Pub Date : 2018-01-01DOI: 10.1007/978-3-319-96704-2_5
Matthew N J Seaman
The retromer complex is a key element of the endosomal protein sorting machinery being involved in trafficking of proteins from endosomes to the Golgi and also endosomes to the cell surface. There is now accumulating evidence that retromer also has a prominent role in regulating the activity of many diverse signaling proteins that traffic through endosomes and this activity has profound implications for the functioning of many different cell and tissue types from neuronal cells to cells of the immune system to specialized polarized epithelial cells of the retina. In this review, the protein composition of the retromer complex will be described along with many of the accessory factors that facilitate retromer-mediated endosomal protein sorting to detail how retromer activity contributes to the regulation of several distinct signaling pathways.
{"title":"Retromer and Its Role in Regulating Signaling at Endosomes.","authors":"Matthew N J Seaman","doi":"10.1007/978-3-319-96704-2_5","DOIUrl":"https://doi.org/10.1007/978-3-319-96704-2_5","url":null,"abstract":"<p><p>The retromer complex is a key element of the endosomal protein sorting machinery being involved in trafficking of proteins from endosomes to the Golgi and also endosomes to the cell surface. There is now accumulating evidence that retromer also has a prominent role in regulating the activity of many diverse signaling proteins that traffic through endosomes and this activity has profound implications for the functioning of many different cell and tissue types from neuronal cells to cells of the immune system to specialized polarized epithelial cells of the retina. In this review, the protein composition of the retromer complex will be described along with many of the accessory factors that facilitate retromer-mediated endosomal protein sorting to detail how retromer activity contributes to the regulation of several distinct signaling pathways.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"57 ","pages":"137-149"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-96704-2_5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36389073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1007/978-3-319-96704-2_7
Rachel Moore, Marta Giralt Pujol, Zhou Zhu, Elizabeth Smythe
Growth factor receptors play a variety of roles during embryonic development and in adult homeostasis. These receptors are activated repeatedly in different cellular contexts and with different cellular outcomes. This begs the question as to how cells in a particular developmental, spatial and temporal context, or in adult tissue, interpret signalling by growth factor receptors in order to deliver qualitatively different signalling outputs. One mechanism by which this could occur is via endocytic regulation. The original paradigm for the role of endocytosis in growth factor receptor signalling was that receptor uptake has a quantitative role in signalling by reducing the number of cell surface receptors available for activation and targeting activated receptors for degradation. However, a range of studies over the last several years, in many different experimental systems, has demonstrated an additional qualitative role for endocytic trafficking in receptor signalling, with specific outcomes depending on the location of the signalling complex. Confinement of receptors within endosomes can spatially regulate signalling, facilitating specific protein interactions or post-translational modifications that alter throughout the trafficking process. Therefore, endocytosis does not simply regulate cell surface expression, but tightly controls protein interactions and function to produce distinct outcomes.
{"title":"Interplay of Endocytosis and Growth Factor Receptor Signalling.","authors":"Rachel Moore, Marta Giralt Pujol, Zhou Zhu, Elizabeth Smythe","doi":"10.1007/978-3-319-96704-2_7","DOIUrl":"https://doi.org/10.1007/978-3-319-96704-2_7","url":null,"abstract":"<p><p>Growth factor receptors play a variety of roles during embryonic development and in adult homeostasis. These receptors are activated repeatedly in different cellular contexts and with different cellular outcomes. This begs the question as to how cells in a particular developmental, spatial and temporal context, or in adult tissue, interpret signalling by growth factor receptors in order to deliver qualitatively different signalling outputs. One mechanism by which this could occur is via endocytic regulation. The original paradigm for the role of endocytosis in growth factor receptor signalling was that receptor uptake has a quantitative role in signalling by reducing the number of cell surface receptors available for activation and targeting activated receptors for degradation. However, a range of studies over the last several years, in many different experimental systems, has demonstrated an additional qualitative role for endocytic trafficking in receptor signalling, with specific outcomes depending on the location of the signalling complex. Confinement of receptors within endosomes can spatially regulate signalling, facilitating specific protein interactions or post-translational modifications that alter throughout the trafficking process. Therefore, endocytosis does not simply regulate cell surface expression, but tightly controls protein interactions and function to produce distinct outcomes.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"57 ","pages":"181-202"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-96704-2_7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36389075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1007/978-3-319-96704-2_8
Olivia Muriel, Miguel Sánchez-Álvarez, Raffaele Strippoli, Miguel Angel Del Pozo
Caveolae are 60-80 nm invaginated plasma membrane (PM) nanodomains, with a specific lipid and protein composition, which assist and regulate multiple processes in the plasma membrane-ranging from the organization of signalling complexes to the mechanical adaptation to changes in PM tension. However, since their initial descriptions, these structures have additionally been found tightly linked to internalization processes, mechanoadaptation, to the regulation of signalling events and of endosomal trafficking. Here, we review caveolae biology from this perspective, and its implications for cell physiology and disease.
{"title":"Role of the Endocytosis of Caveolae in Intracellular Signaling and Metabolism.","authors":"Olivia Muriel, Miguel Sánchez-Álvarez, Raffaele Strippoli, Miguel Angel Del Pozo","doi":"10.1007/978-3-319-96704-2_8","DOIUrl":"https://doi.org/10.1007/978-3-319-96704-2_8","url":null,"abstract":"<p><p>Caveolae are 60-80 nm invaginated plasma membrane (PM) nanodomains, with a specific lipid and protein composition, which assist and regulate multiple processes in the plasma membrane-ranging from the organization of signalling complexes to the mechanical adaptation to changes in PM tension. However, since their initial descriptions, these structures have additionally been found tightly linked to internalization processes, mechanoadaptation, to the regulation of signalling events and of endosomal trafficking. Here, we review caveolae biology from this perspective, and its implications for cell physiology and disease.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"57 ","pages":"203-234"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-96704-2_8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36388560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1007/978-3-319-96704-2_10
Silvia Sposini, Aylin C Hanyaloglu
The G protein-coupled receptor (GPCR) superfamily activates complex signal pathways, yet untangling these signaling systems to understand how specificity in receptor signaling pathways is achieved, has been a challenging question. The roles of membrane trafficking in GPCR signal regulation has undergone a recent paradigm shift, from a mechanism that programs the plasma membrane G protein signaling profile to providing distinct signaling platforms critical for specifying receptor function in vivo. In this chapter, we discuss this evolution of our understanding in the endocytic trafficking systems employed by GPCRs, and how such systems play a deeply integrated role with signaling. We describe recent studies that suggest that the endomembrane compartment can provide a mechanism to both specify, and yet also diversify, GPCR signal transduction. These new evolving models could aid mechanistic understanding of complex disease and provide novel therapeutic avenues.
{"title":"Evolving View of Membrane Trafficking and Signaling Systems for G Protein-Coupled Receptors.","authors":"Silvia Sposini, Aylin C Hanyaloglu","doi":"10.1007/978-3-319-96704-2_10","DOIUrl":"https://doi.org/10.1007/978-3-319-96704-2_10","url":null,"abstract":"<p><p>The G protein-coupled receptor (GPCR) superfamily activates complex signal pathways, yet untangling these signaling systems to understand how specificity in receptor signaling pathways is achieved, has been a challenging question. The roles of membrane trafficking in GPCR signal regulation has undergone a recent paradigm shift, from a mechanism that programs the plasma membrane G protein signaling profile to providing distinct signaling platforms critical for specifying receptor function in vivo. In this chapter, we discuss this evolution of our understanding in the endocytic trafficking systems employed by GPCRs, and how such systems play a deeply integrated role with signaling. We describe recent studies that suggest that the endomembrane compartment can provide a mechanism to both specify, and yet also diversify, GPCR signal transduction. These new evolving models could aid mechanistic understanding of complex disease and provide novel therapeutic avenues.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"57 ","pages":"273-299"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-96704-2_10","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36388563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1007/978-3-319-96704-2_1
Maria Podinovskaia, Anne Spang
Endocytosis is a means for the cell to sample its environment for nutrients and regulate plasma membrane (PM) composition and area. Whereas the majority of internalized cargo is recycled back to the cell surface, select material is sent to the lysosome for degradation. Endosomes further play major roles in central cell activities as diverse as establishment of cell polarity and signaling, lysosomal storage and immunity. The complexity of endosomal functions is reflected by the extensive changes to endosome properties as they mature. The identity of individual endosomes is influenced by the presence of specific Rab GTPases and phosphoinositides (PIPs), which coordinate membrane traffic and facilitate endosomal functions. Motors and tethers direct the endosomes to the required locations and moderate fusion with other organelles. The maintenance of the elaborate endosomal network is supported by the ER and the trans-Golgi network (TGN), which promote the exchange of membrane components, provide enzymes, and assist with signaling. Additionally, V-ATPase is emerging as an underappreciated coordinator of endosome maturation and cell signaling. The inputs of the various mediators of endosome maturation are tightly regulated and coordinated to ensure appropriate maintenance and functioning of endosomes at each stage of the maturation process. Perturbations in endosome maturation are implicated in devastating diseases, such as neurodegeneration and cancer, and the endosome maturation processes are manipulated and exploited by intracellular pathogens to meet their own needs. A greater understanding of coordination and fine-tuning of endosome maturation will help us address various pathologies more effectively.
{"title":"The Endosomal Network: Mediators and Regulators of Endosome Maturation.","authors":"Maria Podinovskaia, Anne Spang","doi":"10.1007/978-3-319-96704-2_1","DOIUrl":"https://doi.org/10.1007/978-3-319-96704-2_1","url":null,"abstract":"<p><p>Endocytosis is a means for the cell to sample its environment for nutrients and regulate plasma membrane (PM) composition and area. Whereas the majority of internalized cargo is recycled back to the cell surface, select material is sent to the lysosome for degradation. Endosomes further play major roles in central cell activities as diverse as establishment of cell polarity and signaling, lysosomal storage and immunity. The complexity of endosomal functions is reflected by the extensive changes to endosome properties as they mature. The identity of individual endosomes is influenced by the presence of specific Rab GTPases and phosphoinositides (PIPs), which coordinate membrane traffic and facilitate endosomal functions. Motors and tethers direct the endosomes to the required locations and moderate fusion with other organelles. The maintenance of the elaborate endosomal network is supported by the ER and the trans-Golgi network (TGN), which promote the exchange of membrane components, provide enzymes, and assist with signaling. Additionally, V-ATPase is emerging as an underappreciated coordinator of endosome maturation and cell signaling. The inputs of the various mediators of endosome maturation are tightly regulated and coordinated to ensure appropriate maintenance and functioning of endosomes at each stage of the maturation process. Perturbations in endosome maturation are implicated in devastating diseases, such as neurodegeneration and cancer, and the endosome maturation processes are manipulated and exploited by intracellular pathogens to meet their own needs. A greater understanding of coordination and fine-tuning of endosome maturation will help us address various pathologies more effectively.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"57 ","pages":"1-38"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-96704-2_1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36389069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1007/978-3-319-96704-2_11
Alicia Daeden, Marcos Gonzalez-Gaitan
Endocytosis is key in a number of cell events. In particular, its role during cell division has been a challenging question: while early studies examined whether endocytosis occurs during cell division, recent works show that, during division, cells do perform endocytosis actively. More importantly, during asymmetric cell division, endocytic pathways also control Notch signaling: endocytic vesicles regulate the presence, at the plasma membrane, of receptors and ligands at different levels between the two-daughter cells. Both early and late endocytic compartments have been shown to exert key regulatory controls by up-regulating or down-regulating Notch signaling in those cells. This biased Notch signaling enable finally cell fate assignation and specification which play a central role in development and physiology. In this chapter, we cover a number of significant works on endosomal trafficking evincing the importance of endocytosis in Notch-mediated cell fate specification during development.
{"title":"Endosomal Trafficking During Mitosis and Notch-Dependent Asymmetric Division.","authors":"Alicia Daeden, Marcos Gonzalez-Gaitan","doi":"10.1007/978-3-319-96704-2_11","DOIUrl":"https://doi.org/10.1007/978-3-319-96704-2_11","url":null,"abstract":"<p><p>Endocytosis is key in a number of cell events. In particular, its role during cell division has been a challenging question: while early studies examined whether endocytosis occurs during cell division, recent works show that, during division, cells do perform endocytosis actively. More importantly, during asymmetric cell division, endocytic pathways also control Notch signaling: endocytic vesicles regulate the presence, at the plasma membrane, of receptors and ligands at different levels between the two-daughter cells. Both early and late endocytic compartments have been shown to exert key regulatory controls by up-regulating or down-regulating Notch signaling in those cells. This biased Notch signaling enable finally cell fate assignation and specification which play a central role in development and physiology. In this chapter, we cover a number of significant works on endosomal trafficking evincing the importance of endocytosis in Notch-mediated cell fate specification during development.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"57 ","pages":"301-329"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-96704-2_11","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36388565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1007/978-3-319-96704-2_2
Noga Budick-Harmelin, Marta Miaczynska
Maintenance of physiologic cellular functions and homeostasis requires highly coordinated interactions between different cellular compartments. In this regard, the endocytic system, which plays a key role in cargo internalization and trafficking within the cell, participates in upkeep of intracellular dynamics, while communicating with multiple organelles. This chapter will discuss the function of endosomes from a standpoint of cellular integration. We will present examples of different types of interactions between endosomes and other cellular compartments, such as the endoplasmic reticulum (ER), mitochondria, the plasma membrane (PM), and the nuclear envelope. In addition, we will describe the incorporation of endocytic components, such as endosomal sorting complexes required for transport (ESCRT) proteins and Rab small GTPases, into cellular processes that operate outside of the endolysosomal pathway. The significance of endosomal interactions for processes such as signaling regulation, intracellular trafficking, organelle dynamics, metabolic control, and homeostatic responses will be reviewed. Accumulating data indicate that beyond its involvement in cargo transport, the endocytic pathway is comprehensively integrated into other systems of the cell and plays multiple roles in the complex net of cellular functions.
{"title":"Integration of the Endocytic System into the Network of Cellular Functions.","authors":"Noga Budick-Harmelin, Marta Miaczynska","doi":"10.1007/978-3-319-96704-2_2","DOIUrl":"https://doi.org/10.1007/978-3-319-96704-2_2","url":null,"abstract":"<p><p>Maintenance of physiologic cellular functions and homeostasis requires highly coordinated interactions between different cellular compartments. In this regard, the endocytic system, which plays a key role in cargo internalization and trafficking within the cell, participates in upkeep of intracellular dynamics, while communicating with multiple organelles. This chapter will discuss the function of endosomes from a standpoint of cellular integration. We will present examples of different types of interactions between endosomes and other cellular compartments, such as the endoplasmic reticulum (ER), mitochondria, the plasma membrane (PM), and the nuclear envelope. In addition, we will describe the incorporation of endocytic components, such as endosomal sorting complexes required for transport (ESCRT) proteins and Rab small GTPases, into cellular processes that operate outside of the endolysosomal pathway. The significance of endosomal interactions for processes such as signaling regulation, intracellular trafficking, organelle dynamics, metabolic control, and homeostatic responses will be reviewed. Accumulating data indicate that beyond its involvement in cargo transport, the endocytic pathway is comprehensively integrated into other systems of the cell and plays multiple roles in the complex net of cellular functions.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"57 ","pages":"39-63"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-96704-2_2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36389070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1007/978-3-319-96704-2_4
Simona M Migliano, David Teis
The ubiquitin-dependent degradation of membrane proteins via the multivesicular body (MVB) pathway requires the Endosomal Sorting Complexes Required for Transport (ESCRT). This molecular machinery is composed of five distinct multi-subunit complexes. On the surface of endosomes, ESCRT-0, -I and -II bind to ubiquitinated membrane proteins, while ESCRT-III and Vps4 bud intraluminal vesicles (ILVs) into the lumen of the endosomes. By working together, ESCRTs package membrane proteins into ILVs and thereby generate MVBs. The fusion of mature MVBs with lysosomes delivers ILVs into the lysosomal lumen where the membrane proteins are degraded. Besides generating ILVs, the ESCRT machinery mediates for topologically related membrane budding processes at the plasma membrane and the nuclear envelop. In this chapter, we briefly discuss membrane protein ubiquitination, endocytosis, and summarize current knowledge on the ESCRT machinery in the MVB pathway.
{"title":"ESCRT and Membrane Protein Ubiquitination.","authors":"Simona M Migliano, David Teis","doi":"10.1007/978-3-319-96704-2_4","DOIUrl":"https://doi.org/10.1007/978-3-319-96704-2_4","url":null,"abstract":"<p><p>The ubiquitin-dependent degradation of membrane proteins via the multivesicular body (MVB) pathway requires the Endosomal Sorting Complexes Required for Transport (ESCRT). This molecular machinery is composed of five distinct multi-subunit complexes. On the surface of endosomes, ESCRT-0, -I and -II bind to ubiquitinated membrane proteins, while ESCRT-III and Vps4 bud intraluminal vesicles (ILVs) into the lumen of the endosomes. By working together, ESCRTs package membrane proteins into ILVs and thereby generate MVBs. The fusion of mature MVBs with lysosomes delivers ILVs into the lysosomal lumen where the membrane proteins are degraded. Besides generating ILVs, the ESCRT machinery mediates for topologically related membrane budding processes at the plasma membrane and the nuclear envelop. In this chapter, we briefly discuss membrane protein ubiquitination, endocytosis, and summarize current knowledge on the ESCRT machinery in the MVB pathway.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"57 ","pages":"107-135"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-96704-2_4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36389072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1007/978-3-319-96704-2_6
Geoffrey G Hesketh, Lena Wartosch, Luther J Davis, Nicholas A Bright, J Paul Luzio
In addition to being the terminal degradative compartment of the cell's endocytic and autophagic pathways, the lysosome is a multifunctional signalling hub integrating the cell's response to nutrient status and growth factor/hormone signalling. The cytosolic surface of the limiting membrane of the lysosome is the site of activation of the multiprotein complex mammalian target of rapamycin complex 1 (mTORC1), which phosphorylates numerous cell growth-related substrates, including transcription factor EB (TFEB). Under conditions in which mTORC1 is inhibited including starvation, TFEB becomes dephosphorylated and translocates to the nucleus where it functions as a master regulator of lysosome biogenesis. The signalling role of lysosomes is not limited to this pathway. They act as an intracellular Ca2+ store, which can release Ca2+ into the cytosol for both local effects on membrane fusion and pleiotropic effects within the cell. The relationship and crosstalk between the lysosomal and endoplasmic reticulum (ER) Ca2+ stores play a role in shaping intracellular Ca2+ signalling. Lysosomes also perform other signalling functions, which are discussed. Current views of the lysosomal compartment recognize its dynamic nature. It includes endolysosomes, autolysosome and storage lysosomes that are constantly engaged in fusion/fission events and lysosome regeneration. How signalling is affected by individual lysosomal organelles being at different stages of these processes and/or at different sites within the cell is poorly understood, but is discussed.
{"title":"The Lysosome and Intracellular Signalling.","authors":"Geoffrey G Hesketh, Lena Wartosch, Luther J Davis, Nicholas A Bright, J Paul Luzio","doi":"10.1007/978-3-319-96704-2_6","DOIUrl":"https://doi.org/10.1007/978-3-319-96704-2_6","url":null,"abstract":"<p><p>In addition to being the terminal degradative compartment of the cell's endocytic and autophagic pathways, the lysosome is a multifunctional signalling hub integrating the cell's response to nutrient status and growth factor/hormone signalling. The cytosolic surface of the limiting membrane of the lysosome is the site of activation of the multiprotein complex mammalian target of rapamycin complex 1 (mTORC1), which phosphorylates numerous cell growth-related substrates, including transcription factor EB (TFEB). Under conditions in which mTORC1 is inhibited including starvation, TFEB becomes dephosphorylated and translocates to the nucleus where it functions as a master regulator of lysosome biogenesis. The signalling role of lysosomes is not limited to this pathway. They act as an intracellular Ca<sup>2+</sup> store, which can release Ca<sup>2+</sup> into the cytosol for both local effects on membrane fusion and pleiotropic effects within the cell. The relationship and crosstalk between the lysosomal and endoplasmic reticulum (ER) Ca<sup>2+</sup> stores play a role in shaping intracellular Ca<sup>2+</sup> signalling. Lysosomes also perform other signalling functions, which are discussed. Current views of the lysosomal compartment recognize its dynamic nature. It includes endolysosomes, autolysosome and storage lysosomes that are constantly engaged in fusion/fission events and lysosome regeneration. How signalling is affected by individual lysosomal organelles being at different stages of these processes and/or at different sites within the cell is poorly understood, but is discussed.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"57 ","pages":"151-180"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-96704-2_6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36389074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1007/978-3-319-96704-2_3
Francesc Tebar, Carlos Enrich, Carles Rentero, Thomas Grewal
The endocytic compartment is not only the functional continuity of the plasma membrane but consists of a diverse collection of intracellular heterogeneous complex structures that transport, amplify, sustain, and/or sort signaling molecules. Over the years, it has become evident that early, late, and recycling endosomes represent an interconnected vesicular-tubular network able to form signaling platforms that dynamically and efficiently translate extracellular signals into biological outcome. Cell activation, differentiation, migration, death, and survival are some of the endpoints of endosomal signaling. Hence, to understand the role of the endosomal system in signal transduction in space and time, it is therefore necessary to dissect and identify the plethora of decoders that are operational in the different steps along the endocytic pathway. In this chapter, we focus on the regulation of spatiotemporal signaling in cells, considering endosomes as central platforms, in which several small GTPases proteins of the Ras superfamily, in particular Ras and Rac1, actively participate to control cellular processes like proliferation and cell mobility.
{"title":"GTPases Rac1 and Ras Signaling from Endosomes.","authors":"Francesc Tebar, Carlos Enrich, Carles Rentero, Thomas Grewal","doi":"10.1007/978-3-319-96704-2_3","DOIUrl":"https://doi.org/10.1007/978-3-319-96704-2_3","url":null,"abstract":"<p><p>The endocytic compartment is not only the functional continuity of the plasma membrane but consists of a diverse collection of intracellular heterogeneous complex structures that transport, amplify, sustain, and/or sort signaling molecules. Over the years, it has become evident that early, late, and recycling endosomes represent an interconnected vesicular-tubular network able to form signaling platforms that dynamically and efficiently translate extracellular signals into biological outcome. Cell activation, differentiation, migration, death, and survival are some of the endpoints of endosomal signaling. Hence, to understand the role of the endosomal system in signal transduction in space and time, it is therefore necessary to dissect and identify the plethora of decoders that are operational in the different steps along the endocytic pathway. In this chapter, we focus on the regulation of spatiotemporal signaling in cells, considering endosomes as central platforms, in which several small GTPases proteins of the Ras superfamily, in particular Ras and Rac1, actively participate to control cellular processes like proliferation and cell mobility.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"57 ","pages":"65-105"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-96704-2_3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36389071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}