mer⊃9mer) discovered using the GRM algorithm for analysis of hornerin genes in human chromosome 1 (Paar et al., Mol Biol Evol 28:1877-1892, 2011). This quartic HOR is based on 39 bp hornerin primary repeat monomer in human chromosome 1. To our knowledge, this is the first known case of quartic HOR, with four levels of hierarchy of HOR organization. (c) The novel 33mer alpha satellite HOR in human chromosome 21, discovered using the GRM algorithm (Glunčić et al., Sci Rep 9:12629, 2019). This 33mer HOR in the smallest human chromosome is the largest alpha satellite HOR copy among all 22 somatic human chromosomes. Moreover, the same 33mer HOR is present in the hg38 human genome assembly of four human chromosomes: 21, 22, 13, and 14. We point out that the DUF1220 encoding genomic structures in NBPF genes in human chromosome 1, recently studied and related to the brain evolution and pathologies and cognitive aptitude, can be considered in the framework of the general concept of HORs, already extensively studied in genomics, especially in the centromeric region.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"60 ","pages":"203-234"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39306379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-74889-0_1
Maggie P Lauria Sneideman, Victoria H Meller
Satellite repeats make up a large fraction of the genomes of many higher eukaryotes. Until recently these sequences were viewed as molecular parasites with few functions. Drosophila melanogaster and related species have a wealth of diverse satellite repeats. Comparative studies of Drosophilids have been instrumental in understanding how these rapidly evolving sequences change and move. Remarkably, satellite repeats have been found to modulate gene expression and mediate genetic conflicts between chromosomes and between closely related fly species. This suggests that satellites play a key role in speciation. We have taken advantage of the depth of research on satellite repeats in flies to review the known functions of these sequences and consider their central role in evolution and gene expression.
{"title":"Drosophila Satellite Repeats at the Intersection of Chromatin, Gene Regulation and Evolution.","authors":"Maggie P Lauria Sneideman, Victoria H Meller","doi":"10.1007/978-3-030-74889-0_1","DOIUrl":"https://doi.org/10.1007/978-3-030-74889-0_1","url":null,"abstract":"<p><p>Satellite repeats make up a large fraction of the genomes of many higher eukaryotes. Until recently these sequences were viewed as molecular parasites with few functions. Drosophila melanogaster and related species have a wealth of diverse satellite repeats. Comparative studies of Drosophilids have been instrumental in understanding how these rapidly evolving sequences change and move. Remarkably, satellite repeats have been found to modulate gene expression and mediate genetic conflicts between chromosomes and between closely related fly species. This suggests that satellites play a key role in speciation. We have taken advantage of the depth of research on satellite repeats in flies to review the known functions of these sequences and consider their central role in evolution and gene expression.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"60 ","pages":"1-26"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39306945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}