首页 > 最新文献

Regenerative Biomaterials最新文献

英文 中文
Enhancing angiogenesis in peri-implant soft tissue with bioactive silk fibroin microgroove coatings on zirconia surfaces. 利用氧化锆表面的生物活性丝纤维蛋白微槽涂层增强种植体周围软组织的血管生成。
IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-06-17 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae068
Zhihan Wang, Palati Tuerxun, Takkun Ng, Yinuo Yan, Ke Zhao, Yutao Jian, Xiaoshi Jia

Zirconia abutments and restorations have improved the aesthetic appeal of implant restoration, yet peri-implantitis poses a significant threat to long-term success. The soft tissue surrounding implants is a crucial biological barrier against inflammation and subsequent bone loss. Peri-implantitis, akin to periodontitis, progresses rapidly and causes extensive tissue damage. Variations in tissue structure significantly influence disease progression, particularly the lower vascular density in peri-implant connective tissue, compromising its ability to combat infection and provide essential nutrients. Blood vessels within this tissue are vital for healing, with angiogenesis playing a key role in immune defense and tissue repair. Enhancing peri-implant soft tissue angiogenesis holds promise for tissue integration and inflammation control. Microgroove surfaces have shown potential in guiding vessel growth, but using subtractive technologies to carve microgrooves on zirconia surfaces may compromise mechanical integrity. In this study, we utilized inkjet printing to prepare bioactive silk fibroin microgrooves (SFMG) coating with different sizes on zirconia surfaces. SFMG coating, particularly with 90 µm width and 10 µm depth, effectively directed human umbilical vein endothelial cells (HUVECs) along microgrooves, promoting their proliferation, migration, and tube formation. The expression of vascular endothelial growth factor A and fibroblast growth factor in HUVECs growing on SFMG coating was upregulated. Additionally, the SFMG coating activated the PI3K-AKT pathway and increased glycolytic enzyme gene expression in HUVECs. In conclusion, SFMG coating enhances HUVEC growth and angiogenesis potential by activating the PI3K-AKT pathway and glycolysis, showing promise for improving tissue integration and mitigating inflammation in zirconia abutments and restorations.

氧化锆基台和修复体提高了种植体修复的美观度,但种植体周围炎对长期成功构成了重大威胁。种植体周围的软组织是防止炎症和随后骨质流失的重要生物屏障。种植体周围炎与牙周炎类似,会迅速发展并造成广泛的组织损伤。组织结构的变化对疾病的进展有很大影响,尤其是种植体周围结缔组织的血管密度较低,影响了其抗感染和提供必要营养的能力。该组织内的血管对愈合至关重要,血管生成在免疫防御和组织修复中发挥着关键作用。加强种植体周围软组织的血管生成有望实现组织整合和炎症控制。微槽表面已显示出引导血管生长的潜力,但使用减法技术在氧化锆表面雕刻微槽可能会损害机械完整性。在这项研究中,我们利用喷墨打印技术在氧化锆表面制备了不同尺寸的生物活性丝纤维蛋白微槽(SFMG)涂层。宽度为 90 微米、深度为 10 微米的 SFMG 涂层能有效引导人脐静脉内皮细胞(HUVECs)沿微沟移动,促进其增殖、迁移和管道形成。在 SFMG 涂层上生长的 HUVEC 中,血管内皮生长因子 A 和成纤维细胞生长因子的表达得到了上调。此外,SFMG 涂层激活了 PI3K-AKT 通路,增加了 HUVEC 中糖酵解酶基因的表达。总之,SFMG 涂层通过激活 PI3K-AKT 通路和糖酵解,增强了 HUVEC 的生长和血管生成潜力,有望改善氧化锆基台和修复体的组织整合并减轻炎症。
{"title":"Enhancing angiogenesis in peri-implant soft tissue with bioactive silk fibroin microgroove coatings on zirconia surfaces.","authors":"Zhihan Wang, Palati Tuerxun, Takkun Ng, Yinuo Yan, Ke Zhao, Yutao Jian, Xiaoshi Jia","doi":"10.1093/rb/rbae068","DOIUrl":"10.1093/rb/rbae068","url":null,"abstract":"<p><p>Zirconia abutments and restorations have improved the aesthetic appeal of implant restoration, yet peri-implantitis poses a significant threat to long-term success. The soft tissue surrounding implants is a crucial biological barrier against inflammation and subsequent bone loss. Peri-implantitis, akin to periodontitis, progresses rapidly and causes extensive tissue damage. Variations in tissue structure significantly influence disease progression, particularly the lower vascular density in peri-implant connective tissue, compromising its ability to combat infection and provide essential nutrients. Blood vessels within this tissue are vital for healing, with angiogenesis playing a key role in immune defense and tissue repair. Enhancing peri-implant soft tissue angiogenesis holds promise for tissue integration and inflammation control. Microgroove surfaces have shown potential in guiding vessel growth, but using subtractive technologies to carve microgrooves on zirconia surfaces may compromise mechanical integrity. In this study, we utilized inkjet printing to prepare bioactive silk fibroin microgrooves (SFMG) coating with different sizes on zirconia surfaces. SFMG coating, particularly with 90 µm width and 10 µm depth, effectively directed human umbilical vein endothelial cells (HUVECs) along microgrooves, promoting their proliferation, migration, and tube formation. The expression of vascular endothelial growth factor A and fibroblast growth factor in HUVECs growing on SFMG coating was upregulated. Additionally, the SFMG coating activated the PI3K-AKT pathway and increased glycolytic enzyme gene expression in HUVECs. In conclusion, SFMG coating enhances HUVEC growth and angiogenesis potential by activating the PI3K-AKT pathway and glycolysis, showing promise for improving tissue integration and mitigating inflammation in zirconia abutments and restorations.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae068"},"PeriodicalIF":5.6,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of tissue response and lifting effect induced by non-absorbable elastic thread and commercialized threads in rat model. 在大鼠模型中比较非吸收性弹力线和商用线引起的组织反应和提升效果。
IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-06-17 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae069
Dae Hyung Lee, Yeji Choi, Mi Hee Lee, Jong-Chul Park

As we age, our skin loses elasticity and wrinkles form. To prevent this, most people try to improve skin wrinkles by performing procedures such as fillers, and absorbable lifting threads. Another way to solve this structural problem is to use an elastic thread. Although elastic sutures made of polymer materials (such as silicone) are widely used, data regarding their properties and potential effectiveness are lacking. This study aimed to investigate the effects of inserting non-absorbable elastic threads, with different manufacturing requirements and methods, on the skin and subcutaneous tissue. In this study, non-absorbable elastic threads ELATENS and Elasticum using different manufacturing methods were compared. Each thread was transplanted into the subcutaneous layer of the back of a rat to induce wrinkles. After inducing wrinkles in the skin of rat, the degree of skin maintenance by each thread and the thickness of the capsule formed around the suture were measured. Through ex-vivo experiments on each thread, the fixation force in the tissue was confirmed. In a comparison of inflammatory response and collagen formation through histological analysis, it was confirmed that there was no significant difference from the equivalent comparative product. In conclusion, the degree of encapsulation between tissues and collagen fiber formation for improving skin wrinkles was superior in elastic threads compared to non-elastic threads. It is believed that this provides certain elasticity to the skin layer and can induce cell influx to improve wrinkles.

随着年龄的增长,皮肤会失去弹性,皱纹也会随之产生。为了防止这种情况的发生,大多数人试图通过填充物和可吸收提拉线等手术来改善皮肤皱纹。解决这一结构性问题的另一种方法是使用弹力线。虽然由高分子材料(如硅胶)制成的弹性缝合线已被广泛使用,但有关其特性和潜在效果的数据还很缺乏。本研究旨在调查插入不同制造要求和方法的不可吸收弹性线对皮肤和皮下组织的影响。在这项研究中,对采用不同制造方法的不可吸收弹力线 ELATENS 和 Elasticum 进行了比较。每种线都被移植到大鼠背部的皮下组织层,以诱发皱纹。在诱导大鼠皮肤产生皱纹后,测量了每种线对皮肤的维持程度和缝合线周围形成的胶囊厚度。通过对每根线进行体外实验,确认了其在组织中的固定力。通过组织学分析对炎症反应和胶原蛋白的形成进行比较,证实与同等对比产品没有明显差异。总之,在改善皮肤皱纹方面,弹性线的组织间包裹程度和胶原纤维形成程度优于非弹性线。据认为,这为皮肤层提供了一定的弹性,并能诱导细胞涌入以改善皱纹。
{"title":"Comparison of tissue response and lifting effect induced by non-absorbable elastic thread and commercialized threads in rat model.","authors":"Dae Hyung Lee, Yeji Choi, Mi Hee Lee, Jong-Chul Park","doi":"10.1093/rb/rbae069","DOIUrl":"10.1093/rb/rbae069","url":null,"abstract":"<p><p>As we age, our skin loses elasticity and wrinkles form. To prevent this, most people try to improve skin wrinkles by performing procedures such as fillers, and absorbable lifting threads. Another way to solve this structural problem is to use an elastic thread. Although elastic sutures made of polymer materials (such as silicone) are widely used, data regarding their properties and potential effectiveness are lacking. This study aimed to investigate the effects of inserting non-absorbable elastic threads, with different manufacturing requirements and methods, on the skin and subcutaneous tissue. In this study, non-absorbable elastic threads ELATENS and Elasticum using different manufacturing methods were compared. Each thread was transplanted into the subcutaneous layer of the back of a rat to induce wrinkles. After inducing wrinkles in the skin of rat, the degree of skin maintenance by each thread and the thickness of the capsule formed around the suture were measured. Through <i>ex-vivo</i> experiments on each thread, the fixation force in the tissue was confirmed. In a comparison of inflammatory response and collagen formation through histological analysis, it was confirmed that there was no significant difference from the equivalent comparative product. In conclusion, the degree of encapsulation between tissues and collagen fiber formation for improving skin wrinkles was superior in elastic threads compared to non-elastic threads. It is believed that this provides certain elasticity to the skin layer and can induce cell influx to improve wrinkles.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae069"},"PeriodicalIF":5.6,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272176/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun radially oriented berberine-PHBV nanofiber dressing patches for accelerating diabetic wound healing. 用于加速糖尿病伤口愈合的电纺径向小檗碱-PHBV 纳米纤维敷料贴片。
IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-06-04 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae063
Qiuyu Wang, Sai Zhang, Jiayi Jiang, Shaojuan Chen, Seeram Ramakrishna, Wenwen Zhao, Fan Yang, Shaohua Wu

A dressing patch made of radially oriented poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers was successfully manufactured with a modified electrospinning strategy. The as-electrospun PHBV radially oriented nanofiber dressing patch exhibited uniform and bead-free nanofibrous morphology and innovative radially oriented arrangement, which was demonstrated to possess obviously improved mechanical property, increased surface hydrophilicity and enhanced biological properties compared to the PHBV nanofiber dressing patch control with traditionally randomly oriented pattern. Interestingly, it was found that the radially oriented pattern could induce the cell migration from the periphery to the center along the radially oriented nanofibers in a rapid manner. To further improve the biofunction of PHBV radially oriented nanofiber dressing patch, berberine (Beri, an isoquinoline alkaloid) with two different concentrations were encapsulated into PHBV nanofibers during electrospinning, which were found to present a sustained drug release behavior for nearly one month. Importantly, the addition of Beri could impart the dressing patch with excellent anti-inflammatory property by significantly inhibiting the secretion of pro-inflammatory factors of M1 macrophages, and also showed an additive influence on promoting the proliferation of human dermal fibroblasts (HDFs), as well as inhibiting the growth of E. coli, S. aureus and C. albicans, compared with the Beri-free dressing patch. In the animal studies, the electrospun PHBV radially oriented nanofiber dressing patch loading with high Beri content was found to obviously accelerate the healing process of diabetic mouse full-thickness skin wound with shortened healing time (100% wound closure rate after 18 days' treatment) and improved healing quality (improved collagen deposition, enhanced re-epithelialization and neovascularization and increased hair follicles). In all, this study reported an innovative therapeutic strategy integrating the excellent physical cues of electrospun PHBV radially oriented nanofiber dressing patch with the multiple biological cues of Beri for the effective treatment of hard-to-heal diabetic wounds.

通过改进的电纺策略,成功制备了一种由径向取向聚(3-羟基丁酸-3-羟基戊酸)(PHBV)纳米纤维制成的敷料贴片。与传统随机取向的 PHBV 纳米纤维敷料贴片相比,电纺丝后的 PHBV 辐射取向纳米纤维敷料贴片呈现出均匀无珠的纳米纤维形态和创新的辐射取向排列,与传统随机取向的 PHBV 纳米纤维敷料贴片相比,具有明显改善的机械性能、增加的表面亲水性和增强的生物特性。有趣的是,研究还发现径向取向的图案能诱导细胞沿着径向取向的纳米纤维从外围向中心快速迁移。为了进一步提高 PHBV 辐射导向纳米纤维敷料贴片的生物功能,研究人员在电纺丝过程中将两种不同浓度的小檗碱(Berberine,一种异喹啉生物碱)封装到 PHBV 纳米纤维中,结果发现这种纳米纤维能持续释放药物近一个月。重要的是,与不含贝里的敷料贴片相比,贝里的添加能显著抑制 M1 巨噬细胞促炎因子的分泌,从而赋予敷料贴片优异的抗炎特性,同时还能促进人真皮成纤维细胞(HDFs)的增殖,抑制大肠杆菌、金黄色葡萄球菌和白色念球菌的生长。在动物实验中发现,电纺 PHBV 辐射导向纳米纤维敷料贴片含有大量贝里成分,能明显加速糖尿病小鼠全厚皮肤伤口的愈合过程,缩短愈合时间(治疗 18 天后伤口闭合率达 100%),提高愈合质量(改善胶原沉积,增强再上皮化和新生血管形成,增加毛囊)。总之,本研究报告了一种创新的治疗策略,它将电纺 PHBV 辐射导向纳米纤维敷料贴片的优异物理特性与 Beri 的多种生物特性相结合,有效治疗了难以愈合的糖尿病伤口。
{"title":"Electrospun radially oriented berberine-PHBV nanofiber dressing patches for accelerating diabetic wound healing.","authors":"Qiuyu Wang, Sai Zhang, Jiayi Jiang, Shaojuan Chen, Seeram Ramakrishna, Wenwen Zhao, Fan Yang, Shaohua Wu","doi":"10.1093/rb/rbae063","DOIUrl":"10.1093/rb/rbae063","url":null,"abstract":"<p><p>A dressing patch made of radially oriented poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers was successfully manufactured with a modified electrospinning strategy. The as-electrospun PHBV radially oriented nanofiber dressing patch exhibited uniform and bead-free nanofibrous morphology and innovative radially oriented arrangement, which was demonstrated to possess obviously improved mechanical property, increased surface hydrophilicity and enhanced biological properties compared to the PHBV nanofiber dressing patch control with traditionally randomly oriented pattern. Interestingly, it was found that the radially oriented pattern could induce the cell migration from the periphery to the center along the radially oriented nanofibers in a rapid manner. To further improve the biofunction of PHBV radially oriented nanofiber dressing patch, berberine (Beri, an isoquinoline alkaloid) with two different concentrations were encapsulated into PHBV nanofibers during electrospinning, which were found to present a sustained drug release behavior for nearly one month. Importantly, the addition of Beri could impart the dressing patch with excellent anti-inflammatory property by significantly inhibiting the secretion of pro-inflammatory factors of M1 macrophages, and also showed an additive influence on promoting the proliferation of human dermal fibroblasts (HDFs), as well as inhibiting the growth of <i>E. coli</i>, <i>S. aureus</i> and <i>C. albicans,</i> compared with the Beri-free dressing patch. In the animal studies, the electrospun PHBV radially oriented nanofiber dressing patch loading with high Beri content was found to obviously accelerate the healing process of diabetic mouse full-thickness skin wound with shortened healing time (100% wound closure rate after 18 days' treatment) and improved healing quality (improved collagen deposition, enhanced re-epithelialization and neovascularization and increased hair follicles). In all, this study reported an innovative therapeutic strategy integrating the excellent physical cues of electrospun PHBV radially oriented nanofiber dressing patch with the multiple biological cues of Beri for the effective treatment of hard-to-heal diabetic wounds.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae063"},"PeriodicalIF":5.6,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Injectable cartilage microtissues based on 3D culture using porous gelatin microcarriers for cartilage defect treatment. 基于多孔明胶微载体三维培养的可注射软骨微组织,用于软骨缺损治疗。
IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-06-04 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae064
Jing Zhu, Qiuchen Luo, Tiefeng Cao, Guang Yang, Lin Xiao

Cartilage tissues possess an extremely limited capacity for self-repair, and current clinical surgical approaches for treating articular cartilage defects can only provide short-term relief. Despite significant advances in the field of cartilage tissue engineering, avoiding secondary damage caused by invasive surgical procedures remains a challenge. In this study, injectable cartilage microtissues were developed through 3D culture of rat bone marrow mesenchymal stem cells (BMSCs) within porous gelatin microcarriers (GMs) and induced differentiation. These microtissues were then injected for the purpose of treating cartilage defects in vivo, via a minimally invasive approach. GMs were found to be noncytotoxic and favorable for cell attachment, proliferation and migration evaluated with BMSCs. Moreover, cartilage microtissues with a considerable number of cells and abundant extracellular matrix components were obtained from BMSC-laden GMs after induction differentiation culture for 28 days. Notably, ATDC5 cells were complementally tested to verify that the GMs were conducive to cell attachment, proliferation, migration and chondrogenic differentiation. The microtissues obtained from BMSC-laden GMs were then injected into articular cartilage defect areas in rats and achieved superior performance in alleviating inflammation and repairing cartilage. These findings suggest that the use of injectable cartilage microtissues in this study may hold promise for enhancing the long-term outcomes of cartilage defect treatments while minimizing the risk of secondary damage associated with traditional surgical techniques.

软骨组织的自我修复能力极其有限,目前治疗关节软骨缺损的临床手术方法只能提供短期缓解。尽管软骨组织工程领域取得了重大进展,但避免侵入性手术造成二次损伤仍是一项挑战。在这项研究中,通过在多孔明胶微载体(GMs)中对大鼠骨髓间充质干细胞(BMSCs)进行三维培养并诱导分化,开发出了可注射的软骨微组织。然后将这些微组织注入体内,通过微创方法治疗软骨缺损。通过对 BMSCs 的评估发现,GMs 无细胞毒性,有利于细胞附着、增殖和迁移。此外,经过 28 天的诱导分化培养后,含有大量细胞和丰富细胞外基质成分的 BMSC 基因改造体获得了软骨微组织。值得注意的是,对 ATDC5 细胞进行了互补测试,以验证转基因有利于细胞的附着、增殖、迁移和软骨分化。然后,将从含有 BMSC 的基因改造体中获得的微组织注射到大鼠的关节软骨缺损区,在缓解炎症和修复软骨方面取得了卓越的效果。这些发现表明,本研究中使用的可注射软骨微组织有望提高软骨缺损治疗的长期效果,同时最大限度地降低传统手术技术带来的二次损伤风险。
{"title":"Injectable cartilage microtissues based on 3D culture using porous gelatin microcarriers for cartilage defect treatment.","authors":"Jing Zhu, Qiuchen Luo, Tiefeng Cao, Guang Yang, Lin Xiao","doi":"10.1093/rb/rbae064","DOIUrl":"10.1093/rb/rbae064","url":null,"abstract":"<p><p>Cartilage tissues possess an extremely limited capacity for self-repair, and current clinical surgical approaches for treating articular cartilage defects can only provide short-term relief. Despite significant advances in the field of cartilage tissue engineering, avoiding secondary damage caused by invasive surgical procedures remains a challenge. In this study, injectable cartilage microtissues were developed through 3D culture of rat bone marrow mesenchymal stem cells (BMSCs) within porous gelatin microcarriers (GMs) and induced differentiation. These microtissues were then injected for the purpose of treating cartilage defects <i>in vivo</i>, via a minimally invasive approach. GMs were found to be noncytotoxic and favorable for cell attachment, proliferation and migration evaluated with BMSCs. Moreover, cartilage microtissues with a considerable number of cells and abundant extracellular matrix components were obtained from BMSC-laden GMs after induction differentiation culture for 28 days. Notably, ATDC5 cells were complementally tested to verify that the GMs were conducive to cell attachment, proliferation, migration and chondrogenic differentiation. The microtissues obtained from BMSC-laden GMs were then injected into articular cartilage defect areas in rats and achieved superior performance in alleviating inflammation and repairing cartilage. These findings suggest that the use of injectable cartilage microtissues in this study may hold promise for enhancing the long-term outcomes of cartilage defect treatments while minimizing the risk of secondary damage associated with traditional surgical techniques.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae064"},"PeriodicalIF":5.6,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyphenols-based intelligent oral barrier membranes for periodontal bone defect reconstruction. 用于牙周骨缺损重建的基于多酚的智能口腔屏障膜。
IF 6.7 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-05-28 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae058
Enni Chen, Tianyou Wang, Zhiyuan Sun, Zhipeng Gu, Shimeng Xiao, Yi Ding

Periodontitis-induced periodontal bone defects significantly impact patients' daily lives. The guided tissue regeneration and guided bone regeneration techniques, which are based on barrier membranes, have brought hope for the regeneration of periodontal bone defects. However, traditional barrier membranes lack antimicrobial properties and cannot effectively regulate the complex oxidative stress microenvironment in periodontal bone defect areas, leading to unsatisfactory outcomes in promoting periodontal bone regeneration. To address these issues, our study selected the collagen barrier membrane as the substrate material and synthesized a novel barrier membrane (PO/4-BPBA/Mino@COL, PBMC) with an intelligent antimicrobial coating through a simple layer-by-layer assembly method, incorporating reactive oxygen species (ROS)-scavenging components, commercial dual-functional linkers and antimicrobial building blocks. Experimental results indicated that PBMC exhibited good degradability, hydrophilicity and ROS-responsiveness, allowing for the slow and controlled release of antimicrobial drugs. The outstanding antibacterial, antioxidant and biocompatibility properties of PBMC contributed to resistance to periodontal pathogen infection and regulation of the oxidative balance, while enhancing the migration and osteogenic differentiation of human periodontal ligament stem cells. Finally, using a rat periodontal bone defect model, the therapeutic effect of PBMC in promoting periodontal bone regeneration under infection conditions was confirmed. In summary, the novel barrier membranes designed in this study have significant potential for clinical application and provide a reference for the design of future periodontal regenerative functional materials.

牙周炎引起的牙周骨缺损严重影响了患者的日常生活。以屏障膜为基础的引导组织再生和引导骨再生技术为牙周骨缺损的再生带来了希望。然而,传统的屏障膜缺乏抗菌性,不能有效调节牙周骨缺损区复杂的氧化应激微环境,导致促进牙周骨再生的效果不理想。为了解决这些问题,我们的研究选择了胶原蛋白屏障膜作为基底材料,并通过简单的逐层组装方法,结合活性氧(ROS)清除成分、商业双功能连接体和抗菌构建模块,合成了具有智能抗菌涂层的新型屏障膜(PO/4-BPBA/Mino@COL,PBMC)。实验结果表明,PBMC 具有良好的降解性、亲水性和对 ROS 的反应性,可以缓慢、可控地释放抗菌药物。PBMC 卓越的抗菌、抗氧化和生物相容性有助于抵抗牙周病原体感染和调节氧化平衡,同时还能促进人类牙周韧带干细胞的迁移和成骨分化。最后,利用大鼠牙周骨缺损模型证实了 PBMC 在感染条件下促进牙周骨再生的治疗效果。总之,本研究设计的新型屏障膜具有巨大的临床应用潜力,为未来牙周再生功能材料的设计提供了参考。
{"title":"Polyphenols-based intelligent oral barrier membranes for periodontal bone defect reconstruction.","authors":"Enni Chen, Tianyou Wang, Zhiyuan Sun, Zhipeng Gu, Shimeng Xiao, Yi Ding","doi":"10.1093/rb/rbae058","DOIUrl":"10.1093/rb/rbae058","url":null,"abstract":"<p><p>Periodontitis-induced periodontal bone defects significantly impact patients' daily lives. The guided tissue regeneration and guided bone regeneration techniques, which are based on barrier membranes, have brought hope for the regeneration of periodontal bone defects. However, traditional barrier membranes lack antimicrobial properties and cannot effectively regulate the complex oxidative stress microenvironment in periodontal bone defect areas, leading to unsatisfactory outcomes in promoting periodontal bone regeneration. To address these issues, our study selected the collagen barrier membrane as the substrate material and synthesized a novel barrier membrane (PO/4-BPBA/Mino@COL, PBMC) with an intelligent antimicrobial coating through a simple layer-by-layer assembly method, incorporating reactive oxygen species (ROS)-scavenging components, commercial dual-functional linkers and antimicrobial building blocks. Experimental results indicated that PBMC exhibited good degradability, hydrophilicity and ROS-responsiveness, allowing for the slow and controlled release of antimicrobial drugs. The outstanding antibacterial, antioxidant and biocompatibility properties of PBMC contributed to resistance to periodontal pathogen infection and regulation of the oxidative balance, while enhancing the migration and osteogenic differentiation of human periodontal ligament stem cells. Finally, using a rat periodontal bone defect model, the therapeutic effect of PBMC in promoting periodontal bone regeneration under infection conditions was confirmed. In summary, the novel barrier membranes designed in this study have significant potential for clinical application and provide a reference for the design of future periodontal regenerative functional materials.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae058"},"PeriodicalIF":6.7,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tannic acid and silicate-functionalized polyvinyl alcohol-hyaluronic acid hydrogel for infected diabetic wound healing. 用于感染性糖尿病伤口愈合的单宁酸和硅酸盐功能化聚乙烯醇-透明质酸水凝胶。
IF 6.7 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-05-13 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae053
Zhentian Diao, Longkang Li, Huan Zhou, Lei Yang

Healing of chronic diabetic wounds is challenging due to complications of severe inflammatory microenvironment, bacterial infection and poor vascular formation. Herein, a novel injectable polyvinyl alcohol-hyaluronic acid-based composite hydrogel was developed, with tannic acid (TA) and silicate functionalization to fabricate an 'all-in-one' hydrogel PTKH. On one hand, after being locally injected into the wound site, the hydrogel underwent a gradual sol-gel transition in situ, forming an adhesive and protective dressing for the wound. Manipulations of rheological characteristics, mechanical properties and swelling ability of PTKH could be performed via regulating TA and silicate content in hydrogel. On the other hand, PTKH was capable of eliminating reactive oxygen species overexpression, combating infection and generating a cell-favored microenvironment for wound healing acceleration in vitro. Subsequent animal studies demonstrated that PTKH could greatly stimulate angiogenesis and epithelization, accompanied with inflammation and infection risk reduction. Therefore, in consideration of its impressive in vitro and in vivo outcomes, this 'all-in-one' multifunctional hydrogel may hold promise for chronic diabetic wound treatment.

由于严重的炎症微环境、细菌感染和血管形成不良等并发症,慢性糖尿病伤口的愈合具有挑战性。本研究开发了一种新型可注射聚乙烯醇-透明质酸基复合水凝胶,通过单宁酸(TA)和硅酸盐官能化来制造 "一体化 "水凝胶 PTKH。一方面,将水凝胶局部注入伤口部位后,水凝胶会在原位逐渐发生溶胶-凝胶转变,从而形成一种具有粘合性和保护性的伤口敷料。通过调节水凝胶中 TA 和硅酸盐的含量,可以控制 PTKH 的流变特性、机械性能和膨胀能力。另一方面,PTKH 能够消除活性氧的过度表达、抗感染,并在体外为伤口愈合加速创造一个有利于细胞生长的微环境。随后的动物实验证明,PTKH 能极大地刺激血管生成和上皮化,同时减少炎症和感染风险。因此,考虑到其令人印象深刻的体外和体内结果,这种 "一体化 "多功能水凝胶有望用于慢性糖尿病伤口治疗。
{"title":"Tannic acid and silicate-functionalized polyvinyl alcohol-hyaluronic acid hydrogel for infected diabetic wound healing.","authors":"Zhentian Diao, Longkang Li, Huan Zhou, Lei Yang","doi":"10.1093/rb/rbae053","DOIUrl":"10.1093/rb/rbae053","url":null,"abstract":"<p><p>Healing of chronic diabetic wounds is challenging due to complications of severe inflammatory microenvironment, bacterial infection and poor vascular formation. Herein, a novel injectable polyvinyl alcohol-hyaluronic acid-based composite hydrogel was developed, with tannic acid (TA) and silicate functionalization to fabricate an 'all-in-one' hydrogel PTKH. On one hand, after being locally injected into the wound site, the hydrogel underwent a gradual sol-gel transition <i>in situ</i>, forming an adhesive and protective dressing for the wound. Manipulations of rheological characteristics, mechanical properties and swelling ability of PTKH could be performed via regulating TA and silicate content in hydrogel. On the other hand, PTKH was capable of eliminating reactive oxygen species overexpression, combating infection and generating a cell-favored microenvironment for wound healing acceleration <i>in vitro</i>. Subsequent animal studies demonstrated that PTKH could greatly stimulate angiogenesis and epithelization, accompanied with inflammation and infection risk reduction. Therefore, in consideration of its impressive <i>in vitro</i> and <i>in vivo</i> outcomes, this 'all-in-one' multifunctional hydrogel may hold promise for chronic diabetic wound treatment.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae053"},"PeriodicalIF":6.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polydopamine-modified black phosphorus nanosheet drug delivery system for the treatment of ischemic stroke. 用于治疗缺血性中风的聚多巴胺改性黑磷纳米片给药系统。
IF 6.7 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-05-02 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae046
Shujiang Yin, Jing Hou, Jie Li, Caiyun Zeng, Shuang Chen, Han Zhang, Xing Tian

Black phosphorus (BP), as a representative metal-free semiconductor, has been extensively explored. It has a higher drug loading capacity in comparison to conventional materials and also possesses excellent biocompatibility and biodegradability. Furthermore, BP nanosheets can enhance the permeability of the blood-brain barrier (BBB) upon near-infrared (NIR) irradiation, owing to their photothermal effect. However, the inherent instability of BP poses a significant limitation, highlighting the importance of surface modification to enhance its stability. Ischemic stroke (IS) is caused by the occlusion of blood vessels, and its treatment is challenging due to the hindrance caused by the BBB. Therefore, there is an urgent need to identify improved methods for bypassing the BBB for more efficient IS treatment. This research devised a novel drug delivery approach based on pterostilbene (Pte) supported by BP nanosheets, modified with polydopamine (PDA) to form BP-Pte@PDA. This system shows robust stability and traverses the BBB using effective photothermal mechanisms. This enables the release of Pte upon pH and NIR stimuli, offering potential therapeutic advantages for treating IS. In a middle cerebral artery occlusion mouse model, the BP-Pte@PDA delivery system significantly reduced infarct size, and brain water content, improved neurological deficits, reduced the TLR4 inflammatory factor expression, and inhibited cell apoptosis. In summary, the drug delivery system fabricated in this study thus demonstrated good stability, therapeutic efficacy, and biocompatibility, rendering it suitable for clinical application.

黑磷(BP)作为一种具有代表性的无金属半导体,已经得到了广泛的研究。与传统材料相比,它具有更高的药物负载能力,同时还具有良好的生物相容性和生物降解性。此外,由于其光热效应,BP 纳米片在近红外(NIR)照射下可增强血脑屏障(BBB)的渗透性。然而,BP 固有的不稳定性是一个重要的限制因素,这突出了表面改性以提高其稳定性的重要性。缺血性中风(IS)是由血管闭塞引起的,由于 BBB 的阻碍,其治疗具有挑战性。因此,迫切需要找到绕过 BBB 的改良方法,以更有效地治疗缺血性中风。本研究设计了一种基于紫檀芪(Pte)的新型给药方法,该方法由 BP 纳米片支撑,并用聚多巴胺(PDA)修饰形成 BP-Pte@PDA。该系统显示出强大的稳定性,并能利用有效的光热机制穿越 BBB。这使得 Pte 在 pH 值和近红外刺激下得以释放,为治疗 IS 提供了潜在的治疗优势。在大脑中动脉闭塞小鼠模型中,BP-Pte@PDA 给药系统明显缩小了梗塞面积,降低了脑水含量,改善了神经功能缺损,减少了 TLR4 炎症因子的表达,抑制了细胞凋亡。总之,本研究制备的给药系统具有良好的稳定性、治疗效果和生物相容性,适合临床应用。
{"title":"Polydopamine-modified black phosphorus nanosheet drug delivery system for the treatment of ischemic stroke.","authors":"Shujiang Yin, Jing Hou, Jie Li, Caiyun Zeng, Shuang Chen, Han Zhang, Xing Tian","doi":"10.1093/rb/rbae046","DOIUrl":"10.1093/rb/rbae046","url":null,"abstract":"<p><p>Black phosphorus (BP), as a representative metal-free semiconductor, has been extensively explored. It has a higher drug loading capacity in comparison to conventional materials and also possesses excellent biocompatibility and biodegradability. Furthermore, BP nanosheets can enhance the permeability of the blood-brain barrier (BBB) upon near-infrared (NIR) irradiation, owing to their photothermal effect. However, the inherent instability of BP poses a significant limitation, highlighting the importance of surface modification to enhance its stability. Ischemic stroke (IS) is caused by the occlusion of blood vessels, and its treatment is challenging due to the hindrance caused by the BBB. Therefore, there is an urgent need to identify improved methods for bypassing the BBB for more efficient IS treatment. This research devised a novel drug delivery approach based on pterostilbene (Pte) supported by BP nanosheets, modified with polydopamine (PDA) to form BP-Pte@PDA. This system shows robust stability and traverses the BBB using effective photothermal mechanisms. This enables the release of Pte upon pH and NIR stimuli, offering potential therapeutic advantages for treating IS. In a middle cerebral artery occlusion mouse model, the BP-Pte@PDA delivery system significantly reduced infarct size, and brain water content, improved neurological deficits, reduced the TLR4 inflammatory factor expression, and inhibited cell apoptosis. In summary, the drug delivery system fabricated in this study thus demonstrated good stability, therapeutic efficacy, and biocompatibility, rendering it suitable for clinical application.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae046"},"PeriodicalIF":6.7,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11105953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual stimulus-responsive renewable nanoadsorbent for selective adsorption of low-density lipoprotein in serum. 用于选择性吸附血清中低密度脂蛋白的双重刺激响应可再生纳米吸附剂。
IF 6.7 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-04-29 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae045
Chen Guo, Xinbang Jiang, Xiaofang Guo, Zhuang Liu, Biao Wang, Yunzheng Du, Ziying Tian, Zimeng Wang, Lailiang Ou

Selective removal of ultra-high low-density lipoprotein (LDL) from the blood of hyperlipemia patients using hemoperfusion is considered an efficient method to prevent the deterioration of atherosclerotic cardiovascular disease. Based on the exceptional structure-function properties of multistimulus-responsive materials, we developed a magnetic photorenewable nanoadsorbent (Fe3O4@SiO2@Azo-COOH) with outstanding selectivity and regenerative characteristics, featuring functionalized azobenzene as the ligand. The dual-stimulus response endowed Fe3O4@SiO2@Azo-COOH with rapid separation and photoregenerative properties. The adsorbent demonstrated excellent removal efficiency of LDL with an adsorption capacity of 15.06 mg/g, and highly repetitive adsorption performance (≥5 cycles) under irradiation. Fe3O4@SiO2@Azo-COOH also exhibited remarkable adsorption properties and selectivity in human serum, with adsorption capacities of 10.93, 21.26 and 9.80 mg/g for LDL, total cholesterol and triglycerides and only 0.77 mg/g for high-density lipoprotein (HDL), resulting in a 93% selective adsorption difference (LDL/HDL). Complete green regeneration of the nanoadsorbent was achieved through a simple regeneration process, maintaining a recovery rate of 99.4% after five regeneration experiments. By combining dynamic perfusion experiment with micromagnetic microfluidics, the LDL content decreased by 16.6%. Due to its superior adsorption capacity and regenerative properties, the dual stimulus-responsive nanosorbent is considered a potential hemoperfusion adsorbent.

利用血液灌流选择性地清除高脂血症患者血液中的超高低密度脂蛋白(LDL)被认为是防止动脉粥样硬化性心血管疾病恶化的有效方法。基于多刺激响应材料优异的结构-功能特性,我们开发了一种以功能化偶氮苯为配体的磁性光更新纳米吸附剂(Fe3O4@SiO2@Azo-COOH),它具有突出的选择性和再生特性。双刺激响应赋予了 Fe3O4@SiO2@Azo-COOH 快速分离和光生特性。该吸附剂对低密度脂蛋白具有极佳的去除效率,吸附容量为 15.06 mg/g,并且在辐照下具有高度重复吸附性能(≥5 次)。Fe3O4@SiO2@Azo-COOH 在人血清中也表现出显著的吸附特性和选择性,对低密度脂蛋白、总胆固醇和甘油三酯的吸附容量分别为 10.93、21.26 和 9.80 毫克/克,而对高密度脂蛋白(HDL)的吸附容量仅为 0.77 毫克/克,选择性吸附差(LDL/HDL)达到 93%。通过简单的再生过程实现了纳米吸附剂的完全绿色再生,经过五次再生实验,回收率保持在 99.4%。通过将动态灌流实验与微磁微流体技术相结合,LDL 含量降低了 16.6%。由于其卓越的吸附能力和再生特性,双刺激响应纳米吸附剂被认为是一种潜在的血液灌流吸附剂。
{"title":"Dual stimulus-responsive renewable nanoadsorbent for selective adsorption of low-density lipoprotein in serum.","authors":"Chen Guo, Xinbang Jiang, Xiaofang Guo, Zhuang Liu, Biao Wang, Yunzheng Du, Ziying Tian, Zimeng Wang, Lailiang Ou","doi":"10.1093/rb/rbae045","DOIUrl":"10.1093/rb/rbae045","url":null,"abstract":"<p><p>Selective removal of ultra-high low-density lipoprotein (LDL) from the blood of hyperlipemia patients using hemoperfusion is considered an efficient method to prevent the deterioration of atherosclerotic cardiovascular disease. Based on the exceptional structure-function properties of multistimulus-responsive materials, we developed a magnetic photorenewable nanoadsorbent (Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@Azo-COOH) with outstanding selectivity and regenerative characteristics, featuring functionalized azobenzene as the ligand. The dual-stimulus response endowed Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@Azo-COOH with rapid separation and photoregenerative properties. The adsorbent demonstrated excellent removal efficiency of LDL with an adsorption capacity of 15.06 mg/g, and highly repetitive adsorption performance (≥5 cycles) under irradiation. Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>@Azo-COOH also exhibited remarkable adsorption properties and selectivity in human serum, with adsorption capacities of 10.93, 21.26 and 9.80 mg/g for LDL, total cholesterol and triglycerides and only 0.77 mg/g for high-density lipoprotein (HDL), resulting in a 93% selective adsorption difference (LDL/HDL). Complete green regeneration of the nanoadsorbent was achieved through a simple regeneration process, maintaining a recovery rate of 99.4% after five regeneration experiments. By combining dynamic perfusion experiment with micromagnetic microfluidics, the LDL content decreased by 16.6%. Due to its superior adsorption capacity and regenerative properties, the dual stimulus-responsive nanosorbent is considered a potential hemoperfusion adsorbent.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae045"},"PeriodicalIF":6.7,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11153342/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The utilization of chitosan/Bletilla striata hydrogels to elevate anti-adhesion, anti-inflammatory and pro-angiogenesis properties of polypropylene mesh in abdominal wall repair. 利用壳聚糖/紫苏水凝胶提高聚丙烯网片在腹壁修复中的抗粘连、抗炎和促血管生成性能。
IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-04-27 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae044
Yuntao Di, Lu Wang, Wei He, Shuyan Liu, Yuqi He, Jie Liao, Ruihong Zhang, Lan Yin, Zhiwei Xu, Xiaoming Li

Polypropylene (PP) mesh is commonly used in abdominal wall repair due to its ability to reduce the risk of organ damage, infections and other complications. However, the PP mesh often leads to adhesion formation and does not promote functional tissue repair. In this study, we synthesized one kind of aldehyde Bletilla striata polysaccharide (BSPA) modified chitosan (CS) hydrogel based on Schiff base reaction. The hydrogel exhibited a porous network structure, a highly hydrophilic surface and good biocompatibility. We wrapped the PP mesh inside the hydrogel and evaluated the performance of the resulting composites in a bilateral 1 × 1.5 cm abdominal wall defect model in rats. The results of gross observation, histological staining and immunohistochemical staining demonstrated the positive impact of the CS hydrogel on anti-adhesion and wound healing effects. Notably, the addition of BSPA to the CS hydrogel further improved the performance of the composites in vivo, promoting wound healing by enhancing collagen deposition and capillary rearrangement. This study suggested that the BSPA-modified CS hydrogel significantly promoted the anti-adhesion, anti-inflammatory and pro-angiogenesis properties of PP meshes during the healing process. Overall, this work offers a novel approach to the design of abdominal wall repair patches.

聚丙烯(PP)网片能够降低器官损伤、感染和其他并发症的风险,因此常用于腹壁修复。然而,聚丙烯网片往往会导致粘连的形成,并不能促进组织的功能性修复。在这项研究中,我们基于席夫碱反应合成了一种醛基条纹叶紫苏多糖(BSPA)改性壳聚糖(CS)水凝胶。该水凝胶具有多孔网络结构、高亲水性表面和良好的生物相容性。我们将聚丙烯网包裹在水凝胶中,并在大鼠双侧 1 × 1.5 厘米腹壁缺损模型中评估了所得复合材料的性能。大体观察、组织学染色和免疫组化染色的结果表明,CS 水凝胶对抗粘连和伤口愈合效果有积极影响。值得注意的是,在 CS 水凝胶中添加 BSPA 可进一步提高复合材料的活体性能,通过增强胶原沉积和毛细血管重排促进伤口愈合。这项研究表明,BSPA 改性 CS 水凝胶在伤口愈合过程中显著促进了 PP 网布的抗粘连、抗炎和促血管生成特性。总之,这项研究为腹壁修复补片的设计提供了一种新方法。
{"title":"The utilization of chitosan/<i>Bletilla striata</i> hydrogels to elevate anti-adhesion, anti-inflammatory and pro-angiogenesis properties of polypropylene mesh in abdominal wall repair.","authors":"Yuntao Di, Lu Wang, Wei He, Shuyan Liu, Yuqi He, Jie Liao, Ruihong Zhang, Lan Yin, Zhiwei Xu, Xiaoming Li","doi":"10.1093/rb/rbae044","DOIUrl":"10.1093/rb/rbae044","url":null,"abstract":"<p><p>Polypropylene (PP) mesh is commonly used in abdominal wall repair due to its ability to reduce the risk of organ damage, infections and other complications. However, the PP mesh often leads to adhesion formation and does not promote functional tissue repair. In this study, we synthesized one kind of aldehyde <i>Bletilla striata</i> polysaccharide (BSPA) modified chitosan (CS) hydrogel based on Schiff base reaction. The hydrogel exhibited a porous network structure, a highly hydrophilic surface and good biocompatibility. We wrapped the PP mesh inside the hydrogel and evaluated the performance of the resulting composites in a bilateral 1 × 1.5 cm abdominal wall defect model in rats. The results of gross observation, histological staining and immunohistochemical staining demonstrated the positive impact of the CS hydrogel on anti-adhesion and wound healing effects. Notably, the addition of BSPA to the CS hydrogel further improved the performance of the composites <i>in vivo</i>, promoting wound healing by enhancing collagen deposition and capillary rearrangement. This study suggested that the BSPA-modified CS hydrogel significantly promoted the anti-adhesion, anti-inflammatory and pro-angiogenesis properties of PP meshes during the healing process. Overall, this work offers a novel approach to the design of abdominal wall repair patches.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae044"},"PeriodicalIF":5.6,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220408/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of a synthetic hydroxyapatite-based bone grafting material compared to established bone substitute materials on regeneration of critical-size bone defects in the ovine scapula. 基于羟基磷灰石的合成骨移植材料与现有骨替代材料相比对雌性肩胛骨临界大小骨缺损再生的影响。
IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-04-24 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae041
Jonas Wüster, Norbert Neckel, Florian Sterzik, Li Xiang-Tischhauser, Dirk Barnewitz, Antje Genzel, Steffen Koerdt, Carsten Rendenbach, Christian Müller-Mai, Max Heiland, Susanne Nahles, Christine Knabe

Lately, the potential risk of disease transmission due to the use of bovine-derived bone substitutes has become obvious, demonstrating the urgent need for a synthetic grafting material with comparable bioactive behaviour and properties. Therefore, the effect of a synthetic hydroxyapatite (HA) (Osbone®) bone grafting material on bone regeneration was evaluated 2 weeks, 1 month, and 3, 6, 12 and 18 months after implantation in critical-size bone defects in the ovine scapula and compared to that of a bovine-derived HA (Bio-Oss®) and β-tricalcium phosphate (TCP) (Cerasorb® M). New bone formation and the biodegradability of the bone substitutes were assessed histomorphometrically. Hard tissue histology and immunohistochemical analysis were employed to characterize collagen type I, alkaline phosphatase, osteocalcin, as well as bone sialoprotein expression in the various cell and matrix components of the bone tissue to evaluate the bioactive properties of the bone grafting materials. No inflammatory tissue response was detected with any of the bone substitute materials studied. After 3 and 6 months, β-TCP (Cerasorb® M) showed superior bone formation when compared to both HA-based materials (3 months: β-TCP 55.65 ± 2.03% vs. SHA 49.05 ± 3.84% and BHA 47.59 ± 1.97%; p 0.03; 6 months: β-TCP 62.03 ± 1.58%; SHA: 55.83 ± 2.59%; BHA: 53.44 ± 0.78%; p 0.04). Further, after 12 and 18 months, a similar degree of bone formation and bone-particle contact was noted for all three bone substitute materials without any significant differences. The synthetic HA supported new bone formation, osteogenic marker expression, matrix mineralization and good bone-bonding behaviour to an equal and even slightly superior degree compared to the bovine-derived HA. As a result, synthetic HA can be regarded as a valuable alternative to the bovine-derived HA without the potential risk of disease transmission.

近来,使用牛源性骨替代物所带来的潜在疾病传播风险已变得十分明显,这表明迫切需要一种具有可比生物活性行为和特性的合成植骨材料。因此,我们评估了合成羟基磷灰石 (HA) (Osbone®) 骨移植材料在雌性肩胛骨临界大小骨缺损中植入 2 周、1 个月、3、6、12 和 18 个月后对骨再生的影响,并与牛源性 HA (Bio-Oss®) 和 β-磷酸三钙 (TCP) (Cerasorb® M) 进行了比较。新骨形成和骨替代物的生物降解性通过组织形态计量学进行评估。采用硬组织组织学和免疫组化分析来确定骨组织各种细胞和基质成分中 I 型胶原蛋白、碱性磷酸酶、骨钙素以及骨硅蛋白的表达,以评估骨移植材料的生物活性特性。所研究的骨替代材料均未发现炎症组织反应。3 个月和 6 个月后,β-TCP(Cerasorb® M)的骨形成优于两种基于 HA 的材料(3 个月:β-TCP 55.65 ± 2.03% vs. SHA 49.05 ± 3.84% 和 BHA 47.59 ± 1.97%;p ≤ 0.03;6 个月:β-TCP 62.03 ± 1.58%;SHA:55.83 ± 2.59%;BHA:53.44 ± 0.78%;p ≤ 0.04)。此外,12 个月和 18 个月后,三种骨替代材料的骨形成和骨颗粒接触程度相似,没有明显差异。与牛源性 HA 相比,合成 HA 对新骨形成、成骨标志物表达、基质矿化和良好的骨结合性能的支持程度相当,甚至略胜一筹。因此,合成 HA 可被视为牛源性 HA 的一种有价值的替代品,而且没有潜在的疾病传播风险。
{"title":"Effect of a synthetic hydroxyapatite-based bone grafting material compared to established bone substitute materials on regeneration of critical-size bone defects in the ovine scapula.","authors":"Jonas Wüster, Norbert Neckel, Florian Sterzik, Li Xiang-Tischhauser, Dirk Barnewitz, Antje Genzel, Steffen Koerdt, Carsten Rendenbach, Christian Müller-Mai, Max Heiland, Susanne Nahles, Christine Knabe","doi":"10.1093/rb/rbae041","DOIUrl":"10.1093/rb/rbae041","url":null,"abstract":"<p><p>Lately, the potential risk of disease transmission due to the use of bovine-derived bone substitutes has become obvious, demonstrating the urgent need for a synthetic grafting material with comparable bioactive behaviour and properties. Therefore, the effect of a synthetic hydroxyapatite (HA) (Osbone<sup>®</sup>) bone grafting material on bone regeneration was evaluated 2 weeks, 1 month, and 3, 6, 12 and 18 months after implantation in critical-size bone defects in the ovine scapula and compared to that of a bovine-derived HA (Bio-Oss<sup>®</sup>) and β-tricalcium phosphate (TCP) (Cerasorb<sup>®</sup> M). New bone formation and the biodegradability of the bone substitutes were assessed histomorphometrically. Hard tissue histology and immunohistochemical analysis were employed to characterize collagen type I, alkaline phosphatase, osteocalcin, as well as bone sialoprotein expression in the various cell and matrix components of the bone tissue to evaluate the bioactive properties of the bone grafting materials. No inflammatory tissue response was detected with any of the bone substitute materials studied. After 3 and 6 months, β-TCP (Cerasorb<sup>®</sup> M) showed superior bone formation when compared to both HA-based materials (3 months: β-TCP 55.65 ± 2.03% vs. SHA 49.05 ± 3.84% and BHA 47.59 ± 1.97%; <i>p </i>≤<i> </i>0.03; 6 months: β-TCP 62.03 ± 1.58%; SHA: 55.83 ± 2.59%; BHA: 53.44 ± 0.78%; <i>p </i>≤<i> </i>0.04). Further, after 12 and 18 months, a similar degree of bone formation and bone-particle contact was noted for all three bone substitute materials without any significant differences. The synthetic HA supported new bone formation, osteogenic marker expression, matrix mineralization and good bone-bonding behaviour to an equal and even slightly superior degree compared to the bovine-derived HA. As a result, synthetic HA can be regarded as a valuable alternative to the bovine-derived HA without the potential risk of disease transmission.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae041"},"PeriodicalIF":5.6,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187503/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Regenerative Biomaterials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1