Pub Date : 2024-06-01DOI: 10.1016/j.reth.2024.05.018
Mthabisi Talent George Moyo , Terin Adali , Pinar Tulay
Age-related macular degeneration (AMD) is a progressive ocular disease marked by the deterioration of retinal photoreceptor cells, leading to central vision decline, predominantly affecting the elderly population worldwide. Current treatment modalities, such as anti-VEGF agents, laser therapy, and photodynamic therapy, aim to manage the condition, with emerging strategies like stem cell replacement therapy showing promise. However, challenges like immune rejection and cell survival hinder the efficacy of stem cell interventions. Regenerative medicine faces obstacles in maximizing stem cell potential due to limitations in mimicking the dynamic cues of the extracellular matrix (ECM) crucial for guiding stem cell behaviour. Innovative biomaterials like gellan gum hydrogels offer tailored microenvironments conducive to enhancing stem cell culture efficacy and tissue regeneration. Gellan gum-based hydrogels, renowned for biocompatibility and customizable mechanical properties, provide crucial support for cell viability, differentiation, and controlled release of therapeutic factors, making them an ideal platform for culturing human embryonic stem cells (hESCs). These hydrogels mimic native tissue mechanics, promoting optimal hESC differentiation while minimizing immune responses and facilitating localized delivery. This review explores the potential of Gellan Gum-Based Hydrogels in regenerative AMD therapy, emphasizing their role in enhancing hESC regeneration and addressing current status, treatment limitations, and future directions.
{"title":"Exploring gellan gum-based hydrogels for regenerating human embryonic stem cells in age-related macular degeneration therapy: A literature review","authors":"Mthabisi Talent George Moyo , Terin Adali , Pinar Tulay","doi":"10.1016/j.reth.2024.05.018","DOIUrl":"https://doi.org/10.1016/j.reth.2024.05.018","url":null,"abstract":"<div><p>Age-related macular degeneration (AMD) is a progressive ocular disease marked by the deterioration of retinal photoreceptor cells, leading to central vision decline, predominantly affecting the elderly population worldwide. Current treatment modalities, such as anti-VEGF agents, laser therapy, and photodynamic therapy, aim to manage the condition, with emerging strategies like stem cell replacement therapy showing promise. However, challenges like immune rejection and cell survival hinder the efficacy of stem cell interventions. Regenerative medicine faces obstacles in maximizing stem cell potential due to limitations in mimicking the dynamic cues of the extracellular matrix (ECM) crucial for guiding stem cell behaviour. Innovative biomaterials like gellan gum hydrogels offer tailored microenvironments conducive to enhancing stem cell culture efficacy and tissue regeneration. Gellan gum-based hydrogels, renowned for biocompatibility and customizable mechanical properties, provide crucial support for cell viability, differentiation, and controlled release of therapeutic factors, making them an ideal platform for culturing human embryonic stem cells (hESCs). These hydrogels mimic native tissue mechanics, promoting optimal hESC differentiation while minimizing immune responses and facilitating localized delivery. This review explores the potential of Gellan Gum-Based Hydrogels in regenerative AMD therapy, emphasizing their role in enhancing hESC regeneration and addressing current status, treatment limitations, and future directions.</p></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"Pages 235-250"},"PeriodicalIF":4.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352320424001056/pdfft?md5=c27fc2ce1ecb1407658859499c7582ee&pid=1-s2.0-S2352320424001056-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141303406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.reth.2024.05.014
Zhi Liu , Shunxin Jin , Dapeng Cheng , Hao Chen , Yuxiang Wang , Chao Ji , Zhenzhen Yan , Xiao Fang , Shichu Xiao , Xinling Bi
Introduction
With the increasing emphasis on the use of nonanimal ingredients in clinical care, studies have proposed the use of TrypLE™ as an alternative to trypsin. However, previous research has reported insufficient cell yield and viability when using TrypLE to isolate skin cells compared to the dispase/trypsin-EDTA method. This study aimed to propose an improved method for increasing the yield and viability of cells isolated by TrypLE and to evaluate isolated keratinocytes and melanocytes.
Methods
Foreskin tissues were isolated to keratinocytes and melanocytes using the trypsin-EDTA protocol and our modified TrypLE protocol. The yield and viability of freshly isolated cells were compared, the epidermal residue after cell suspension filtration was analyzed histologically, and the expression of cytokeratin 14 (CK14) and Melan-A was detected by flow cytometry. After cultivation, keratinocytes and melanocytes were further examined for marker expression and proliferation. A coculture model of melanocytes and HaCaT cells was used to evaluate melanin transfer.
Results
The yield, viability of total cells and expression of the keratinocyte marker CK14 were similar for freshly isolated cells from both protocols. No differences were observed in the histologic analysis of epidermal residues. Moreover, no differences in keratinocyte marker expression or melanocyte melanin transfer function were observed after culture. However, melanocytes generated using the TrypLE protocol exhibited increased Melan-A expression and proliferation in culture.
Conclusion
Our TrypLE protocol not only solved the problems of insufficient cell yield and viability in previous studies but also preserved normal cell morphology and function, which enables the clinical treatment of depigmentation diseases.
{"title":"Modified human skin cell isolation protocol and its influence on keratinocyte and melanocyte culture","authors":"Zhi Liu , Shunxin Jin , Dapeng Cheng , Hao Chen , Yuxiang Wang , Chao Ji , Zhenzhen Yan , Xiao Fang , Shichu Xiao , Xinling Bi","doi":"10.1016/j.reth.2024.05.014","DOIUrl":"https://doi.org/10.1016/j.reth.2024.05.014","url":null,"abstract":"<div><h3>Introduction</h3><p>With the increasing emphasis on the use of nonanimal ingredients in clinical care, studies have proposed the use of TrypLE™ as an alternative to trypsin. However, previous research has reported insufficient cell yield and viability when using TrypLE to isolate skin cells compared to the dispase/trypsin-EDTA method. This study aimed to propose an improved method for increasing the yield and viability of cells isolated by TrypLE and to evaluate isolated keratinocytes and melanocytes.</p></div><div><h3>Methods</h3><p>Foreskin tissues were isolated to keratinocytes and melanocytes using the trypsin-EDTA protocol and our modified TrypLE protocol. The yield and viability of freshly isolated cells were compared, the epidermal residue after cell suspension filtration was analyzed histologically, and the expression of cytokeratin 14 (CK14) and Melan-A was detected by flow cytometry. After cultivation, keratinocytes and melanocytes were further examined for marker expression and proliferation. A coculture model of melanocytes and HaCaT cells was used to evaluate melanin transfer.</p></div><div><h3>Results</h3><p>The yield, viability of total cells and expression of the keratinocyte marker CK14 were similar for freshly isolated cells from both protocols. No differences were observed in the histologic analysis of epidermal residues. Moreover, no differences in keratinocyte marker expression or melanocyte melanin transfer function were observed after culture. However, melanocytes generated using the TrypLE protocol exhibited increased Melan-A expression and proliferation in culture.</p></div><div><h3>Conclusion</h3><p>Our TrypLE protocol not only solved the problems of insufficient cell yield and viability in previous studies but also preserved normal cell morphology and function, which enables the clinical treatment of depigmentation diseases.</p></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"Pages 203-212"},"PeriodicalIF":4.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352320424001019/pdfft?md5=342e12c45f82405eb1d0ec3b4b3a98c8&pid=1-s2.0-S2352320424001019-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.reth.2024.05.008
Fatima Jameel , Fatima Irfan , Asmat Salim , Irfan Khan , Enam A. Khalil
Regeneration of full thickness burn wounds is a significant clinical challenge. Direct stem cell transplantation at the wound site has a promising effect on wound regeneration. However, stem cell survival within the harsh wound environment is critically compromised. In this regard, preconditioning of stem cells with cytoprotective compounds can improve the efficiency of transplanted cells. This study evaluated the possible effect of alpha terpineol (αT) preconditioned mesenchymal stem cells (αT-MSCs) in full thickness acid burn wound. An optimized concentration of 10 μM αT was used for MSC preconditioning, followed by scratch assay analysis. A novel rat model of full thickness acid burn wound was developed and characterized via macroscopic and histological examinations. Treatment (normal and αT-MSCs) was given after 48 h of burn wound induction, and the healing pattern was examined till day 40. Skin tissues were harvested at the early (day 10) and late (day 40) wound healing phases and examined by histological grading, neovascularization, and gene expression profiling of healing mediators. In scratch assay, αT-MSCs exhibited enhanced cell migration and wound closure (scratch gap) compared to normal MSCs. In vivo findings revealed enhanced regeneration in the wound treated with αT-MSCs compared to normal MSCs and untreated control. Histology revealed enhanced collagen deposition with regenerated skin layers in normal MSC- and αT-MSC treated groups compared to the untreated control. These findings were correlated with enhanced expression of α-SMA as shown by immunohistochemistry. Additionally, αT-MSC group showed reduced inflammation and oxidative stress, and enhanced regeneration, as witnessed by a decrease in IL-1β, IL-6, TNF-α, and Bax and an increase in BCL-2, PRDX-4, GPX-7,SOD-1, VEGF, EGF, FGF, MMP-9, PDGF, and TGF-β gene expression levels at early and late phases, respectively. Overall findings demonstrated that αT exerts its therapeutic effect by mitigating excessive inflammation and oxidative stress while concurrently enhancing neovascularization. Thus, this study offers new perspectives on managing full thickness acid burn wounds in future clinical settings.
{"title":"Alpha terpineol preconditioning enhances regenerative potential of mesenchymal stem cells in full thickness acid burn wounds","authors":"Fatima Jameel , Fatima Irfan , Asmat Salim , Irfan Khan , Enam A. Khalil","doi":"10.1016/j.reth.2024.05.008","DOIUrl":"https://doi.org/10.1016/j.reth.2024.05.008","url":null,"abstract":"<div><p>Regeneration of full thickness burn wounds is a significant clinical challenge. Direct stem cell transplantation at the wound site has a promising effect on wound regeneration. However, stem cell survival within the harsh wound environment is critically compromised. In this regard, preconditioning of stem cells with cytoprotective compounds can improve the efficiency of transplanted cells. This study evaluated the possible effect of alpha terpineol (αT) preconditioned mesenchymal stem cells (αT-MSCs) in full thickness acid burn wound. An optimized concentration of 10 μM αT was used for MSC preconditioning, followed by scratch assay analysis. A novel rat model of full thickness acid burn wound was developed and characterized <em>via</em> macroscopic and histological examinations. Treatment (normal and αT-MSCs) was given after 48 h of burn wound induction, and the healing pattern was examined till day 40. Skin tissues were harvested at the early (day 10) and late (day 40) wound healing phases and examined by histological grading, neovascularization, and gene expression profiling of healing mediators. In scratch assay, αT-MSCs exhibited enhanced cell migration and wound closure (scratch gap) compared to normal MSCs. <em>In vivo</em> findings revealed enhanced regeneration in the wound treated with αT-MSCs compared to normal MSCs and untreated control. Histology revealed enhanced collagen deposition with regenerated skin layers in normal MSC- and αT-MSC treated groups compared to the untreated control. These findings were correlated with enhanced expression of α-SMA as shown by immunohistochemistry. Additionally, αT-MSC group showed reduced inflammation and oxidative stress, and enhanced regeneration, as witnessed by a decrease in <em>IL-1β</em>, <em>IL-6</em>, <em>TNF-α</em>, and <em>Bax</em> and an increase in <em>BCL-2, PRDX-4, GPX-7,</em> <em>SOD-1</em>, <em>VEGF</em>, <em>EGF</em>, <em>FGF</em>, <em>MMP-9</em>, <em>PDGF</em>, and <em>TGF-β</em> gene expression levels at early and late phases, respectively. Overall findings demonstrated that αT exerts its therapeutic effect by mitigating excessive inflammation and oxidative stress while concurrently enhancing neovascularization. Thus, this study offers new perspectives on managing full thickness acid burn wounds in future clinical settings.</p></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"Pages 188-202"},"PeriodicalIF":4.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352320424000956/pdfft?md5=b689e7ebb23a24d7448357554326db58&pid=1-s2.0-S2352320424000956-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141294847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.reth.2024.10.005
Arunnehru Gopal , Prakash Gangadaran , Ramya Lakshmi Rajendran , Ji Min Oh , Ho Won Lee , Chae Moon Hong , Senthilkumar Kalimuthu , Man-Hoon Han , Jaetae Lee , Byeong-Cheol Ahn
Recent research suggests that advanced liver fibrosis could be reversed, but the therapeutic agents needed for the prevention of liver fibrosis remain to be elucidated. The beneficial effects of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) on liver fibrosis have been reported. However, the large-scale production of MSC-EVs remains challenging. The present study investigated the therapeutic effects of mouse MSC-derived EV mimetics (MEVMs) in combination with curcumin (antifibrotic compound) using a mouse model of thioacetamide-induced liver fibrosis. MEVMs were prepared through the serial extrusion of MSCs. These MEVMs were similar in size and morphology to the EVs. The biodistribution study showed that fluorescently labeled MEVMs predominantly accumulated in the liver. The establishment of liver fibrosis was confirmed via increased collagen (histology), liver fibrosis score, α-smooth muscle actin (α-SMA), and vimentin proteins levels. Treatment with MEVMs, curcumin, or their combination decreased the amount of collagen in liver tissues, with the antifibrotic effects of MEVMs being further confirmed by the liver fibrosis score. All treatments decreased the expression of collagen 1α, α-SMA, and vimentin. MEVMs showed superior effects than curcumin. Thus, MSC-derived EVMs could be a potential alternative for the treatment of liver fibrosis.
{"title":"Extracellular vesicle mimetics engineered from mesenchymal stem cells and curcumin promote fibrosis regression in a mouse model of thioacetamide-induced liver fibrosis","authors":"Arunnehru Gopal , Prakash Gangadaran , Ramya Lakshmi Rajendran , Ji Min Oh , Ho Won Lee , Chae Moon Hong , Senthilkumar Kalimuthu , Man-Hoon Han , Jaetae Lee , Byeong-Cheol Ahn","doi":"10.1016/j.reth.2024.10.005","DOIUrl":"10.1016/j.reth.2024.10.005","url":null,"abstract":"<div><div>Recent research suggests that advanced liver fibrosis could be reversed, but the therapeutic agents needed for the prevention of liver fibrosis remain to be elucidated. The beneficial effects of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) on liver fibrosis have been reported. However, the large-scale production of MSC-EVs remains challenging. The present study investigated the therapeutic effects of mouse MSC-derived EV mimetics (MEVMs) in combination with curcumin (antifibrotic compound) using a mouse model of thioacetamide-induced liver fibrosis. MEVMs were prepared through the serial extrusion of MSCs. These MEVMs were similar in size and morphology to the EVs. The biodistribution study showed that fluorescently labeled MEVMs predominantly accumulated in the liver. The establishment of liver fibrosis was confirmed via increased collagen (histology), liver fibrosis score, α-smooth muscle actin (α-SMA), and vimentin proteins levels. Treatment with MEVMs, curcumin, or their combination decreased the amount of collagen in liver tissues, with the antifibrotic effects of MEVMs being further confirmed by the liver fibrosis score. All treatments decreased the expression of <em>collagen 1α</em>, α-SMA, and vimentin. MEVMs showed superior effects than curcumin. Thus, MSC-derived EVMs could be a potential alternative for the treatment of liver fibrosis.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"Pages 911-921"},"PeriodicalIF":3.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.reth.2024.10.006
Ali Ahmed Issa Qatan , Shinji Tanbara , Masakazu Inamori , Kazuhiro Fukumori , Masahiro Kino–oka
Introduction
Preparing a uniform cell population in high–density seeding of adherent human induced pluripotent stem cells (hiPSC) requires stable culture conditions and consistent culture operation. In this study, we evaluated cell distribution patterns by changing cell seeding operations and their impact on differentiation toward the neuroectodermal lineage.
Methods
The hiPSC line 201B7 was seeded at 1.23 × 105 cells/cm2 following a conventional operation, prolongated time of cell seeding suspension or vessel tilting during cell seeding operation. Fluorescent imaging of cell nuclei was performed 24 h following cell seeding and used for spatial heterogeneity analysis. Flow cytometric analysis was also performed seven days after cell differentiation induction toward neuroectodermal lineage.
Results
Indices for spatial heterogeneity following high–density cell seeding were proposed to assess cell distribution patterns. Global heterogeneity (HG) was shown to be mostly affected by vessel tilting during cell seeding operation, while local heterogeneity (HL) was affected by prolongated time of cell seeding suspension. Changes in both spatial heterogeneities in the hiPSC population resulted in a lower yield of target neuroectodermal cells compared with the control operation.
Conclusion
High–density hiPSC seeding is critical for achieving a higher yield of target cells of neuroectodermal lineage. Understanding the spatial heterogeneity in early stages detects errors in cell culture motion and predicts cell fate in later stages of cell culture.
{"title":"Spatial heterogeneity analysis of seeding of human induced pluripotent stem cells for neuroectodermal differentiation","authors":"Ali Ahmed Issa Qatan , Shinji Tanbara , Masakazu Inamori , Kazuhiro Fukumori , Masahiro Kino–oka","doi":"10.1016/j.reth.2024.10.006","DOIUrl":"10.1016/j.reth.2024.10.006","url":null,"abstract":"<div><h3>Introduction</h3><div>Preparing a uniform cell population in high–density seeding of adherent human induced pluripotent stem cells (hiPSC) requires stable culture conditions and consistent culture operation. In this study, we evaluated cell distribution patterns by changing cell seeding operations and their impact on differentiation toward the neuroectodermal lineage.</div></div><div><h3>Methods</h3><div>The hiPSC line 201B7 was seeded at 1.23 × 10<sup>5</sup> cells/cm<sup>2</sup> following a conventional operation, prolongated time of cell seeding suspension or vessel tilting during cell seeding operation. Fluorescent imaging of cell nuclei was performed 24 h following cell seeding and used for spatial heterogeneity analysis. Flow cytometric analysis was also performed seven days after cell differentiation induction toward neuroectodermal lineage.</div></div><div><h3>Results</h3><div>Indices for spatial heterogeneity following high–density cell seeding were proposed to assess cell distribution patterns. Global heterogeneity (<em>H</em><sub>G</sub>) was shown to be mostly affected by vessel tilting during cell seeding operation, while local heterogeneity (<em>H</em><sub>L</sub>) was affected by prolongated time of cell seeding suspension. Changes in both spatial heterogeneities in the hiPSC population resulted in a lower yield of target neuroectodermal cells compared with the control operation.</div></div><div><h3>Conclusion</h3><div>High–density hiPSC seeding is critical for achieving a higher yield of target cells of neuroectodermal lineage. Understanding the spatial heterogeneity in early stages detects errors in cell culture motion and predicts cell fate in later stages of cell culture.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"Pages 922-931"},"PeriodicalIF":3.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.reth.2024.08.022
Zhichun Zhang , Yanyan Guo , Xuejun Gao , Xiaoyan Wang , Chanyuan Jin
Understanding the precise mechanism of BMSC (bone marrow mesenchymal stem cell) osteogenesis is critical for metabolic bone diseases and bone reconstruction. The histone-lysine N-methyltransferase 2D (KMT2D) acts as an important methyltransferase related with congenital skeletal disorders, yet the function of KMT2D in osteogenesis was unclear. Here we found that KMT2D expression was decreased in BMSCs collected from ovariectomized mice. Moreover, during human BMSC differentiation under mineralization induction, the mRNA level of KMT2D was gradually elevated. After KMT2D knockdown, the in vitro osteogenic differentiation of BMSCs was inhibited, while the in vivo bone formation potential of BMSCs was attenuated. Further, in BMSCs, KMT2D knockdown reduced the level of phosphorylated protein kinase B (p-AKT). SC-79, a common activator of AKT signaling, reversed the suppressing influence of KMT2D knockdown on BMSCs differentiation towards osteoblast. These results indicate that the KMT2D-AKT pathway plays an essential role in the osteogenesis process of human BMSCs (hBMSCs), which might provide new avenues for the molecular medicine of bone diseases and regeneration.
{"title":"Role of histone methyltransferase KMT2D in BMSC osteogenesis via AKT signaling","authors":"Zhichun Zhang , Yanyan Guo , Xuejun Gao , Xiaoyan Wang , Chanyuan Jin","doi":"10.1016/j.reth.2024.08.022","DOIUrl":"10.1016/j.reth.2024.08.022","url":null,"abstract":"<div><p>Understanding the precise mechanism of BMSC (bone marrow mesenchymal stem cell) osteogenesis is critical for metabolic bone diseases and bone reconstruction. The histone-lysine N-methyltransferase 2D (KMT2D) acts as an important methyltransferase related with congenital skeletal disorders, yet the function of KMT2D in osteogenesis was unclear. Here we found that KMT2D expression was decreased in BMSCs collected from ovariectomized mice. Moreover, during human BMSC differentiation under mineralization induction, the mRNA level of KMT2D was gradually elevated. After KMT2D knockdown, the <em>in vitro</em> osteogenic differentiation of BMSCs was inhibited, while the <em>in vivo</em> bone formation potential of BMSCs was attenuated. Further, in BMSCs, KMT2D knockdown reduced the level of phosphorylated protein kinase B (p-AKT). SC-79, a common activator of AKT signaling, reversed the suppressing influence of KMT2D knockdown on BMSCs differentiation towards osteoblast. These results indicate that the KMT2D-AKT pathway plays an essential role in the osteogenesis process of human BMSCs (hBMSCs), which might provide new avenues for the molecular medicine of bone diseases and regeneration.</p></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"Pages 775-782"},"PeriodicalIF":3.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352320424001603/pdfft?md5=3d69e3697459454fafa0dbc0e0d4c435&pid=1-s2.0-S2352320424001603-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cell therapy has been increasingly considered to treat diseases, but it has been proven difficult to manufacture the same product at multiple manufacturing sites. Thus, for a wider implementation an alternative is to have one manufacturing site with a wide distribution to clinical sites. To ensure administration of a good quality cell therapy product with maintained functional characteristics, several obstacles must be overcome, which includes for example transfer of knowledge, protocols and procedures, site assessment, transportation and preparation of the product.
Methods
As the preparatory work for a clinical trial in India using fetal mesenchymal stem cells (fMSCs) developed and manufactured in Sweden, we performed a site assessment of the receiving clinical site, transferred methods, developed procedures and provided training of operators for handling of the cell therapy product. We further developed a Pharmacy Manual to cover the management of the product, from ordering it from the manufacturer, through transport, reconstitution, testing and administration at the clinical site. Lastly, the effect of long-distance transport on survival and function of, as well as the correct handling of the cell therapy product, was evaluated according to the pre-determined and approved Product Specification.
Results
Four batches of cryopreserved human fetal liver-derived fMSCs manufactured according to Good Manufacturing Practice and tested according to predetermined release criteria in Sweden, were certified and transported in a dry shipper at −150 °C to the clinical site in India. The transport was temperature monitored and took three–seven days to complete. The thawed and reconstituted cells showed more than 80% viability up to 3 h post-thawing, the cell recovery was more than 94%, the cells displayed the same surface protein expression pattern, differentiated into bone, had stable chromosomes and were sterile, which conformed with the data from the manufacturing site in Sweden.
Conclusions
Our study shows the feasibility of transferring necessary knowledge and technology to be able to carry out a clinical trial with a cell therapy product in distant country. It also shows that it is possible to transport a cryopreserved cell therapy product over long distances and borders with retained quality. This extends the use of cryopreserved cell therapy products in the future.
{"title":"Successful transport across continents of GMP-manufactured and cryopreserved culture-expanded human fetal liver-derived mesenchymal stem cells for use in a clinical trial","authors":"Ashis Kumar , Sowmya Ramesh , Lilian Walther-Jallow , Annika Goos , Vignesh Kumar , Åsa Ekblad , Vrisha Madhuri , Cecilia Götherström","doi":"10.1016/j.reth.2024.06.012","DOIUrl":"https://doi.org/10.1016/j.reth.2024.06.012","url":null,"abstract":"<div><h3>Introduction</h3><p>Cell therapy has been increasingly considered to treat diseases, but it has been proven difficult to manufacture the same product at multiple manufacturing sites. Thus, for a wider implementation an alternative is to have one manufacturing site with a wide distribution to clinical sites. To ensure administration of a good quality cell therapy product with maintained functional characteristics, several obstacles must be overcome, which includes for example transfer of knowledge, protocols and procedures, site assessment, transportation and preparation of the product.</p></div><div><h3>Methods</h3><p>As the preparatory work for a clinical trial in India using fetal mesenchymal stem cells (fMSCs) developed and manufactured in Sweden, we performed a site assessment of the receiving clinical site, transferred methods, developed procedures and provided training of operators for handling of the cell therapy product. We further developed a Pharmacy Manual to cover the management of the product, from ordering it from the manufacturer, through transport, reconstitution, testing and administration at the clinical site. Lastly, the effect of long-distance transport on survival and function of, as well as the correct handling of the cell therapy product, was evaluated according to the pre-determined and approved Product Specification.</p></div><div><h3>Results</h3><p>Four batches of cryopreserved human fetal liver-derived fMSCs manufactured according to Good Manufacturing Practice and tested according to predetermined release criteria in Sweden, were certified and transported in a dry shipper at −150 °C to the clinical site in India. The transport was temperature monitored and took three–seven days to complete. The thawed and reconstituted cells showed more than 80% viability up to 3 h post-thawing, the cell recovery was more than 94%, the cells displayed the same surface protein expression pattern, differentiated into bone, had stable chromosomes and were sterile, which conformed with the data from the manufacturing site in Sweden.</p></div><div><h3>Conclusions</h3><p>Our study shows the feasibility of transferring necessary knowledge and technology to be able to carry out a clinical trial with a cell therapy product in distant country. It also shows that it is possible to transport a cryopreserved cell therapy product over long distances and borders with retained quality. This extends the use of cryopreserved cell therapy products in the future.</p></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"Pages 324-333"},"PeriodicalIF":3.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352320424001196/pdfft?md5=e4c1c790ee29540bc9cc1b1671706fc3&pid=1-s2.0-S2352320424001196-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141483233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.reth.2024.06.010
Francesca Cadelano , Elena Della Morte , Stefania Niada , Francesco Anzano , Luigi Zagra , Chiara Giannasi , Anna Teresa Maria Brini
Introduction
Osteoarthritis (OA), a chronic inflammatory joint disorder, still lacks effective therapeutic interventions. Consequently, the development of convenient experimental models is crucial. Recently, research has focused on the plasticity of Mesenchymal Stem/stromal Cells, particularly adipose-derived ones (ASCs), in halting OA progression. This study investigates the therapeutic potential of a cell-free approach, ASC-derived conditioned medium (CM), in reversing cytokine-induced OA markers in an ex vivo model of human cartilage explants.
Methods
4 mm cartilage punches, derived from the femoral heads of patients undergoing total hip replacement, were treated with 10 ng/ml TNFα, 1 ng/ml IL-1β, or a combination of both, over a 3-day period. Analysis of OA-related markers, such as MMP activity, the release of NO and GAGs, and the expression of PTGS2, allowed for the selection of the most effective inflammatory stimulus. Subsequently, explants challenged with TNFα+IL-1β were exposed to CM, consisting of a pool of concentrated supernatants from 72-h cultured ASCs, in order to evaluate its effect on cartilage catabolism and inflammation.
Results
The 3-day treatment with both 10ng/ml TNFα and 1ng/ml IL-1β significantly increased MMP activity and NO release, without affecting GAG release. The addition of CM significantly downregulated the abnormal MMP activity induced by the inflammatory stimuli, while also mildly reducing MMP3, MMP13, and PTGS2 gene expression. Finally, SOX9 and COL2A1 were downregulated by the cytokines, and further decreased by CM.
Conclusion
The proposed cartilage explant model offers encouraging evidence of the therapeutic potential of ASC-derived CM against OA, and it could serve as a convenient ex vivo platform for drug screening.
导言骨关节炎(OA)是一种慢性炎症性关节疾病,目前仍缺乏有效的治疗干预措施。因此,建立方便的实验模型至关重要。最近,研究重点关注间充质干细胞/基质细胞,尤其是脂肪源性间充质干细胞(ASCs)在阻止 OA 进展方面的可塑性。本研究探讨了一种无细胞方法--ASC衍生的条件培养基(CM)--在人体软骨外植体模型中逆转细胞因子诱导的OA标记物的治疗潜力。方法:用10 ng/ml TNFα、1 ng/ml IL-1β或两者的组合处理4 mm软骨冲头(取自接受全髋关节置换术的患者的股骨头),为期3天。通过分析与 OA 相关的标志物,如 MMP 活性、NO 和 GAGs 的释放以及 PTGS2 的表达,可以选择最有效的炎症刺激。结果 10ng/ml TNFα和1ng/ml IL-1β处理3天后,MMP活性和NO释放显著增加,但不影响GAG的释放。加入 CM 能明显降低炎症刺激诱导的异常 MMP 活性,同时还能轻度降低 MMP3、MMP13 和 PTGS2 基因的表达。最后,SOX9 和 COL2A1 受细胞因子的影响而下调,而 CM 则进一步降低了它们的表达。
{"title":"Cartilage responses to inflammatory stimuli and adipose stem/stromal cell-derived conditioned medium: Results from an ex vivo model","authors":"Francesca Cadelano , Elena Della Morte , Stefania Niada , Francesco Anzano , Luigi Zagra , Chiara Giannasi , Anna Teresa Maria Brini","doi":"10.1016/j.reth.2024.06.010","DOIUrl":"https://doi.org/10.1016/j.reth.2024.06.010","url":null,"abstract":"<div><h3>Introduction</h3><p>Osteoarthritis (OA), a chronic inflammatory joint disorder, still lacks effective therapeutic interventions. Consequently, the development of convenient experimental models is crucial. Recently, research has focused on the plasticity of Mesenchymal Stem/stromal Cells, particularly adipose-derived ones (ASCs), in halting OA progression. This study investigates the therapeutic potential of a cell-free approach, ASC-derived conditioned medium (CM), in reversing cytokine-induced OA markers in an <em>ex vivo</em> model of human cartilage explants.</p></div><div><h3>Methods</h3><p>4 mm cartilage punches, derived from the femoral heads of patients undergoing total hip replacement, were treated with 10 ng/ml TNFα, 1 ng/ml IL-1β, or a combination of both, over a 3-day period. Analysis of OA-related markers, such as MMP activity, the release of NO and GAGs, and the expression of <em>PTGS2</em>, allowed for the selection of the most effective inflammatory stimulus. Subsequently, explants challenged with TNFα+IL-1β were exposed to CM, consisting of a pool of concentrated supernatants from 72-h cultured ASCs, in order to evaluate its effect on cartilage catabolism and inflammation.</p></div><div><h3>Results</h3><p>The 3-day treatment with both 10ng/ml TNFα and 1ng/ml IL-1β significantly increased MMP activity and NO release, without affecting GAG release. The addition of CM significantly downregulated the abnormal MMP activity induced by the inflammatory stimuli, while also mildly reducing <em>MMP3</em>, <em>MMP13,</em> and <em>PTGS2</em> gene expression. Finally, <em>SOX9</em> and <em>COL2A1</em> were downregulated by the cytokines, and further decreased by CM.</p></div><div><h3>Conclusion</h3><p>The proposed cartilage explant model offers encouraging evidence of the therapeutic potential of ASC-derived CM against OA, and it could serve as a convenient <em>ex vivo</em> platform for drug screening.</p></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"Pages 346-353"},"PeriodicalIF":3.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352320424001172/pdfft?md5=841c56d28c32eec00f0695ae0cfe5229&pid=1-s2.0-S2352320424001172-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141483235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Retinal organoids are three-dimensional (3D) microscopic tissues that are induced and differentiated from stem cells or progenitor cells in vitro and have a highly similar structure to the retina. With the optimization and development of 3D retinal culture system and the improvement of induced differentiation technology, retinal organoids have broad application prospects in retinal development, regenerative medicine, biomaterial evaluation, disease mechanism investigation, and drug screening. In this review we summarize recent development of retinal organoids and their applications in ophthalmic regenerative medicine. In particular, we highlight the promise and challenges in the use of retinal organoids in disease modeling and drug discovery.
{"title":"The application of retinal organoids in ophthalmic regenerative medicine: A mini-review","authors":"Xinmei Lan , Huixia Jiang , Qian Wang, Qin Shiqi, Yu Xiong","doi":"10.1016/j.reth.2024.06.013","DOIUrl":"https://doi.org/10.1016/j.reth.2024.06.013","url":null,"abstract":"<div><p>Retinal organoids are three-dimensional (3D) microscopic tissues that are induced and differentiated from stem cells or progenitor cells in vitro and have a highly similar structure to the retina. With the optimization and development of 3D retinal culture system and the improvement of induced differentiation technology, retinal organoids have broad application prospects in retinal development, regenerative medicine, biomaterial evaluation, disease mechanism investigation, and drug screening. In this review we summarize recent development of retinal organoids and their applications in ophthalmic regenerative medicine. In particular, we highlight the promise and challenges in the use of retinal organoids in disease modeling and drug discovery.</p></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"Pages 382-386"},"PeriodicalIF":3.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352320424001202/pdfft?md5=1f3f4b63c5efa7ae5b653d1622f58849&pid=1-s2.0-S2352320424001202-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141484341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.reth.2024.06.002
Chiara Gentili , Maria Elisabetta Federica Palamà , Gillian Sexton , Sophie Maybury , Megan Shanahan , Yeyetunde Yvonne Omowunmi-Kayode , James Martin , Martin Johnson , Kerry Thompson , Owen Clarkin , Cynthia M. Coleman
The current gold standard grafting material is autologous bone due to its osteoinductive and osteoconductive properties. Autograft harvesting results in donors site morbidity. Coral scaffolds offer a natural autograft alternative, sharing the density and porosity of human bone. This study investigated the biocompatibility and osteogenic potential of a novel, sustainably grown Pocillopora scaffold with human bone marrow-derived mesenchymal stromal cells (MSCs). The coral-derived scaffold displays a highly textured topography, with concavities of uniform size and a high calcium carbonate content. Large scaffold samples exhibit compressive and diametral tensile strengths in the range of trabecular bone, with strengths likely increasing for smaller particulate samples. Following the in vitro seeding of MSCs adjacent to the scaffold, the MSCs remained viable, continued proliferating and metabolising, demonstrating biocompatibility. The seeded MSCs densely covered the coral scaffold with organized, aligned cultures with a fibroblastic morphology. In vivo coral scaffolds with MSCs supported earlier bone and blood vessel formation as compared to control constructs containing TCP-HA and MSCs. This work characterized a novel, sustainably grown coral scaffold that was biocompatible with MSCs and supports their in vivo osteogenic differentiation, advancing the current repertoire of biomaterials for bone grafting.
{"title":"Sustainably cultured coral scaffold supports human bone marrow mesenchymal stromal cell osteogenesis","authors":"Chiara Gentili , Maria Elisabetta Federica Palamà , Gillian Sexton , Sophie Maybury , Megan Shanahan , Yeyetunde Yvonne Omowunmi-Kayode , James Martin , Martin Johnson , Kerry Thompson , Owen Clarkin , Cynthia M. Coleman","doi":"10.1016/j.reth.2024.06.002","DOIUrl":"https://doi.org/10.1016/j.reth.2024.06.002","url":null,"abstract":"<div><p>The current gold standard grafting material is autologous bone due to its osteoinductive and osteoconductive properties. Autograft harvesting results in donors site morbidity. Coral scaffolds offer a natural autograft alternative, sharing the density and porosity of human bone. This study investigated the biocompatibility and osteogenic potential of a novel, sustainably grown <em>Pocillopora</em> scaffold with human bone marrow-derived mesenchymal stromal cells (MSCs). The coral-derived scaffold displays a highly textured topography, with concavities of uniform size and a high calcium carbonate content. Large scaffold samples exhibit compressive and diametral tensile strengths in the range of trabecular bone, with strengths likely increasing for smaller particulate samples. Following the <em>in vitro</em> seeding of MSCs adjacent to the scaffold, the MSCs remained viable, continued proliferating and metabolising, demonstrating biocompatibility. The seeded MSCs densely covered the coral scaffold with organized, aligned cultures with a fibroblastic morphology. <em>In vivo</em> coral scaffolds with MSCs supported earlier bone and blood vessel formation as compared to control constructs containing TCP-HA and MSCs. This work characterized a novel, sustainably grown coral scaffold that was biocompatible with MSCs and supports their <em>in vivo</em> osteogenic differentiation, advancing the current repertoire of biomaterials for bone grafting.</p></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"Pages 366-381"},"PeriodicalIF":3.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352320424001093/pdfft?md5=27f752fdc8eedb841ee4565a44c1c527&pid=1-s2.0-S2352320424001093-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141484387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}