For the treatment of MRSA-infected wounds, the spatiotemporally sequential delivery of antibacterial and anti-inflammatory drugs is a promising strategy. In this study, ROS responsive HA-PBA/PVA (HPA) hydrogel was prepared by phenylborate ester bond cross-linking between hyaluronic acid grafted 3-aminophenylboronic acid (HA-PBA) and polyvinyl alcohol (PVA) to achieve spatiotemporally controlled release of two kinds of drug to treat MRSA-infected wound. The hydrophilic antibiotic moxifloxacin (M) was directly loaded in the hydrogel. And hydrophobic curcumin (Cur) with anti-inflammatory function was first mixed with Pluronic F127 (PF) to form curcumin encapsulated PF micelles (Cur-PF), and then loaded into the HPA hydrogel. Due to the different hydrophilic and hydrophobic nature of moxifloxacin and curcumin and their different existing forms in the HPA hydrogel, the final HPA/M&Cur-PF hydrogel can achieve different spatiotemporally sequential delivery of the two drugs. In addition, the swelling, degradation, self-healing, antibacterial, anti-inflammatory, antioxidant property, and biocompatibility of hydrogels were tested. Finally, in the MRSA-infected mouse skin wound, the hydrogel treated group showed faster wound closure, less inflammation and more collagen deposition. Immunofluorescence experiments further confirmed that the hydrogel promoted better repair by reducing inflammation (TNF-α) and promoting vascular (VEGF) regeneration. In conclusion, this HPA/M&Cur-PF hydrogel that can spatiotemporally sequential deliver antibacterial and anti-inflammatory drugs showed great potential for the repair of MRSA-infected skin wounds.
{"title":"ROS-responsive hydrogels with spatiotemporally sequential delivery of antibacterial and anti-inflammatory drugs for the repair of MRSA-infected wounds","authors":"Bowen Qiao, Jiaxin Wang, Lipeng Qiao, Aziz Maleki, Yongping Liang, Baolin Guo","doi":"10.1093/rb/rbad110","DOIUrl":"https://doi.org/10.1093/rb/rbad110","url":null,"abstract":"For the treatment of MRSA-infected wounds, the spatiotemporally sequential delivery of antibacterial and anti-inflammatory drugs is a promising strategy. In this study, ROS responsive HA-PBA/PVA (HPA) hydrogel was prepared by phenylborate ester bond cross-linking between hyaluronic acid grafted 3-aminophenylboronic acid (HA-PBA) and polyvinyl alcohol (PVA) to achieve spatiotemporally controlled release of two kinds of drug to treat MRSA-infected wound. The hydrophilic antibiotic moxifloxacin (M) was directly loaded in the hydrogel. And hydrophobic curcumin (Cur) with anti-inflammatory function was first mixed with Pluronic F127 (PF) to form curcumin encapsulated PF micelles (Cur-PF), and then loaded into the HPA hydrogel. Due to the different hydrophilic and hydrophobic nature of moxifloxacin and curcumin and their different existing forms in the HPA hydrogel, the final HPA/M&Cur-PF hydrogel can achieve different spatiotemporally sequential delivery of the two drugs. In addition, the swelling, degradation, self-healing, antibacterial, anti-inflammatory, antioxidant property, and biocompatibility of hydrogels were tested. Finally, in the MRSA-infected mouse skin wound, the hydrogel treated group showed faster wound closure, less inflammation and more collagen deposition. Immunofluorescence experiments further confirmed that the hydrogel promoted better repair by reducing inflammation (TNF-α) and promoting vascular (VEGF) regeneration. In conclusion, this HPA/M&Cur-PF hydrogel that can spatiotemporally sequential deliver antibacterial and anti-inflammatory drugs showed great potential for the repair of MRSA-infected skin wounds.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"9 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138560458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering, the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating native organs/tissues' microenvironment. As a kind of natural tissue-derived biomaterials, decellularized extracellular matrix (dECM)-based scaffolds have gained attention due to their unique biomimetic properties, providing a specific microenvironment suitable for promoting cell proliferation, migration, attachment, and regulating differentiation. The medical applications of dECM-based scaffolds have addressed critical challenges, including poor mechanical strength and insufficient stability. For promoting the reconstruction of damaged tissues or organs, different types of dECM-based composite platforms have been designed to mimic tissue microenvironment, including by integrating with natural polymer or/and syntenic polymer or adding bioactive factors. In this review, we summarized the research progress of dECM-based composite scaffolds in regenerative medicine, highlighting the critical challenges and future perspectives related to the medical application of these composite materials.
{"title":"Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine","authors":"Peiyao Xu, Ranjith Kumar Kankala, Shibin Wang, Aizheng Chen","doi":"10.1093/rb/rbad107","DOIUrl":"https://doi.org/10.1093/rb/rbad107","url":null,"abstract":"Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering, the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating native organs/tissues' microenvironment. As a kind of natural tissue-derived biomaterials, decellularized extracellular matrix (dECM)-based scaffolds have gained attention due to their unique biomimetic properties, providing a specific microenvironment suitable for promoting cell proliferation, migration, attachment, and regulating differentiation. The medical applications of dECM-based scaffolds have addressed critical challenges, including poor mechanical strength and insufficient stability. For promoting the reconstruction of damaged tissues or organs, different types of dECM-based composite platforms have been designed to mimic tissue microenvironment, including by integrating with natural polymer or/and syntenic polymer or adding bioactive factors. In this review, we summarized the research progress of dECM-based composite scaffolds in regenerative medicine, highlighting the critical challenges and future perspectives related to the medical application of these composite materials.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"38 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaolei Guo, Yuan Ma, Hang Wang, Hongping Yin, Xinli Shi, Yiqin Chen, Guobiao Gao, Lei Sun, Jiadao Wang, Yunbing Wang, Daidi Fan
Recombinant collagen is a pivotal topic in foundational biological research and epitomizes the application of critical bioengineering technologies. These technological advancements have profound implications across diverse areas such as regenerative medicine, organ replacement, tissue engineering, cosmetics, and more. Thus, recombinant collagen and its preparation methodologies rooted in genetically engineered cells mark pivotal milestones in medical product research. This article provides a comprehensive overview of the current genetic engineering technologies and methods used in the production of recombinant collagen, as well as the conventional production process and quality control detection methods for this material. Furthermore, the discussion extends to foresee the strides in physical transfection and magnetic control sorting studies, envisioning an enhanced preparation of recombinant collagen-seeded cells to further fuel recombinant collagen production.
{"title":"Status and Developmental Trends in Recombinant Collagen Preparation Technology","authors":"Xiaolei Guo, Yuan Ma, Hang Wang, Hongping Yin, Xinli Shi, Yiqin Chen, Guobiao Gao, Lei Sun, Jiadao Wang, Yunbing Wang, Daidi Fan","doi":"10.1093/rb/rbad106","DOIUrl":"https://doi.org/10.1093/rb/rbad106","url":null,"abstract":"Recombinant collagen is a pivotal topic in foundational biological research and epitomizes the application of critical bioengineering technologies. These technological advancements have profound implications across diverse areas such as regenerative medicine, organ replacement, tissue engineering, cosmetics, and more. Thus, recombinant collagen and its preparation methodologies rooted in genetically engineered cells mark pivotal milestones in medical product research. This article provides a comprehensive overview of the current genetic engineering technologies and methods used in the production of recombinant collagen, as well as the conventional production process and quality control detection methods for this material. Furthermore, the discussion extends to foresee the strides in physical transfection and magnetic control sorting studies, envisioning an enhanced preparation of recombinant collagen-seeded cells to further fuel recombinant collagen production.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Zheng, Faina Bider, Mahshid Monavari, Zhiyan Xu, Christina Janko, Christoph Alexiou, Ana Maria Beltrán, Aldo R Boccaccini
Sol-gel borate bioactive glasses (BGs) are promising ion-releasing biomaterials for wound healing applications. Here we report the synthesis of a series of binary B2O3-CaO borate BGs (Ca ranging from 50 to 90 mol%) using a sol-gel-based method. The influence of CaO content in B2O3-CaO borate BG on morphology, structure and ion release behavior was investigated in detail. Reduced dissolution (ion release) and crystallization could be observed in borate BGs when CaO content increased, while the morphology was not significantly altered by CaO incorporation. Our results evidenced that the ion release behavior of borate BGs could be tailored by tuning the B2O3/CaO molar ratio. We also evaluated the in vitro cytotoxicity, hemostatic, antibacterial and angiogenic activities of borate BGs. Cytocompatibility was validated for all borate BGs. However, borate BGs exhibited composition-dependent hemostatic, antibacterial and angiogenic activities. Generally, higher contents of Ca in borate BGs facilitated hemostatic activity, while higher contents of B were beneficial for pro-angiogenic activity. The synthesized sol-gel derived borate BGs are promising materials for developing advanced wound healing dressing, given their fast ion release behavior and favorable hemostatic, antibacterial and angiogenic activities.
{"title":"Sol-gel derived B2O3-CaO borate bioactive glasses with hemostatic, antibacterial and pro-angiogenic activities","authors":"Kai Zheng, Faina Bider, Mahshid Monavari, Zhiyan Xu, Christina Janko, Christoph Alexiou, Ana Maria Beltrán, Aldo R Boccaccini","doi":"10.1093/rb/rbad105","DOIUrl":"https://doi.org/10.1093/rb/rbad105","url":null,"abstract":"Sol-gel borate bioactive glasses (BGs) are promising ion-releasing biomaterials for wound healing applications. Here we report the synthesis of a series of binary B2O3-CaO borate BGs (Ca ranging from 50 to 90 mol%) using a sol-gel-based method. The influence of CaO content in B2O3-CaO borate BG on morphology, structure and ion release behavior was investigated in detail. Reduced dissolution (ion release) and crystallization could be observed in borate BGs when CaO content increased, while the morphology was not significantly altered by CaO incorporation. Our results evidenced that the ion release behavior of borate BGs could be tailored by tuning the B2O3/CaO molar ratio. We also evaluated the in vitro cytotoxicity, hemostatic, antibacterial and angiogenic activities of borate BGs. Cytocompatibility was validated for all borate BGs. However, borate BGs exhibited composition-dependent hemostatic, antibacterial and angiogenic activities. Generally, higher contents of Ca in borate BGs facilitated hemostatic activity, while higher contents of B were beneficial for pro-angiogenic activity. The synthesized sol-gel derived borate BGs are promising materials for developing advanced wound healing dressing, given their fast ion release behavior and favorable hemostatic, antibacterial and angiogenic activities.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"24 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metal ions participate in many metabolic processes in the human body, and their homeostasis is crucial for life. In cardiovascular diseases (CVDs), the equilibriums of metal ions are frequently interrupted, which are related with a variety of disturbances of physiological processes leading to abnormal cardiac functions. Exogenous supplement of metal ions has the potential to work as therapeutic strategies for the treatment of CVDs. Compared with other therapeutic drugs, metal ions possess broad availability, good stability and safety, and diverse drug delivery strategies. The delivery strategies of metal ions are important to exert their therapeutic effects and reduce the potential toxic side effects for cardiovascular applications, which are also receiving increasing attentions. Controllable local delivery strategies for metal ions based on various biomaterials are constantly being designed. In this review, we comprehensively summarized the positive roles of metal ions in the treatment of CVDs from three aspects: protecting cells from oxidative stress, inducing angiogenesis, and adjusting the functions of ion-channels. In addition, we introduced the transferability of metal ions in vascular reconstruction and cardiac tissue repair, as well as the currently available engineered strategies for the precise delivery of metal ions, such as integrated with nanoparticles, hydrogels, and scaffolds.
{"title":"Exogeneous Metal ions as therapeutic agents in cardiovascular disease and their delivery strategies","authors":"Xiaoqian Hong, Geer Tian, Yang Zhu, Tanchen Ren","doi":"10.1093/rb/rbad103","DOIUrl":"https://doi.org/10.1093/rb/rbad103","url":null,"abstract":"Metal ions participate in many metabolic processes in the human body, and their homeostasis is crucial for life. In cardiovascular diseases (CVDs), the equilibriums of metal ions are frequently interrupted, which are related with a variety of disturbances of physiological processes leading to abnormal cardiac functions. Exogenous supplement of metal ions has the potential to work as therapeutic strategies for the treatment of CVDs. Compared with other therapeutic drugs, metal ions possess broad availability, good stability and safety, and diverse drug delivery strategies. The delivery strategies of metal ions are important to exert their therapeutic effects and reduce the potential toxic side effects for cardiovascular applications, which are also receiving increasing attentions. Controllable local delivery strategies for metal ions based on various biomaterials are constantly being designed. In this review, we comprehensively summarized the positive roles of metal ions in the treatment of CVDs from three aspects: protecting cells from oxidative stress, inducing angiogenesis, and adjusting the functions of ion-channels. In addition, we introduced the transferability of metal ions in vascular reconstruction and cardiac tissue repair, as well as the currently available engineered strategies for the precise delivery of metal ions, such as integrated with nanoparticles, hydrogels, and scaffolds.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"43 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Platelet-rich plasma (PRP) that has various growth factors has been used clinically in cartilage repair. However, the short residence time and release time at the injury site limit its therapeutic effect. The present study fabricated a granular hydrogel that assembled from gelatin microspheres and tannic acid (TA) through their abundant hydrogen bonding. Gelatin microspheres with the gelatin concentration of 10 wt% and the diameter distribution of 1–10 μm were used to assemble by TA to form the granular hydrogel, which exhibited elasticity under low shear strain, but flowability under higher shear strain. The viscosity decreased with increase of shear rate. Meanwhile, the granular hydrogel exhibited self-healing feature during rheology test. Thus, granular hydrogel carrying PRP not only exhibited well-performed injectability, but also performed like a “plasticine” that possessed good plasticity. The granular hydrogel showed tissue adhesion ability and reactive oxygen species (ROS) scavenging ability. Granular hydrogel carrying PRP transplanted to full thickness articular cartilage defects could integrate well with native cartilage, resulting in newly formed cartilage articular fully filled in defects and well-integrated with the native cartilage and subchondral bone. The unique feature of the present granular hydrogel, including injectability, plasticity, porous structure, tissue adhesion, and ROS scavenging provided an ideal PRP-carrier towards cartilage tissue engineering.
{"title":"Tissue adhesive, ROS-scavenging and injectable PRP-based “plasticine” for promoting cartilage repair","authors":"Shiao Li, Dawei Niu, Haowei Fang, Yancheng Chen, Jinyan Li, Kunxi Zhang, Jingbo Yin, Peiliang Fu","doi":"10.1093/rb/rbad104","DOIUrl":"https://doi.org/10.1093/rb/rbad104","url":null,"abstract":"Platelet-rich plasma (PRP) that has various growth factors has been used clinically in cartilage repair. However, the short residence time and release time at the injury site limit its therapeutic effect. The present study fabricated a granular hydrogel that assembled from gelatin microspheres and tannic acid (TA) through their abundant hydrogen bonding. Gelatin microspheres with the gelatin concentration of 10 wt% and the diameter distribution of 1–10 μm were used to assemble by TA to form the granular hydrogel, which exhibited elasticity under low shear strain, but flowability under higher shear strain. The viscosity decreased with increase of shear rate. Meanwhile, the granular hydrogel exhibited self-healing feature during rheology test. Thus, granular hydrogel carrying PRP not only exhibited well-performed injectability, but also performed like a “plasticine” that possessed good plasticity. The granular hydrogel showed tissue adhesion ability and reactive oxygen species (ROS) scavenging ability. Granular hydrogel carrying PRP transplanted to full thickness articular cartilage defects could integrate well with native cartilage, resulting in newly formed cartilage articular fully filled in defects and well-integrated with the native cartilage and subchondral bone. The unique feature of the present granular hydrogel, including injectability, plasticity, porous structure, tissue adhesion, and ROS scavenging provided an ideal PRP-carrier towards cartilage tissue engineering.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"37 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Li, Jiawei Liu, Chenxi Lian, He Yang, Mingjiang Zhang, Youfa Wang, Honglian Dai
As a superior alternative to sutures, tissue adhesives have been developed significantly in recent years. However, existing tissue adhesives struggle to form fast and stable adhesion between tissue interfaces, bond weakly in wet environments, and lack bioactivity. In this study, a degradable and bioactive citrate-based polyurethane adhesive is constructed to achieve rapid and strong tissue adhesion. The hydrophobic layer was created with polycaprolactone to overcome the bonding failure between tissue and adhesion layer in wet environments, which can effectively improve the wet bonding strength. This citrate-based polyurethane adhesive provides rapid, non-invasive, liquid-tight, and seamless closure of skin incisions, overcoming the limitations of sutures and commercial tissue adhesives. In addition, it exhibits biocompatibility, biodegradability, and hemostatic properties. The degradation product citrate could promote the process of angiogenesis and accelerate wound healing. This study provides a novel approach to the development of a fast-adhering wet tissue adhesive and provides a valuable contribution to the development of polyurethane-based tissue adhesives.
{"title":"Bioactive Citrate-based Polyurethane Tissue Adhesive for Fast Sealing and Promoted Wound Healing","authors":"Yan Li, Jiawei Liu, Chenxi Lian, He Yang, Mingjiang Zhang, Youfa Wang, Honglian Dai","doi":"10.1093/rb/rbad101","DOIUrl":"https://doi.org/10.1093/rb/rbad101","url":null,"abstract":"As a superior alternative to sutures, tissue adhesives have been developed significantly in recent years. However, existing tissue adhesives struggle to form fast and stable adhesion between tissue interfaces, bond weakly in wet environments, and lack bioactivity. In this study, a degradable and bioactive citrate-based polyurethane adhesive is constructed to achieve rapid and strong tissue adhesion. The hydrophobic layer was created with polycaprolactone to overcome the bonding failure between tissue and adhesion layer in wet environments, which can effectively improve the wet bonding strength. This citrate-based polyurethane adhesive provides rapid, non-invasive, liquid-tight, and seamless closure of skin incisions, overcoming the limitations of sutures and commercial tissue adhesives. In addition, it exhibits biocompatibility, biodegradability, and hemostatic properties. The degradation product citrate could promote the process of angiogenesis and accelerate wound healing. This study provides a novel approach to the development of a fast-adhering wet tissue adhesive and provides a valuable contribution to the development of polyurethane-based tissue adhesives.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"220 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Zhang, Jie Wang, Jiayi You, Xuan Qin, Huimin Chen, Xiantong Hu, Yantao Zhao, Yang Xia
The removal of a failed implant with high torque causes significant damage to the surrounding tissue, compromising bone regeneration and subsequent osseointegration in the defect area. Here, we report a case of carrier screw fracture followed by immediate implant removal, bone grafting, and delayed reimplantation. A dental implant with a fractured central carrier screw was removed using the bur-forceps technique. The resulting three-wall bone defect was filled with granular surface demineralized freeze-dried bone allograft (SD-FDBA). Cone-beam computerized tomography was performed at 1 week, 6 months, and 15 months postoperatively, and standardized for quantitative evaluation. The alveolar bone width and height at 15 months post-surgery were about 91% of the original values, with a slightly lower bone density, calculated using the gray value ratio. The graft site was reopened and was found to be completely healed with dense and vascularized bone along with some residual bone graft. Reimplantation followed by restoration was performed 8 months later. The quality of regenerated bone following SD-FDBA grafting was adequate for osseointegration and long-term implant success. The excellent osteogenic properties of SD-FDBA are attributed to its human origin, cortical bone like structure, partly demineralized surfaces, and bone morphogenetic protein-2 containing nature. Further investigation with more cases and longer follow-up was required to confirm the final clinical effect.
{"title":"Surface demineralized freeze-dried bone allograft followed by reimplantation in a failed mandibular dental implant","authors":"Jing Zhang, Jie Wang, Jiayi You, Xuan Qin, Huimin Chen, Xiantong Hu, Yantao Zhao, Yang Xia","doi":"10.1093/rb/rbad102","DOIUrl":"https://doi.org/10.1093/rb/rbad102","url":null,"abstract":"The removal of a failed implant with high torque causes significant damage to the surrounding tissue, compromising bone regeneration and subsequent osseointegration in the defect area. Here, we report a case of carrier screw fracture followed by immediate implant removal, bone grafting, and delayed reimplantation. A dental implant with a fractured central carrier screw was removed using the bur-forceps technique. The resulting three-wall bone defect was filled with granular surface demineralized freeze-dried bone allograft (SD-FDBA). Cone-beam computerized tomography was performed at 1 week, 6 months, and 15 months postoperatively, and standardized for quantitative evaluation. The alveolar bone width and height at 15 months post-surgery were about 91% of the original values, with a slightly lower bone density, calculated using the gray value ratio. The graft site was reopened and was found to be completely healed with dense and vascularized bone along with some residual bone graft. Reimplantation followed by restoration was performed 8 months later. The quality of regenerated bone following SD-FDBA grafting was adequate for osseointegration and long-term implant success. The excellent osteogenic properties of SD-FDBA are attributed to its human origin, cortical bone like structure, partly demineralized surfaces, and bone morphogenetic protein-2 containing nature. Further investigation with more cases and longer follow-up was required to confirm the final clinical effect.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"1 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nikoo Saveh Shemshaki, Mohammed A Barajaa, Takayoshi Otsuka, Elnaz S Mirdamadi, Lakshmi S Nair, Cato T Laurencin
Abstract Muscle degeneration is one the main factors that lead to the high rate of retear after a successful repair of rotator cuff tears. The current surgical practices have failed to treat patients with chronic massive rotator cuff tears. Therefore, regenerative engineering approaches are being studied to address the challenges. Recent studies showed the promising outcomes of electroactive materials on the regeneration of electrically excitable tissues such as skeletal muscle. Here, we review the most important biological mechanism of rotator cuff muscle degeneration. Further, the review covers the recent studies on electroactive materials for muscle regeneration including rotator cuff muscle. Finally, we will discuss the future direction toward the application of electroactive materials for the augmentation of rotator cuff tears.
{"title":"Electroconductivity, a Regenerative Engineering Approach to Reverse Rotator Cuff Muscle Degeneration","authors":"Nikoo Saveh Shemshaki, Mohammed A Barajaa, Takayoshi Otsuka, Elnaz S Mirdamadi, Lakshmi S Nair, Cato T Laurencin","doi":"10.1093/rb/rbad099","DOIUrl":"https://doi.org/10.1093/rb/rbad099","url":null,"abstract":"Abstract Muscle degeneration is one the main factors that lead to the high rate of retear after a successful repair of rotator cuff tears. The current surgical practices have failed to treat patients with chronic massive rotator cuff tears. Therefore, regenerative engineering approaches are being studied to address the challenges. Recent studies showed the promising outcomes of electroactive materials on the regeneration of electrically excitable tissues such as skeletal muscle. Here, we review the most important biological mechanism of rotator cuff muscle degeneration. Further, the review covers the recent studies on electroactive materials for muscle regeneration including rotator cuff muscle. Finally, we will discuss the future direction toward the application of electroactive materials for the augmentation of rotator cuff tears.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"7 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135086309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weihao Yuan, Luiza de Almeida Queiroz Ferreira, Bo Yu, Sahar Ansari, Alireza Moshaverinia
Abstract Dental-derived stem cells (DSCs) are attractive cell sources due to their easy access, superior growth capacity, and low immunogenicity. They can respond to multiple extracellular matrix (ECM) signals, which provide biophysical and biochemical cues to regulate the fate of residing cells. However, the direct transplantation of DSCs suffers from poor proliferation and differentiation towards functional cells and low survival rates due to local inflammation. Recently, elegant advances in the design of novel biomaterials have been made to give promise to the use of biomimetic biomaterials to regulate various cell behaviors, including proliferation, differentiation, and migration. Biomaterials could be tailored with multiple functionalities, e.g., stimuli-responsiveness. There is an emerging need to summarize recent advances in engineered biomaterials-mediated delivery and therapy of DSCs and their potential applications. Herein, we outlined the design of biomaterials for supporting DSCs and the host response to the transplantation.
{"title":"Dental-derived Stem Cells in Tissue Engineering: The Role of Biomaterials and Host Response","authors":"Weihao Yuan, Luiza de Almeida Queiroz Ferreira, Bo Yu, Sahar Ansari, Alireza Moshaverinia","doi":"10.1093/rb/rbad100","DOIUrl":"https://doi.org/10.1093/rb/rbad100","url":null,"abstract":"Abstract Dental-derived stem cells (DSCs) are attractive cell sources due to their easy access, superior growth capacity, and low immunogenicity. They can respond to multiple extracellular matrix (ECM) signals, which provide biophysical and biochemical cues to regulate the fate of residing cells. However, the direct transplantation of DSCs suffers from poor proliferation and differentiation towards functional cells and low survival rates due to local inflammation. Recently, elegant advances in the design of novel biomaterials have been made to give promise to the use of biomimetic biomaterials to regulate various cell behaviors, including proliferation, differentiation, and migration. Biomaterials could be tailored with multiple functionalities, e.g., stimuli-responsiveness. There is an emerging need to summarize recent advances in engineered biomaterials-mediated delivery and therapy of DSCs and their potential applications. Herein, we outlined the design of biomaterials for supporting DSCs and the host response to the transplantation.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":" 796","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135186079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}