Pub Date : 2017-01-01DOI: 10.1007/978-3-319-58592-5_12
Karen H Miga
Human centromeres are genomic regions that act as sites of kinetochore assembly to ensure proper chromosome segregation during mitosis and meiosis. Although the biological importance of centromeres in genome stability, and ultimately, cell viability are well understood, the complete sequence content and organization in these multi-megabase-sized regions remains unknown. The lack of a high-resolution reference assembly inhibits standard bioinformatics protocols, and as a result, sequence-based studies involving human centromeres lag far behind the advances made for the non-repetitive sequences in the human genome. In this chapter, I introduce what is known about the genomic organization in the highly repetitive regions spanning human centromeres, and discuss the challenges these sequences pose for assembly, alignment, and data interpretation. Overcoming these obstacles is expected to issue a new era for centromere genomics, which will offer new discoveries in basic cell biology and human biomedical research.
{"title":"The Promises and Challenges of Genomic Studies of Human Centromeres.","authors":"Karen H Miga","doi":"10.1007/978-3-319-58592-5_12","DOIUrl":"https://doi.org/10.1007/978-3-319-58592-5_12","url":null,"abstract":"<p><p>Human centromeres are genomic regions that act as sites of kinetochore assembly to ensure proper chromosome segregation during mitosis and meiosis. Although the biological importance of centromeres in genome stability, and ultimately, cell viability are well understood, the complete sequence content and organization in these multi-megabase-sized regions remains unknown. The lack of a high-resolution reference assembly inhibits standard bioinformatics protocols, and as a result, sequence-based studies involving human centromeres lag far behind the advances made for the non-repetitive sequences in the human genome. In this chapter, I introduce what is known about the genomic organization in the highly repetitive regions spanning human centromeres, and discuss the challenges these sequences pose for assembly, alignment, and data interpretation. Overcoming these obstacles is expected to issue a new era for centromere genomics, which will offer new discoveries in basic cell biology and human biomedical research.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"56 ","pages":"285-304"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-58592-5_12","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35444653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1007/978-3-319-58592-5_4
Steven Friedman, Michael Freitag
The centromere is an essential chromosomal locus that dictates the nucleation point for assembly of the kinetochore and subsequent attachment of spindle microtubules during chromosome segregation. Research over the last decades demonstrated that centromeres are defined by a combination of genetic and epigenetic factors. Recent work showed that centromeres are quite diverse and flexible and that many types of centromere sequences and centromeric chromatin ("centrochromatin") have evolved. The kingdom of the fungi serves as an outstanding example of centromere plasticity, including organisms with centromeres as diverse as 0.15-300 kb in length, and with different types of chromatin states for most species examined thus far. Some of the species in the less familiar taxa provide excellent opportunities to help us better understand centromere biology in all eukaryotes, which may improve treatment options against fungal infection, and biotechnologies based on fungi. This review summarizes the current knowledge of fungal centromeres and centrochromatin, including an outlook for future research.
{"title":"Centrochromatin of Fungi.","authors":"Steven Friedman, Michael Freitag","doi":"10.1007/978-3-319-58592-5_4","DOIUrl":"https://doi.org/10.1007/978-3-319-58592-5_4","url":null,"abstract":"<p><p>The centromere is an essential chromosomal locus that dictates the nucleation point for assembly of the kinetochore and subsequent attachment of spindle microtubules during chromosome segregation. Research over the last decades demonstrated that centromeres are defined by a combination of genetic and epigenetic factors. Recent work showed that centromeres are quite diverse and flexible and that many types of centromere sequences and centromeric chromatin (\"centrochromatin\") have evolved. The kingdom of the fungi serves as an outstanding example of centromere plasticity, including organisms with centromeres as diverse as 0.15-300 kb in length, and with different types of chromatin states for most species examined thus far. Some of the species in the less familiar taxa provide excellent opportunities to help us better understand centromere biology in all eukaryotes, which may improve treatment options against fungal infection, and biotechnologies based on fungi. This review summarizes the current knowledge of fungal centromeres and centrochromatin, including an outlook for future research.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"56 ","pages":"85-109"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-58592-5_4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35346767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1007/978-3-319-58592-5_6
Ana Stankovic, Lars E T Jansen
Centromeres are chromatin domains specified by nucleosomes containing the histone H3 variant, CENP-A. This unique centromeric structure is at the heart of a strong self-templating epigenetic mechanism that renders centromeres heritable. We review how specific quantitative microscopy approaches have contributed to the determination of the copy number, architecture, size, and dynamics of centromeric chromatin and its associated centromere complex and kinetochore. These efforts revealed that the key to long-term centromere maintenance is the slow turnover of CENP-A nucleosomes, a critical size of the chromatin domain and its cell cycle-coupled replication. These features come together to maintain homeostasis of a chromatin locus that directs its own epigenetic inheritance and facilitates the assembly of the mitotic kinetochore.
{"title":"Quantitative Microscopy Reveals Centromeric Chromatin Stability, Size, and Cell Cycle Mechanisms to Maintain Centromere Homeostasis.","authors":"Ana Stankovic, Lars E T Jansen","doi":"10.1007/978-3-319-58592-5_6","DOIUrl":"https://doi.org/10.1007/978-3-319-58592-5_6","url":null,"abstract":"<p><p>Centromeres are chromatin domains specified by nucleosomes containing the histone H3 variant, CENP-A. This unique centromeric structure is at the heart of a strong self-templating epigenetic mechanism that renders centromeres heritable. We review how specific quantitative microscopy approaches have contributed to the determination of the copy number, architecture, size, and dynamics of centromeric chromatin and its associated centromere complex and kinetochore. These efforts revealed that the key to long-term centromere maintenance is the slow turnover of CENP-A nucleosomes, a critical size of the chromatin domain and its cell cycle-coupled replication. These features come together to maintain homeostasis of a chromatin locus that directs its own epigenetic inheritance and facilitates the assembly of the mitotic kinetochore.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"56 ","pages":"139-162"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-58592-5_6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35348603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1007/978-3-319-58592-5_10
Shannon M McNulty, Beth A Sullivan
Centromere function is essential for genome stability and chromosome inheritance. Typically, each chromosome has a single locus that consistently serves as the site of centromere formation and kinetochore assembly. Decades of research have defined the DNA sequence and protein components of functional centromeres, and the interdependencies of specific protein complexes for proper centromere assembly. Less is known about how centromeres are disassembled or functionally silenced. Centromere silencing, or inactivation, is particularly relevant in the cases of dicentric chromosomes that occur via genome rearrangements that place two centromeres on the same chromosome. Dicentrics are usually unstable unless one centromere is inactivated, thereby allowing the structurally dicentric chromosome to behave like one of the monocentric, endogenous chromosomes. The molecular basis for centromere inactivation is not well understood, although studies in model organisms and in humans suggest that both genomic and epigenetic mechanisms are involved. In this chapter, we review recent studies using synthetic chromosomes and engineered or induced dicentrics from various organisms to define the molecular processes that are involved in the complex process of centromere inactivation.
{"title":"Centromere Silencing Mechanisms.","authors":"Shannon M McNulty, Beth A Sullivan","doi":"10.1007/978-3-319-58592-5_10","DOIUrl":"https://doi.org/10.1007/978-3-319-58592-5_10","url":null,"abstract":"<p><p>Centromere function is essential for genome stability and chromosome inheritance. Typically, each chromosome has a single locus that consistently serves as the site of centromere formation and kinetochore assembly. Decades of research have defined the DNA sequence and protein components of functional centromeres, and the interdependencies of specific protein complexes for proper centromere assembly. Less is known about how centromeres are disassembled or functionally silenced. Centromere silencing, or inactivation, is particularly relevant in the cases of dicentric chromosomes that occur via genome rearrangements that place two centromeres on the same chromosome. Dicentrics are usually unstable unless one centromere is inactivated, thereby allowing the structurally dicentric chromosome to behave like one of the monocentric, endogenous chromosomes. The molecular basis for centromere inactivation is not well understood, although studies in model organisms and in humans suggest that both genomic and epigenetic mechanisms are involved. In this chapter, we review recent studies using synthetic chromosomes and engineered or induced dicentrics from various organisms to define the molecular processes that are involved in the complex process of centromere inactivation.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"56 ","pages":"233-255"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-58592-5_10","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35348607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1007/978-3-319-58592-5_13
M Dumont, D Fachinetti
Faithful chromosome segregation during cell division depends on the centromere, a complex DNA/protein structure that links chromosomes to spindle microtubules. This chromosomal domain has to be marked throughout cell division and its chromosomal localization preserved across cell generations. From fission yeast to human, centromeres are established on a series of repetitive DNA sequences and on specialized centromeric chromatin. This chromatin is enriched with the histone H3 variant, named CENP-A, that was demonstrated to be the epigenetic mark that maintains centromere identity and function indefinitely. Although centromere identity is thought to be exclusively epigenetic, the presence of specific DNA sequences in the majority of eukaryotes and of the centromeric protein CENP-B that binds to these sequences, suggests the existence of a genetic component as well. In this review, we will highlight the importance of centromeric sequences for centromere formation and function, and discuss the centromere DNA sequence/CENP-B paradox.
{"title":"DNA Sequences in Centromere Formation and Function.","authors":"M Dumont, D Fachinetti","doi":"10.1007/978-3-319-58592-5_13","DOIUrl":"https://doi.org/10.1007/978-3-319-58592-5_13","url":null,"abstract":"<p><p>Faithful chromosome segregation during cell division depends on the centromere, a complex DNA/protein structure that links chromosomes to spindle microtubules. This chromosomal domain has to be marked throughout cell division and its chromosomal localization preserved across cell generations. From fission yeast to human, centromeres are established on a series of repetitive DNA sequences and on specialized centromeric chromatin. This chromatin is enriched with the histone H3 variant, named CENP-A, that was demonstrated to be the epigenetic mark that maintains centromere identity and function indefinitely. Although centromere identity is thought to be exclusively epigenetic, the presence of specific DNA sequences in the majority of eukaryotes and of the centromeric protein CENP-B that binds to these sequences, suggests the existence of a genetic component as well. In this review, we will highlight the importance of centromeric sequences for centromere formation and function, and discuss the centromere DNA sequence/CENP-B paradox.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"56 ","pages":"305-336"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-58592-5_13","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35348610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1007/978-3-319-51284-6_5
Joseph S Zarins-Tutt, Emily R Abraham, Christopher S Bailey, Rebecca J M Goss
Nature provides a valuable resource of medicinally relevant compounds, with many antimicrobial and antitumor agents entering clinical trials being derived from natural products. The generation of analogues of these bioactive natural products is important in order to gain a greater understanding of structure activity relationships; probing the mechanism of action, as well as to optimise the natural product's bioactivity and bioavailability. This chapter critically examines different approaches to generating natural products and their analogues, exploring the way in which synthetic and biosynthetic approaches may be blended together to enable expeditious access to new designer natural products.
{"title":"Bluegenics: Bioactive Natural Products of Medicinal Relevance and Approaches to Their Diversification.","authors":"Joseph S Zarins-Tutt, Emily R Abraham, Christopher S Bailey, Rebecca J M Goss","doi":"10.1007/978-3-319-51284-6_5","DOIUrl":"https://doi.org/10.1007/978-3-319-51284-6_5","url":null,"abstract":"<p><p>Nature provides a valuable resource of medicinally relevant compounds, with many antimicrobial and antitumor agents entering clinical trials being derived from natural products. The generation of analogues of these bioactive natural products is important in order to gain a greater understanding of structure activity relationships; probing the mechanism of action, as well as to optimise the natural product's bioactivity and bioavailability. This chapter critically examines different approaches to generating natural products and their analogues, exploring the way in which synthetic and biosynthetic approaches may be blended together to enable expeditious access to new designer natural products.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"55 ","pages":"159-186"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-51284-6_5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34764291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1007/978-3-319-51284-6_4
Caterina Fattorusso, Marco Persico, Francesca Rondinelli, Nausicaa Orteca, Antonio Di Dato
An integrated computational approach, based on molecular dynamics/mechanics, semi-empirical, and DFT calculations as well as dynamic docking studies, has been employed to gain insight into the mechanism of action of new antimalarial agents characterized by the scaffold of the marine compounds plakortin and aplidinone. The results of this approach show that these molecules, after interaction with Fe(II), likely coming from the heme molecule, give rise to the formation of radical species, that should represent the toxic intermediates responsible for subsequent reactions leading to plasmodium death. The three-dimensional structural requirements necessary for the activity of these new classes of antimalarial agents have been identified and discussed throughout the chapter.
{"title":"Computer-Aided Drug Discovery from Marine Compounds: Identification of the Three-Dimensional Structural Features Responsible for Antimalarial Activity.","authors":"Caterina Fattorusso, Marco Persico, Francesca Rondinelli, Nausicaa Orteca, Antonio Di Dato","doi":"10.1007/978-3-319-51284-6_4","DOIUrl":"https://doi.org/10.1007/978-3-319-51284-6_4","url":null,"abstract":"<p><p>An integrated computational approach, based on molecular dynamics/mechanics, semi-empirical, and DFT calculations as well as dynamic docking studies, has been employed to gain insight into the mechanism of action of new antimalarial agents characterized by the scaffold of the marine compounds plakortin and aplidinone. The results of this approach show that these molecules, after interaction with Fe(II), likely coming from the heme molecule, give rise to the formation of radical species, that should represent the toxic intermediates responsible for subsequent reactions leading to plasmodium death. The three-dimensional structural requirements necessary for the activity of these new classes of antimalarial agents have been identified and discussed throughout the chapter.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"55 ","pages":"105-158"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-51284-6_4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34764817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1007/978-3-319-51284-6_6
Werner E G Müller, Xiaohong Wang, Heinz C Schröder
In the last few years, much progress has been achieved in the discovery of new drug target sites for treatment of osteoporotic disorders, one of the main challenging diseases with a large burden for the public health systems. Among these new agents promoting bone formation, shifting the impaired equilibrium between bone anabolism and bone catabolism in the direction of bone synthesis are inorganic polymers, in particular inorganic polyphosphates that show strong stimulatory effects on the expression of bone anabolic marker proteins and hydroxyapatite formation. The bone-forming activity of these polymers can even be enhanced by combination with certain small molecules like quercetin, or if given as functionally active particles with certain divalent cations like strontium ions even showing by itself biological activity. This chapter summarizes recent developments in the search and development of novel anti-osteoporotic agents, with a particular focus on therapeutic approaches based on the potential application of inorganic polymers and combinations.
{"title":"New Target Sites for Treatment of Osteoporosis.","authors":"Werner E G Müller, Xiaohong Wang, Heinz C Schröder","doi":"10.1007/978-3-319-51284-6_6","DOIUrl":"https://doi.org/10.1007/978-3-319-51284-6_6","url":null,"abstract":"<p><p>In the last few years, much progress has been achieved in the discovery of new drug target sites for treatment of osteoporotic disorders, one of the main challenging diseases with a large burden for the public health systems. Among these new agents promoting bone formation, shifting the impaired equilibrium between bone anabolism and bone catabolism in the direction of bone synthesis are inorganic polymers, in particular inorganic polyphosphates that show strong stimulatory effects on the expression of bone anabolic marker proteins and hydroxyapatite formation. The bone-forming activity of these polymers can even be enhanced by combination with certain small molecules like quercetin, or if given as functionally active particles with certain divalent cations like strontium ions even showing by itself biological activity. This chapter summarizes recent developments in the search and development of novel anti-osteoporotic agents, with a particular focus on therapeutic approaches based on the potential application of inorganic polymers and combinations.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"55 ","pages":"187-219"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-51284-6_6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34764819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1007/978-3-319-58592-5_8
Evelyne J Barrey, Patrick Heun
In recent years, various synthetic approaches have been developed to address the question of what directs centromere establishment and maintenance. In this chapter, we will discuss how approaches aimed at constructing synthetic centromeres have co-evolved with and contributed to shape the theory describing the determinants of centromere identity. We will first review lessons learned from artificial chromosomes created from "naked" centromeric sequences to investigate the role of the underlying DNA for centromere formation. We will then discuss how several studies, which applied removal of endogenous centromeres or over-expression of the centromere-specific histone CENP-A, helped to investigate the contribution of chromatin context to centromere establishment. Finally, we will examine various biosynthetic approaches taking advantage of targeting specific proteins to ectopic sites in the genome to dissect the role of many centromere-associated proteins and chromatin modifiers for centromere inheritance and function. Together, these studies showed that chromatin context matters, particularly proximity to heterochromatin or repetitive DNA sequences. Moreover, despite the important contribution of centromeric DNA, the centromere-specific histone H3-variant CENP-A emerges as a key epigenetic mark to establish and maintain functional centromeres on artificial chromosomes or at ectopic sites of the genome.
{"title":"Artificial Chromosomes and Strategies to Initiate Epigenetic Centromere Establishment.","authors":"Evelyne J Barrey, Patrick Heun","doi":"10.1007/978-3-319-58592-5_8","DOIUrl":"https://doi.org/10.1007/978-3-319-58592-5_8","url":null,"abstract":"<p><p>In recent years, various synthetic approaches have been developed to address the question of what directs centromere establishment and maintenance. In this chapter, we will discuss how approaches aimed at constructing synthetic centromeres have co-evolved with and contributed to shape the theory describing the determinants of centromere identity. We will first review lessons learned from artificial chromosomes created from \"naked\" centromeric sequences to investigate the role of the underlying DNA for centromere formation. We will then discuss how several studies, which applied removal of endogenous centromeres or over-expression of the centromere-specific histone CENP-A, helped to investigate the contribution of chromatin context to centromere establishment. Finally, we will examine various biosynthetic approaches taking advantage of targeting specific proteins to ectopic sites in the genome to dissect the role of many centromere-associated proteins and chromatin modifiers for centromere inheritance and function. Together, these studies showed that chromatin context matters, particularly proximity to heterochromatin or repetitive DNA sequences. Moreover, despite the important contribution of centromeric DNA, the centromere-specific histone H3-variant CENP-A emerges as a key epigenetic mark to establish and maintain functional centromeres on artificial chromosomes or at ectopic sites of the genome.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"56 ","pages":"193-212"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-58592-5_8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35348604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.1007/978-3-319-58592-5_15
Elaine M Dunleavy, Caitríona M Collins
In sexually reproducing organisms the germ line is the cellular lineage that gives rise to gametes. All germ cells originate from germline stem cells that divide asymmetrically to generate gonial pre-cursors, which are amplified in number by mitotic divisions, undergo meiosis and eventually differentiate into mature gametes (haploid eggs and sperm). Information transmitted with gametes is inherited by offspring, and potentially by subsequent generations, instructing in organismal development and beyond. Meiosis comprises one round of DNA replication, followed by two rounds of chromosome segregation; homologous chromosomes segregate in the first division (meiosis I) and sister chromatids segregate in the second division (meiosis II). Important mechanistic features of meiosis occur in substages of prophase I and are critical for genetic recombination, including pairing and synapsis of homologous chromosomes (at leptotene and zygotene), crossing-over (at pachytene), and the appearance of chiasmata (at diplotene/diakinesis). Another unique feature of meiosis is the altered centromere/kinetochore geometry at metaphase I, such that sister kinetochores face the same spindle pole (mono-orientation) and stay together at anaphase I. This chapter reviews centromere dynamics in germ cells, focusing on centromere function and assembly in meiotic cell cycles, as well as centromere inheritance in zygotes. Centromeres are functionally defined by the presence of the histone H3 variant CENP-A, the epigenetic determinant of centromere identity. In most eukaryotes, it is well established that CENP-A function is essential for chromosome segregation in mitosis. CENP-A function in meiosis is less well understood and emerging insights into the differential regulation of meiotic and mitotic CENP-A are discussed.
{"title":"Centromere Dynamics in Male and Female Germ Cells.","authors":"Elaine M Dunleavy, Caitríona M Collins","doi":"10.1007/978-3-319-58592-5_15","DOIUrl":"https://doi.org/10.1007/978-3-319-58592-5_15","url":null,"abstract":"<p><p>In sexually reproducing organisms the germ line is the cellular lineage that gives rise to gametes. All germ cells originate from germline stem cells that divide asymmetrically to generate gonial pre-cursors, which are amplified in number by mitotic divisions, undergo meiosis and eventually differentiate into mature gametes (haploid eggs and sperm). Information transmitted with gametes is inherited by offspring, and potentially by subsequent generations, instructing in organismal development and beyond. Meiosis comprises one round of DNA replication, followed by two rounds of chromosome segregation; homologous chromosomes segregate in the first division (meiosis I) and sister chromatids segregate in the second division (meiosis II). Important mechanistic features of meiosis occur in substages of prophase I and are critical for genetic recombination, including pairing and synapsis of homologous chromosomes (at leptotene and zygotene), crossing-over (at pachytene), and the appearance of chiasmata (at diplotene/diakinesis). Another unique feature of meiosis is the altered centromere/kinetochore geometry at metaphase I, such that sister kinetochores face the same spindle pole (mono-orientation) and stay together at anaphase I. This chapter reviews centromere dynamics in germ cells, focusing on centromere function and assembly in meiotic cell cycles, as well as centromere inheritance in zygotes. Centromeres are functionally defined by the presence of the histone H3 variant CENP-A, the epigenetic determinant of centromere identity. In most eukaryotes, it is well established that CENP-A function is essential for chromosome segregation in mitosis. CENP-A function in meiosis is less well understood and emerging insights into the differential regulation of meiotic and mitotic CENP-A are discussed.</p>","PeriodicalId":20880,"journal":{"name":"Progress in molecular and subcellular biology","volume":"56 ","pages":"357-375"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-58592-5_15","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35444655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}