首页 > 最新文献

Regenerative Biomaterials最新文献

英文 中文
Nano-hydroxyapatite promotes cell apoptosis by co-activating endoplasmic reticulum stress and mitochondria damage to inhibit glioma growth 纳米羟基磷灰石通过共同激活内质网应激和线粒体损伤来促进细胞凋亡,从而抑制胶质瘤生长
IF 6.7 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-04-18 DOI: 10.1093/rb/rbae038
Yifu Wang, Hongfeng Wu, Zhu Chen, Jun Cao, Xiangdong Zhu, Xingdong Zhang
Despite a growing body of studies demonstrating the specific antitumor effect of nano-hydroxyapatite (n-HA), the underlying mechanism remained unclear. Endoplasmic reticulum (ER) and mitochondria are two key players in intracellular Ca2+ homeostasis and both require Ca2+ to participate. Moreover, the ER-mitochondria interplay coordinates the maintenance of cellular calcium homeostasis to prevent any negative consequences from excess of Ca2+, hence there needs in-depth study of n-HA effect on them. In this study, we fabricated needle-like n-HA to investigate the antitumor effectiveness as well as the underlying mechanisms from cellular and molecular perspectives. Data from in vitro experiments indicated that the growth and invasion of glioma cells were obviously reduced with the aid of n-HA. It's interesting to note that the expression of ER stress biomarkers (GRP78, p-IRE1, p-PERK, PERK, and ATF6) were all up-regulated after n-HA treatment, along with the activation of the pro-apoptotic transcription factor CHOP, showing that ER stress produced by n-HA triggered cell apoptosis. Moreover, the increased expression level of intracellular reactive oxygen species (ROS) and the mitochondrial membrane depolarization, as well as the downstream cell apoptotic signaling activation, further demonstrated the pro-apoptotic roles of n-HA induced Ca2+ overload through inducing mitochondria damage. The in vivo data provided additional evidence that n-HA caused ER stress and mitochondria damage in cells and effectively restrain the growth of glioma tumors. Collectively, the work showed that n-HA co-activated intracellular ER stress and mitochondria damage are critical triggers for cancer cells apoptosis, offering fresh perspectives on ER-mitochondria targeted anti-tumor therapy.
尽管越来越多的研究表明纳米羟基磷灰石(n-HA)具有特殊的抗肿瘤作用,但其基本机制仍不清楚。内质网(ER)和线粒体是细胞内 Ca2+ 平衡的两个关键角色,两者都需要 Ca2+ 的参与。此外,内质网和线粒体之间的相互作用协调着细胞钙稳态的维持,以防止 Ca2+ 过量造成任何负面影响,因此需要深入研究 n-HA 对它们的影响。在本研究中,我们制作了针状 n-HA,从细胞和分子角度研究其抗肿瘤效果及其内在机制。体外实验数据表明,n-HA能明显减少胶质瘤细胞的生长和侵袭。值得注意的是,经n-HA处理后,ER应激生物标志物(GRP78、p-IRE1、p-PERK、PERK和ATF6)的表达均上调,促凋亡转录因子CHOP也被激活,这表明n-HA产生的ER应激引发了细胞凋亡。此外,细胞内活性氧(ROS)表达水平的升高和线粒体膜去极化以及下游细胞凋亡信号的激活,进一步证明了n-HA通过诱导线粒体损伤引起的钙离子超载具有促细胞凋亡的作用。体内数据进一步证明,n-HA 能引起细胞内 ER 应激和线粒体损伤,有效抑制胶质瘤肿瘤的生长。综上所述,n-HA共同激活细胞内ER应激和线粒体损伤是癌细胞凋亡的关键诱因,为ER-线粒体靶向抗肿瘤治疗提供了新的视角。
{"title":"Nano-hydroxyapatite promotes cell apoptosis by co-activating endoplasmic reticulum stress and mitochondria damage to inhibit glioma growth","authors":"Yifu Wang, Hongfeng Wu, Zhu Chen, Jun Cao, Xiangdong Zhu, Xingdong Zhang","doi":"10.1093/rb/rbae038","DOIUrl":"https://doi.org/10.1093/rb/rbae038","url":null,"abstract":"Despite a growing body of studies demonstrating the specific antitumor effect of nano-hydroxyapatite (n-HA), the underlying mechanism remained unclear. Endoplasmic reticulum (ER) and mitochondria are two key players in intracellular Ca2+ homeostasis and both require Ca2+ to participate. Moreover, the ER-mitochondria interplay coordinates the maintenance of cellular calcium homeostasis to prevent any negative consequences from excess of Ca2+, hence there needs in-depth study of n-HA effect on them. In this study, we fabricated needle-like n-HA to investigate the antitumor effectiveness as well as the underlying mechanisms from cellular and molecular perspectives. Data from in vitro experiments indicated that the growth and invasion of glioma cells were obviously reduced with the aid of n-HA. It's interesting to note that the expression of ER stress biomarkers (GRP78, p-IRE1, p-PERK, PERK, and ATF6) were all up-regulated after n-HA treatment, along with the activation of the pro-apoptotic transcription factor CHOP, showing that ER stress produced by n-HA triggered cell apoptosis. Moreover, the increased expression level of intracellular reactive oxygen species (ROS) and the mitochondrial membrane depolarization, as well as the downstream cell apoptotic signaling activation, further demonstrated the pro-apoptotic roles of n-HA induced Ca2+ overload through inducing mitochondria damage. The in vivo data provided additional evidence that n-HA caused ER stress and mitochondria damage in cells and effectively restrain the growth of glioma tumors. Collectively, the work showed that n-HA co-activated intracellular ER stress and mitochondria damage are critical triggers for cancer cells apoptosis, offering fresh perspectives on ER-mitochondria targeted anti-tumor therapy.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"199 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced burn wound healing by controlled-release 3D ADMSC-derived exosome-loaded hyaluronan hydrogel. 通过控制释放三维 ADMSC 衍生的外泌体载荷透明质酸水凝胶促进烧伤创面愈合。
IF 6.7 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-03-26 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae035
Delong Zhu, Ying Hu, Xiangkai Kong, Yuansen Luo, Yi Zhang, Yu Wu, Jiameng Tan, Jianwei Chen, Tao Xu, Lei Zhu

Adipose mesenchymal stem cell (ADMSC)-derived exosomes (ADMSC-Exos) have shown great potential in regenerative medicine and been evidenced benefiting wound repair such as burns. However, the low yield, easy loss after direct coating, and no suitable loading system to improve their availability and efficacy hinder their clinical application for wound healing. And few studies focused on the comparison of biological functions between exosomes derived from different culture techniques, especially in exosome-releasing hydrogel system. Therefore, we designed a high-performance exosome controllable releasing hydrogel system for burn wound healing, namely loading 3D-printed microfiber culture-derived exosomes in a highly biocompatible hyaluronic acid (HA). In this project, we compared the biological functions in vitro and in a burn model among exosomes derived from the conventional two-dimensional (2D) plate culture (2D-Exos), microcarrier culture (2.5D-Exos), and 3D-printed microfiber culture (3D-Exos). Results showed that compared with 2D-Exos and 2.5D-Exos, 3D-Exos promoted HACATs and HUVECs cell proliferation and migration more significantly. Additionally, 3D-Exos had stronger angiogenesis-promoting effects in tube formation of (HUVECs) cells. Moreover, we found HA-loaded 3D-Exos showed better burn wound healing promotion compared to 2D-Exos and 2.5D-Exos, including accelerated burn wound healing rate and better collagen remodeling. The study findings reveal that the HA-loaded, controllable-release 3D-Exos repair system distinctly augments therapeutic efficacy in terms of wound healing, while concurrently introducing a facile application approach. This system markedly bolsters the exosomal loading efficiency, provides a robust protective milieu, and potentiates the inherent biological functionalities of the exosomes. Our findings provide a rationale for more efficient utilization of high-quality and high-yield 3D exosomes in the future, and a novel strategy for healing severe burns.

脂肪间充质干细胞(ADMSC)衍生的外泌体(ADMSC-Exos)在再生医学中显示出巨大的潜力,并被证明有利于烧伤等伤口的修复。然而,外泌体的产量低、直接包被后容易流失,而且没有合适的负载系统来提高其可用性和功效,这些都阻碍了其在伤口愈合方面的临床应用。此外,很少有研究关注不同培养技术获得的外泌体之间生物功能的比较,尤其是在外泌体释放水凝胶系统中。因此,我们设计了一种用于烧伤创面愈合的高性能外泌体可控释放水凝胶系统,即在高生物相容性的透明质酸(HA)中加载三维打印微纤维培养衍生的外泌体。在该项目中,我们比较了传统二维平板培养(2D-Exos)、微载体培养(2.5D-Exos)和三维打印微纤维培养(3D-Exos)获得的外泌体在体外和烧伤模型中的生物功能。结果表明,与 2D-Exos 和 2.5D-Exos 相比,3D-Exos 对 HACATs 和 HUVECs 细胞增殖和迁移的促进作用更为显著。此外,3D-Exos对(HUVECs)细胞的血管形成具有更强的促进作用。此外,我们发现与 2D-Exos 和 2.5D-Exos 相比,HA 负载的 3D-Exos 对烧伤创面愈合有更好的促进作用,包括加快烧伤创面愈合速度和改善胶原重塑。研究结果表明,负载 HA 的可控释放 3D-Exos 修复系统明显提高了伤口愈合的疗效,同时还采用了简便的应用方法。该系统显著提高了外泌体的装载效率,提供了稳健的保护环境,并增强了外泌体固有的生物功能。我们的研究结果为今后更有效地利用高质量、高产出的三维外泌体提供了理论依据,也为治愈严重烧伤提供了一种新策略。
{"title":"Enhanced burn wound healing by controlled-release 3D ADMSC-derived exosome-loaded hyaluronan hydrogel.","authors":"Delong Zhu, Ying Hu, Xiangkai Kong, Yuansen Luo, Yi Zhang, Yu Wu, Jiameng Tan, Jianwei Chen, Tao Xu, Lei Zhu","doi":"10.1093/rb/rbae035","DOIUrl":"https://doi.org/10.1093/rb/rbae035","url":null,"abstract":"<p><p>Adipose mesenchymal stem cell (ADMSC)-derived exosomes (ADMSC-Exos) have shown great potential in regenerative medicine and been evidenced benefiting wound repair such as burns. However, the low yield, easy loss after direct coating, and no suitable loading system to improve their availability and efficacy hinder their clinical application for wound healing. And few studies focused on the comparison of biological functions between exosomes derived from different culture techniques, especially in exosome-releasing hydrogel system. Therefore, we designed a high-performance exosome controllable releasing hydrogel system for burn wound healing, namely loading 3D-printed microfiber culture-derived exosomes in a highly biocompatible hyaluronic acid (HA). In this project, we compared the biological functions <i>in vitro</i> and in a burn model among exosomes derived from the conventional two-dimensional (2D) plate culture (2D-Exos), microcarrier culture (2.5D-Exos), and 3D-printed microfiber culture (3D-Exos). Results showed that compared with 2D-Exos and 2.5D-Exos, 3D-Exos promoted HACATs and HUVECs cell proliferation and migration more significantly. Additionally, 3D-Exos had stronger angiogenesis-promoting effects in tube formation of (HUVECs) cells. Moreover, we found HA-loaded 3D-Exos showed better burn wound healing promotion compared to 2D-Exos and 2.5D-Exos, including accelerated burn wound healing rate and better collagen remodeling. The study findings reveal that the HA-loaded, controllable-release 3D-Exos repair system distinctly augments therapeutic efficacy in terms of wound healing, while concurrently introducing a facile application approach. This system markedly bolsters the exosomal loading efficiency, provides a robust protective milieu, and potentiates the inherent biological functionalities of the exosomes. Our findings provide a rationale for more efficient utilization of high-quality and high-yield 3D exosomes in the future, and a novel strategy for healing severe burns.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae035"},"PeriodicalIF":6.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11018541/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140870144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triple-layered core-shell fiber dressings with enduring platelet conservation and sustained growth factor release abilities for chronic wound healing. 三层核壳纤维敷料具有持久的血小板保护和持续的生长因子释放能力,可用于慢性伤口愈合。
IF 6.7 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-03-23 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae034
Simin Lai, Tingbin Wu, Chenxi Shi, Xiaojing Wang, Pengbi Liu, Lihuan Wang, Hui Yu

Platelet-rich plasma (PRP) is one of the most popular biomaterials in regenerative medicine. However, the difficulties encountered in its preservation, and the requirement for on-demand preparation severely limit its application. In addition, its rapid degradation in the wound microenvironment makes the sustained release of growth factors impossible and finally reduces the therapeutic effect on chronic wounds. Here, a multifunctional dressing based on triple-layered core-shell fibers for loading and enduring preservation of PRP was developed using a one-step coaxial bioprinting technique combined with freeze-drying. The platelets were effectively dispersed and immobilized in the core layer of the fiber, leading to a sustained release of growth factors from the PRP. The rate of release can be controlled by adjusting the triple-layered core-shell structure. Simultaneously, the triple-layered core-shell structure can reduce the deactivation of PRP during freezing and storage. The experimental findings suggest that PRP exhibits sustained activity, facilitating the process of wound healing even after a storage period of 180 days. Furthermore, the protective mechanism of PRP by the triple-layered core-shell fiber was investigated, and the conditions for freeze-drying and storage were optimized, further enhancing the long-term storability of PRP. As a result, the multifunctional core-shell fiber dressings developed in this study offer a novel approach for sustained growth factor release and the enduring preservation of active PRP.

富血小板血浆(PRP)是再生医学中最受欢迎的生物材料之一。然而,其保存过程中遇到的困难以及按需制备的要求严重限制了它的应用。此外,其在伤口微环境中的快速降解使得生长因子无法持续释放,最终降低了对慢性伤口的治疗效果。在此,我们采用一步同轴生物打印技术并结合冷冻干燥技术,开发了一种基于三层核壳纤维的多功能敷料,用于装载和持久保存血小板。血小板被有效地分散并固定在纤维的芯层中,从而实现了 PRP 生长因子的持续释放。释放速度可通过调整三层核壳结构来控制。同时,三层核壳结构还能减少 PRP 在冷冻和储存过程中的失活。实验结果表明,PRP 具有持续活性,即使在储存 180 天后仍能促进伤口愈合。此外,还研究了三层核壳纤维对 PRP 的保护机制,并优化了冻干和储存条件,进一步提高了 PRP 的长期储存性。因此,本研究开发的多功能核壳纤维敷料为持续释放生长因子和持久保存活性 PRP 提供了一种新方法。
{"title":"Triple-layered core-shell fiber dressings with enduring platelet conservation and sustained growth factor release abilities for chronic wound healing.","authors":"Simin Lai, Tingbin Wu, Chenxi Shi, Xiaojing Wang, Pengbi Liu, Lihuan Wang, Hui Yu","doi":"10.1093/rb/rbae034","DOIUrl":"https://doi.org/10.1093/rb/rbae034","url":null,"abstract":"<p><p>Platelet-rich plasma (PRP) is one of the most popular biomaterials in regenerative medicine. However, the difficulties encountered in its preservation, and the requirement for on-demand preparation severely limit its application. In addition, its rapid degradation in the wound microenvironment makes the sustained release of growth factors impossible and finally reduces the therapeutic effect on chronic wounds. Here, a multifunctional dressing based on triple-layered core-shell fibers for loading and enduring preservation of PRP was developed using a one-step coaxial bioprinting technique combined with freeze-drying. The platelets were effectively dispersed and immobilized in the core layer of the fiber, leading to a sustained release of growth factors from the PRP. The rate of release can be controlled by adjusting the triple-layered core-shell structure. Simultaneously, the triple-layered core-shell structure can reduce the deactivation of PRP during freezing and storage. The experimental findings suggest that PRP exhibits sustained activity, facilitating the process of wound healing even after a storage period of 180 days. Furthermore, the protective mechanism of PRP by the triple-layered core-shell fiber was investigated, and the conditions for freeze-drying and storage were optimized, further enhancing the long-term storability of PRP. As a result, the multifunctional core-shell fiber dressings developed in this study offer a novel approach for sustained growth factor release and the enduring preservation of active PRP.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae034"},"PeriodicalIF":6.7,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11004556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140852599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptation process of decellularized vascular grafts as hemodialysis access in vivo. 脱细胞血管移植物作为血液透析通道在体内的适应过程。
IF 6.7 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-03-21 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae029
Tun Wang, Peng Lu, Zicheng Wan, Zhenyu He, Siyuan Cheng, Yang Zhou, Sheng Liao, Mo Wang, Tianjian Wang, Chang Shu

Arteriovenous grafts (AVGs) have emerged as the preferred option for constructing hemodialysis access in numerous patients. Clinical trials have demonstrated that decellularized vascular graft exhibits superior patency and excellent biocompatibility compared to polymer materials; however, it still faces challenges such as intimal hyperplasia and luminal dilation. The absence of suitable animal models hinders our ability to describe and explain the pathological phenomena above and in vivo adaptation process of decellularized vascular graft at the molecular level. In this study, we first collected clinical samples from patients who underwent the construction of dialysis access using allogeneic decellularized vascular graft, and evaluated their histological features and immune cell infiltration status 5 years post-transplantation. Prior to the surgery, we assessed the patency and intimal hyperplasia of the decellularized vascular graft using non-invasive ultrasound. Subsequently, in order to investigate the in vivo adaptation of decellularized vascular grafts in an animal model, we attempted to construct an AVG model using decellularized vascular grafts in a small animal model. We employed a physical-chemical-biological approach to decellularize the rat carotid artery, and histological evaluation demonstrated the successful removal of cellular and antigenic components while preserving extracellular matrix constituents such as elastic fibers and collagen fibers. Based on these results, we designed and constructed the first allogeneic decellularized rat carotid artery AVG model, which exhibited excellent patency and closely resembled clinical characteristics. Using this animal model, we provided a preliminary description of the histological features and partial immune cell infiltration in decellularized vascular grafts at various time points, including Day 7, Day 21, Day 42, and up to one-year post-implantation. These findings establish a foundation for further investigation into the in vivo adaptation process of decellularized vascular grafts in small animal model.

动静脉移植物(AVG)已成为众多患者构建血液透析通路的首选。临床试验表明,与聚合物材料相比,脱细胞血管移植物具有更高的通畅性和良好的生物相容性;但它仍然面临着内膜增生和管腔扩张等挑战。由于缺乏合适的动物模型,我们无法从分子水平描述和解释脱细胞血管移植的上述病理现象和体内适应过程。在本研究中,我们首先收集了使用异体脱细胞血管移植物构建透析通路的患者的临床样本,并评估了他们移植后 5 年的组织学特征和免疫细胞浸润状况。手术前,我们使用无创超声评估了脱细胞血管移植的通畅性和内膜增生情况。随后,为了研究脱细胞血管移植物在动物模型中的体内适应性,我们尝试在小动物模型中使用脱细胞血管移植物构建 AVG 模型。我们采用物理-化学-生物方法对大鼠颈动脉进行脱细胞处理,组织学评估结果表明,在保留细胞外基质成分(如弹性纤维和胶原纤维)的同时,成功去除了细胞和抗原成分。基于这些结果,我们设计并构建了首个异体脱细胞大鼠颈动脉 AVG 模型,该模型显示出良好的通畅性,并与临床特征非常相似。利用该动物模型,我们初步描述了脱细胞血管移植物在不同时间点的组织学特征和部分免疫细胞浸润情况,包括植入后第 7 天、第 21 天、第 42 天和一年。这些发现为进一步研究脱细胞血管移植物在小动物模型中的体内适应过程奠定了基础。
{"title":"Adaptation process of decellularized vascular grafts as hemodialysis access <i>in vivo</i>.","authors":"Tun Wang, Peng Lu, Zicheng Wan, Zhenyu He, Siyuan Cheng, Yang Zhou, Sheng Liao, Mo Wang, Tianjian Wang, Chang Shu","doi":"10.1093/rb/rbae029","DOIUrl":"https://doi.org/10.1093/rb/rbae029","url":null,"abstract":"<p><p>Arteriovenous grafts (AVGs) have emerged as the preferred option for constructing hemodialysis access in numerous patients. Clinical trials have demonstrated that decellularized vascular graft exhibits superior patency and excellent biocompatibility compared to polymer materials; however, it still faces challenges such as intimal hyperplasia and luminal dilation. The absence of suitable animal models hinders our ability to describe and explain the pathological phenomena above and <i>in vivo</i> adaptation process of decellularized vascular graft at the molecular level. In this study, we first collected clinical samples from patients who underwent the construction of dialysis access using allogeneic decellularized vascular graft, and evaluated their histological features and immune cell infiltration status 5 years post-transplantation. Prior to the surgery, we assessed the patency and intimal hyperplasia of the decellularized vascular graft using non-invasive ultrasound. Subsequently, in order to investigate the <i>in vivo</i> adaptation of decellularized vascular grafts in an animal model, we attempted to construct an AVG model using decellularized vascular grafts in a small animal model. We employed a physical-chemical-biological approach to decellularize the rat carotid artery, and histological evaluation demonstrated the successful removal of cellular and antigenic components while preserving extracellular matrix constituents such as elastic fibers and collagen fibers. Based on these results, we designed and constructed the first allogeneic decellularized rat carotid artery AVG model, which exhibited excellent patency and closely resembled clinical characteristics. Using this animal model, we provided a preliminary description of the histological features and partial immune cell infiltration in decellularized vascular grafts at various time points, including Day 7, Day 21, Day 42, and up to one-year post-implantation. These findings establish a foundation for further investigation into the <i>in vivo</i> adaptation process of decellularized vascular grafts in small animal model.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae029"},"PeriodicalIF":6.7,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11026144/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140874792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cuprorivaite/hardystonite/alginate composite hydrogel with thermionic effect for the treatment of peri-implant lesion. 具有热离子效应的铜氧化物/硬石膏/精氨酸复合水凝胶用于治疗种植体周围病变。
IF 6.7 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-03-21 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae028
Yiru Xia, Zhaowenbin Zhang, Kecong Zhou, Zhikai Lin, Rong Shu, Yuze Xu, Zhen Zeng, Jiang Chang, Yufeng Xie

Peri-implant lesion is a grave condition afflicting numerous indi-viduals with dental implants. It results from persistent periodontal bacteria accumulation causing inflammation around the implant site, which can primarily lead to implant loosening and ultimately the implant loss. Early-stage peri-implant lesions exhibit symptoms akin to gum disease, including swelling, redness and bleeding of the gums surrounding the implant. These signs indicate infection and inflammation of the peri-implant tissues, which may result in bone loss and implant failure. To address this problem, a thermionic strategy was applied by designing a cuprorivaite-hardystonite bioceramic/alginate composite hydrogel with photothermal and Cu/Zn/Si multiple ions releasing property. This innovative approach creates a thermionic effect by the release of bioactive ions (Cu2+ and Zn2+ and SiO32-) from the composite hydrogel and the mild heat environment though the photothermal effect of the composite hydrogel induced by near-infrared light irradiation. The most distinctive advantage of this thermionic effect is to substantially eliminate periodontal pathogenic bacteria and inhibit inflammation, while simultaneously enhance peri-implant osseointegration. This unique attribute renders the use of this composite hydrogel highly effective in significantly improving the survival rate of implants after intervention in peri-implant lesions, which is a clinical challenge in periodontics. This study reveals application potential of a new biomaterial-based approach for peri-implant lesion, as it not only eliminates the infection and inflammation, but also enhances the osteointegration of the dental implant, which provides theoretical insights and practical guidance to prevent and manage early-stage peri-implant lesion using bioactive functional materials.

种植体周围病变是困扰众多种植牙患者的一种严重疾病。它是由于持续的牙周细菌积聚造成种植体周围发炎,主要导致种植体松动,最终导致种植体脱落。早期的种植体周围病变表现出类似牙龈疾病的症状,包括种植体周围牙龈肿胀、发红和出血。这些症状表明种植体周围组织受到感染和发炎,可能导致骨质流失和种植失败。为了解决这个问题,我们采用了一种热离子策略,设计了一种具有光热和 Cu/Zn/Si 多离子释放特性的铜氧化物-霞石生物陶瓷/精氨酸复合水凝胶。这种创新方法通过从复合水凝胶中释放生物活性离子(Cu2+、Zn2+ 和 SiO32-)以及复合水凝胶在近红外线照射下诱导的光热效应产生温和的热环境,从而产生热离子效应。这种热效应最显著的优点是能大量消除牙周致病菌和抑制炎症,同时增强种植体周围的骨结合。这种独特的特性使得这种复合水凝胶的使用非常有效,可以在干预种植体周围病变后显著提高种植体的存活率,而这正是牙周病学中的一个临床难题。这项研究揭示了一种新型生物材料治疗种植体周围病变的应用潜力,因为它不仅能消除感染和炎症,还能增强牙种植体的骨结合,这为利用生物活性功能材料预防和处理早期种植体周围病变提供了理论启示和实践指导。
{"title":"Cuprorivaite/hardystonite/alginate composite hydrogel with thermionic effect for the treatment of peri-implant lesion.","authors":"Yiru Xia, Zhaowenbin Zhang, Kecong Zhou, Zhikai Lin, Rong Shu, Yuze Xu, Zhen Zeng, Jiang Chang, Yufeng Xie","doi":"10.1093/rb/rbae028","DOIUrl":"https://doi.org/10.1093/rb/rbae028","url":null,"abstract":"<p><p>Peri-implant lesion is a grave condition afflicting numerous indi-viduals with dental implants. It results from persistent periodontal bacteria accumulation causing inflammation around the implant site, which can primarily lead to implant loosening and ultimately the implant loss. Early-stage peri-implant lesions exhibit symptoms akin to gum disease, including swelling, redness and bleeding of the gums surrounding the implant. These signs indicate infection and inflammation of the peri-implant tissues, which may result in bone loss and implant failure. To address this problem, a thermionic strategy was applied by designing a cuprorivaite-hardystonite bioceramic/alginate composite hydrogel with photothermal and Cu/Zn/Si multiple ions releasing property. This innovative approach creates a thermionic effect by the release of bioactive ions (Cu<sup>2+</sup> and Zn<sup>2+</sup> and <math><mrow><msubsup><mrow><mtext>SiO</mtext></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn><mo>-</mo></mrow></msubsup></mrow></math>) from the composite hydrogel and the mild heat environment though the photothermal effect of the composite hydrogel induced by near-infrared light irradiation. The most distinctive advantage of this thermionic effect is to substantially eliminate periodontal pathogenic bacteria and inhibit inflammation, while simultaneously enhance peri-implant osseointegration. This unique attribute renders the use of this composite hydrogel highly effective in significantly improving the survival rate of implants after intervention in peri-implant lesions, which is a clinical challenge in periodontics. This study reveals application potential of a new biomaterial-based approach for peri-implant lesion, as it not only eliminates the infection and inflammation, but also enhances the osteointegration of the dental implant, which provides theoretical insights and practical guidance to prevent and manage early-stage peri-implant lesion using bioactive functional materials.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae028"},"PeriodicalIF":6.7,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140870015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-functional hydroxyapatite coated 3D porous polyetherketoneketone scaffold for enhanced osteogenesis and osteointegration in orthopedic applications 生物功能性羟基磷灰石涂层三维多孔聚醚醚酮支架,用于增强骨科应用中的成骨和骨整合能力
IF 6.7 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-03-15 DOI: 10.1093/rb/rbae023
Huanhuan Liu, Taiqing Liu, Zhicheng Yin, Xiaoyin Liu, Ying Tan, Yuwei Zhao, Haiyang Yu
Polyetherketoneketone (PEKK), a high-performance thermoplastic special engineering material, maintains bone-like mechanical properties and has received considerable attention in the biomedical field. The three-dimensional (3D) printing technique enables the production of porous scaffolds with a honeycomb structure featuring precisely controlled pore size, porosity, and interconnectivity, which holds significant potential for applications in tissue engineering. The ideal pore architecture of porous PEKK scaffolds has yet to be elucidated. Porous PEKK scaffolds with five pore sizes P200 (225 ± 9.8 μm), P400 (411 ± 22.1 μm), P600 (596 ± 23.4 μm), P800 (786 ± 24.2 μm), and P1000 (993 ± 26.0 μm) were produced by a 3D printer. Subsequently, the optimum pore size, the P600, for mechanical properties and osteogenesis was selected based on in vitro experiments. To improve the interfacial bioactivity of porous PEKK scaffolds, hydroxyapatite (HAp) crystals were generated via in situ biomimetic mineralization induced by the phase transited lysozyme (PTL) coating. Herein, a micro/nanostructured surface showing HAp crystals on PEKK scaffold was developed. In vitro and in vivo experiments confirmed that the porous PEKK-HAp scaffolds exhibited highly interconnected pores and functional surface structures that were favorable for biocompatibility and osteoinductivity, which boosted bone regeneration. Therefore, this work not only demonstrates that the pore structure of the P600 scaffold is suitable for PEKK orthopedic implants but also sheds light on a synergistic approach involving 3D printing and biomimetic mineralization, which has the potential to yield customized 3D PEKK-HAp scaffolds with enhanced osteoinductivity and osteogenesis, offering a promising strategy for bone tissue engineering.
聚醚酮酮(PEKK)是一种高性能热塑性特种工程材料,具有类似骨骼的机械性能,在生物医学领域受到广泛关注。三维(3D)打印技术能够生产出具有蜂窝状结构的多孔支架,其特点是精确控制孔径、孔隙率和相互连接性,在组织工程中具有巨大的应用潜力。多孔 PEKK 支架的理想孔隙结构尚未阐明。通过三维打印机制作了五种孔径的多孔 PEKK 支架:P200(225 ± 9.8 μm)、P400(411 ± 22.1 μm)、P600(596 ± 23.4 μm)、P800(786 ± 24.2 μm)和 P1000(993 ± 26.0 μm)。随后,根据体外实验结果,选择了力学性能和成骨作用的最佳孔径 P600。为了提高多孔 PEKK 支架的界面生物活性,在相传溶菌酶(PTL)涂层的诱导下,通过原位生物模拟矿化生成了羟基磷灰石(HAp)晶体。在此,我们开发了一种在 PEKK 支架上显示 HAp 晶体的微/纳米结构表面。体外和体内实验证实,多孔 PEKK-HAp 支架具有高度相互连接的孔隙和功能性表面结构,有利于生物相容性和骨诱导性,从而促进骨再生。因此,这项工作不仅证明了 P600 支架的孔隙结构适用于 PEKK 骨科植入物,还揭示了一种涉及三维打印和仿生矿化的协同方法,该方法有可能产生具有增强骨诱导性和成骨能力的定制化三维 PEKK-HAp 支架,为骨组织工程提供了一种前景广阔的策略。
{"title":"Bio-functional hydroxyapatite coated 3D porous polyetherketoneketone scaffold for enhanced osteogenesis and osteointegration in orthopedic applications","authors":"Huanhuan Liu, Taiqing Liu, Zhicheng Yin, Xiaoyin Liu, Ying Tan, Yuwei Zhao, Haiyang Yu","doi":"10.1093/rb/rbae023","DOIUrl":"https://doi.org/10.1093/rb/rbae023","url":null,"abstract":"Polyetherketoneketone (PEKK), a high-performance thermoplastic special engineering material, maintains bone-like mechanical properties and has received considerable attention in the biomedical field. The three-dimensional (3D) printing technique enables the production of porous scaffolds with a honeycomb structure featuring precisely controlled pore size, porosity, and interconnectivity, which holds significant potential for applications in tissue engineering. The ideal pore architecture of porous PEKK scaffolds has yet to be elucidated. Porous PEKK scaffolds with five pore sizes P200 (225 ± 9.8 μm), P400 (411 ± 22.1 μm), P600 (596 ± 23.4 μm), P800 (786 ± 24.2 μm), and P1000 (993 ± 26.0 μm) were produced by a 3D printer. Subsequently, the optimum pore size, the P600, for mechanical properties and osteogenesis was selected based on in vitro experiments. To improve the interfacial bioactivity of porous PEKK scaffolds, hydroxyapatite (HAp) crystals were generated via in situ biomimetic mineralization induced by the phase transited lysozyme (PTL) coating. Herein, a micro/nanostructured surface showing HAp crystals on PEKK scaffold was developed. In vitro and in vivo experiments confirmed that the porous PEKK-HAp scaffolds exhibited highly interconnected pores and functional surface structures that were favorable for biocompatibility and osteoinductivity, which boosted bone regeneration. Therefore, this work not only demonstrates that the pore structure of the P600 scaffold is suitable for PEKK orthopedic implants but also sheds light on a synergistic approach involving 3D printing and biomimetic mineralization, which has the potential to yield customized 3D PEKK-HAp scaffolds with enhanced osteoinductivity and osteogenesis, offering a promising strategy for bone tissue engineering.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"22 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140151766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MRI-guided photothermal/photodynamic immune activation combined with PD-1 inhibitor for the multimodal combination therapy of melanoma and metastases 核磁共振成像引导下的光热/光动力免疫激活结合 PD-1 抑制剂用于黑色素瘤和转移瘤的多模式联合治疗
IF 6.7 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-03-13 DOI: 10.1093/rb/rbae019
Changqiang Wu, Wei Chen, Shuang Yan, Jie Zhong, Liang Du, Chenwu Yang, Yu Pu, Yang Li, Jiafu Lin, Mei Zeng, Xiaoming Zhang
Non-invasive image-guided precise photothermal/photodynamic therapy (PTT/PDT) has been proven an effective local treatment modality, but incompetent against metastases. Hence the combination of local PTT/PDT and systemic immunotherapy would be a promising strategy for tumor eradication. Herein, a MRI-visualized PTT/PDT agent (SIDP NMs) was constructed, and the efficacy of its multimodal combination with PD-1 inhibitor in the treatment of melanoma and metastases was studied. Due to the hydrophobic encapsulation of indocyanine green (ICG) within the micellar core, SIDP NMs exhibited excellent photothermal/photodynamic properties and stability under 808 nm near-infrared laser (NIR). In vitro cell experiments showed that SIDP NMs had a good killing effect. After incubating with B16-F10 cells for 24 h and irradiating with 808 nm laser for 10 min, cell viability decreased significantly. Magnetic resonance imaging experiments in melanoma-bearing mice have shown that the dynamic distribution of SIDP NMs in tumor tissue could be monitored by T2WI and T2-MAP noninvasively due to the presence of superparamagnetic iron oxide nanocrystal (SPIO) in SIDP NMs. When the 808 nm laser was irradiated at the maximum focusing time point shown by MRI, the temperature of the tumor area rapidly increased from 32 °C to 60.7 °C in five minutes. In mouse melanoma ablation and distant tumor immunotherapy studies, SIDP NMs provided excellent MRI-guided photothermal/photodynamic therapy results and, when combined with PD-1 inhibitor, have great potential to cure primary tumors and eradicate metastases.
事实证明,非侵入性图像引导精确光热/光动力疗法(PTT/PDT)是一种有效的局部治疗方式,但对转移瘤却无能为力。因此,将局部光热/光动力疗法与全身免疫疗法相结合将是一种很有前途的根除肿瘤的策略。本文构建了一种磁共振成像可视化 PTT/PDT 药剂(SIDP NMs),并研究了其与 PD-1 抑制剂多模式联合治疗黑色素瘤和转移瘤的疗效。由于吲哚菁绿(ICG)被疏水包裹在胶束内核中,SIDP NMs 在 808 纳米近红外激光(NIR)下表现出优异的光热/光动力特性和稳定性。体外细胞实验表明,SIDP NMs 具有良好的杀伤效果。与 B16-F10 细胞培养 24 小时并用 808 纳米激光照射 10 分钟后,细胞存活率显著下降。黑色素瘤小鼠的磁共振成像实验表明,由于 SIDP NMs 中含有超顺磁性氧化铁纳米晶(SPIO),因此可以通过 T2WI 和 T2-MAP 无创监测 SIDP NMs 在肿瘤组织中的动态分布。在核磁共振成像显示的最大聚焦时间点照射 808 纳米激光时,肿瘤区域的温度在五分钟内从 32 ℃ 迅速升高到 60.7 ℃。在小鼠黑色素瘤消融和远处肿瘤免疫治疗研究中,SIDP NMs 在核磁共振成像引导下提供了出色的光热/光动力治疗效果,与 PD-1 抑制剂结合使用时,在治疗原发性肿瘤和根除转移瘤方面具有巨大潜力。
{"title":"MRI-guided photothermal/photodynamic immune activation combined with PD-1 inhibitor for the multimodal combination therapy of melanoma and metastases","authors":"Changqiang Wu, Wei Chen, Shuang Yan, Jie Zhong, Liang Du, Chenwu Yang, Yu Pu, Yang Li, Jiafu Lin, Mei Zeng, Xiaoming Zhang","doi":"10.1093/rb/rbae019","DOIUrl":"https://doi.org/10.1093/rb/rbae019","url":null,"abstract":"Non-invasive image-guided precise photothermal/photodynamic therapy (PTT/PDT) has been proven an effective local treatment modality, but incompetent against metastases. Hence the combination of local PTT/PDT and systemic immunotherapy would be a promising strategy for tumor eradication. Herein, a MRI-visualized PTT/PDT agent (SIDP NMs) was constructed, and the efficacy of its multimodal combination with PD-1 inhibitor in the treatment of melanoma and metastases was studied. Due to the hydrophobic encapsulation of indocyanine green (ICG) within the micellar core, SIDP NMs exhibited excellent photothermal/photodynamic properties and stability under 808 nm near-infrared laser (NIR). In vitro cell experiments showed that SIDP NMs had a good killing effect. After incubating with B16-F10 cells for 24 h and irradiating with 808 nm laser for 10 min, cell viability decreased significantly. Magnetic resonance imaging experiments in melanoma-bearing mice have shown that the dynamic distribution of SIDP NMs in tumor tissue could be monitored by T2WI and T2-MAP noninvasively due to the presence of superparamagnetic iron oxide nanocrystal (SPIO) in SIDP NMs. When the 808 nm laser was irradiated at the maximum focusing time point shown by MRI, the temperature of the tumor area rapidly increased from 32 °C to 60.7 °C in five minutes. In mouse melanoma ablation and distant tumor immunotherapy studies, SIDP NMs provided excellent MRI-guided photothermal/photodynamic therapy results and, when combined with PD-1 inhibitor, have great potential to cure primary tumors and eradicate metastases.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"112 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibacterial and antioxidant bifunctional hydrogel based on hyaluronic acid complex MoS2-dithiothreitol nanozyme for treatment of infected wounds 基于透明质酸复合物 MoS2-二硫苏糖醇纳米酶的抗菌抗氧化双功能水凝胶用于治疗感染性伤口
IF 6.7 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-03-09 DOI: 10.1093/rb/rbae025
Yongping Lu, Weiqi Kang, Yue Yu, Ling Liang, Jinrong Li, Haiying Lu, Ping Shi, Mingfang He, Yuemin Wang, Jianshu Li, Xingyu Chen
Wound repair is a complex physiological process that often leads to bacterial infections, which significantly threaten human health. Therefore, developing wound-healing materials that promote healing and prevent bacterial infections is crucial. In this study, the coordination interaction between sulfhydryl groups on dithiothreitol (DTT) and MoS2 nanosheets is investigated to synthesize a MoS2-DTT nanozyme with photothermal properties and an improved free-radical scavenging ability. Double-bond-modified hyaluronic acid is used as a monomer and is cross-linked with a PF127-DA agent. PHMoD is prepared in coordination with MoS2-dithiothreitol as the functional component. This hydrogel exhibits antioxidant and antibacterial properties, attributed to the catalytic activity of catalase-like enzymes and photothermal effects. Under the NIR, it exhibits potent antibacterial effects against gram-positive (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli), achieving bactericidal rates of 99.76% and 99.42%, respectively. Furthermore, the hydrogel exhibits remarkable ROS scavenging and antioxidant capabilities, effectively countering oxidative stress in L929 cells. Remarkably, in an animal model, wounds treated with the PHMoD(2.0) and NIR laser heal the fastest, sealing completely within 10 d. These results indicate the unique biocompatibility and bifunctionality of the PHMoD, which make it a promising material for wound-healing applications.
伤口修复是一个复杂的生理过程,往往会导致细菌感染,严重威胁人类健康。因此,开发既能促进伤口愈合又能防止细菌感染的伤口愈合材料至关重要。本研究通过研究二硫苏糖醇(DTT)上的巯基与 MoS2 纳米片之间的配位相互作用,合成了一种具有光热特性和更强自由基清除能力的 MoS2-DTT 纳米酶。以双键修饰的透明质酸为单体,并与 PF127-DA 药剂交联。PHMoD 是以 MoS2-二硫苏糖醇为功能成分配位制备的。这种水凝胶具有抗氧化和抗菌特性,这归功于类似催化酶的催化活性和光热效应。在近红外条件下,它对革兰氏阳性菌(金黄色葡萄球菌)和革兰氏阴性菌(大肠杆菌)具有很强的抗菌效果,杀菌率分别达到 99.76% 和 99.42%。此外,水凝胶还具有显著的清除 ROS 和抗氧化能力,能有效对抗 L929 细胞中的氧化应激。值得注意的是,在动物模型中,使用 PHMoD(2.0) 和近红外激光治疗的伤口愈合最快,可在 10 d 内完全愈合。
{"title":"Antibacterial and antioxidant bifunctional hydrogel based on hyaluronic acid complex MoS2-dithiothreitol nanozyme for treatment of infected wounds","authors":"Yongping Lu, Weiqi Kang, Yue Yu, Ling Liang, Jinrong Li, Haiying Lu, Ping Shi, Mingfang He, Yuemin Wang, Jianshu Li, Xingyu Chen","doi":"10.1093/rb/rbae025","DOIUrl":"https://doi.org/10.1093/rb/rbae025","url":null,"abstract":"Wound repair is a complex physiological process that often leads to bacterial infections, which significantly threaten human health. Therefore, developing wound-healing materials that promote healing and prevent bacterial infections is crucial. In this study, the coordination interaction between sulfhydryl groups on dithiothreitol (DTT) and MoS2 nanosheets is investigated to synthesize a MoS2-DTT nanozyme with photothermal properties and an improved free-radical scavenging ability. Double-bond-modified hyaluronic acid is used as a monomer and is cross-linked with a PF127-DA agent. PHMoD is prepared in coordination with MoS2-dithiothreitol as the functional component. This hydrogel exhibits antioxidant and antibacterial properties, attributed to the catalytic activity of catalase-like enzymes and photothermal effects. Under the NIR, it exhibits potent antibacterial effects against gram-positive (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli), achieving bactericidal rates of 99.76% and 99.42%, respectively. Furthermore, the hydrogel exhibits remarkable ROS scavenging and antioxidant capabilities, effectively countering oxidative stress in L929 cells. Remarkably, in an animal model, wounds treated with the PHMoD(2.0) and NIR laser heal the fastest, sealing completely within 10 d. These results indicate the unique biocompatibility and bifunctionality of the PHMoD, which make it a promising material for wound-healing applications.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"26 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140098271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyethylenimine-modified graphene quantum dots promote endothelial cell proliferation. 聚乙烯亚胺修饰的石墨烯量子点促进内皮细胞增殖
IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-02-24 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae013
Qirong Xu, Chen Li, Xiangyan Meng, Xinghong Duo, Yakai Feng

Endothelial cell proliferation plays an important role in angiogenesis and treatment of related diseases. The aim of this study was to evaluate the effect of polyethylenimine (PEI)-modified graphene quantum dots (GQDs) gene vectors on endothelial cell proliferation. The GQDs-cationic polymer gene vectors were synthesized by amidation reaction, and used to deliver pZNF580 gene to Human umbilical vein endothelial cells (HUVECs) for promoting their proliferation. The chemical modification of GQDs can adjust gene vectors' surface properties and charge distribution, thereby enhancing their interaction with gene molecules, which could effectively compress the pZNF580 gene. The CCK-8 assay showed that the cell viability was higher than 80% at higher vector concentration (40 μg/mL), demonstrating that the GQDs-cationic polymer gene vectors and their gene complex nanoparticles (NPs) having low cytotoxicity. The results of the live/dead cell double staining assay were consistent with those of the CCK-8 assay, in which the cell viability of the A-GQDs/pZNF580 (94.38 ± 6.39%), C-GQDs-PEI- polylactic acid-co-polyacetic acid (PLGA)/pZNF580 (98.65 ± 6.60%) and N-GQDs-PEI-PLGA/pZNF580 (90.08 ± 1.60%) groups was significantly higher than that of the Lipofectamine 2000/pZNF580 (71.98 ± 3.53%) positive treatment group. The results of transfection and western blot experiments showed that the vector significantly enhanced the delivery of plasmid to HUVECs and increased the expression of pZNF580 in HUVECs. In addition, the gene NPs better promote endothelial cell migration and proliferation. The cell migration rate and proliferation ability of C-GQDs-PEI-PLGA/pZNF580 and N-GQDs-PEI-PLGA/pZNF580 treatment groups were higher than those of Lipofectamine 2000/pDNA treatment group. Modified GQDs possess the potential to serve as efficient gene carriers. They tightly bind gene molecules through charge and other non-covalent interactions, significantly improving the efficiency of gene delivery and ensuring the smooth release of genes within the cell. This innovative strategy provides a powerful means to promote endothelial cell proliferation.

内皮细胞增殖在血管生成和相关疾病的治疗中发挥着重要作用。本研究旨在评估聚乙烯亚胺(PEI)修饰的石墨烯量子点(GQDs)基因载体对内皮细胞增殖的影响。通过酰胺化反应合成了GQDs阳离子聚合物基因载体,并将pZNF580基因传递给人脐静脉内皮细胞(HUVECs)以促进其增殖。GQDs 的化学修饰可以调整基因载体的表面性质和电荷分布,从而增强其与基因分子的相互作用,有效地压缩 pZNF580 基因。CCK-8试验表明,在较高的载体浓度(40 μg/mL)下,细胞存活率高于80%,表明GQDs阳离子聚合物基因载体及其基因复合纳米颗粒(NPs)具有较低的细胞毒性。活/死细胞双重染色检测结果与 CCK-8 检测结果一致,A-GQDs/pZNF580(94.38 ± 6.39%)、C-GQDs-PEI-聚乳酸-聚乙酸(PLGA)/pZNF580(98.65±6.60%)和N-GQDs-PEI-PLGA/pZNF580(90.08±1.60%)组明显高于Lipofectamine 2000/pZNF580(71.98±3.53%)阳性处理组。转染和 Western 印迹实验结果表明,载体能明显增强质粒向 HUVECs 的递送,提高 pZNF580 在 HUVECs 中的表达。此外,基因 NPs 还能更好地促进内皮细胞的迁移和增殖。C-GQDs-PEI-PLGA/pZNF580处理组和N-GQDs-PEI-PLGA/pZNF580处理组的细胞迁移率和增殖能力均高于Lipofectamine 2000/pDNA处理组。改性 GQDs 具有作为高效基因载体的潜力。它们通过电荷和其他非共价作用紧密结合基因分子,大大提高了基因递送的效率,确保基因在细胞内顺利释放。这一创新策略为促进内皮细胞增殖提供了强有力的手段。
{"title":"Polyethylenimine-modified graphene quantum dots promote endothelial cell proliferation.","authors":"Qirong Xu, Chen Li, Xiangyan Meng, Xinghong Duo, Yakai Feng","doi":"10.1093/rb/rbae013","DOIUrl":"10.1093/rb/rbae013","url":null,"abstract":"<p><p>Endothelial cell proliferation plays an important role in angiogenesis and treatment of related diseases. The aim of this study was to evaluate the effect of polyethylenimine (PEI)-modified graphene quantum dots (GQDs) gene vectors on endothelial cell proliferation. The GQDs-cationic polymer gene vectors were synthesized by amidation reaction, and used to deliver pZNF580 gene to Human umbilical vein endothelial cells (HUVECs) for promoting their proliferation. The chemical modification of GQDs can adjust gene vectors' surface properties and charge distribution, thereby enhancing their interaction with gene molecules, which could effectively compress the pZNF580 gene. The CCK-8 assay showed that the cell viability was higher than 80% at higher vector concentration (40 μg/mL), demonstrating that the GQDs-cationic polymer gene vectors and their gene complex nanoparticles (NPs) having low cytotoxicity. The results of the live/dead cell double staining assay were consistent with those of the CCK-8 assay, in which the cell viability of the A-GQDs/pZNF580 (94.38 ± 6.39%), C-GQDs-PEI- polylactic acid-co-polyacetic acid (PLGA)/pZNF580 (98.65 ± 6.60%) and N-GQDs-PEI-PLGA/pZNF580 (90.08 ± 1.60%) groups was significantly higher than that of the Lipofectamine 2000/pZNF580 (71.98 ± 3.53%) positive treatment group. The results of transfection and western blot experiments showed that the vector significantly enhanced the delivery of plasmid to HUVECs and increased the expression of pZNF580 in HUVECs. In addition, the gene NPs better promote endothelial cell migration and proliferation. The cell migration rate and proliferation ability of C-GQDs-PEI-PLGA/pZNF580 and N-GQDs-PEI-PLGA/pZNF580 treatment groups were higher than those of Lipofectamine 2000/pDNA treatment group. Modified GQDs possess the potential to serve as efficient gene carriers. They tightly bind gene molecules through charge and other non-covalent interactions, significantly improving the efficiency of gene delivery and ensuring the smooth release of genes within the cell. This innovative strategy provides a powerful means to promote endothelial cell proliferation.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae013"},"PeriodicalIF":5.6,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960926/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140207534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of integrin β1 and tenascin C mediate TGF-SMAD2/3 signaling in chondrogenic differentiation of BMSCs induced by type I collagen hydrogel. 整合素β1和tenascin C在I型胶原水凝胶诱导的BMSCs软骨分化中介导TGF-SMAD2/3信号传导的作用
IF 6.7 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Pub Date : 2024-02-24 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae017
Yuanjun Huang, Miao Sun, Zhenhui Lu, Qiuling Zhong, Manli Tan, Qingjun Wei, Li Zheng

Cartilage defects may lead to severe degenerative joint diseases. Tissue engineering based on type I collagen hydrogel that has chondrogenic potential is ideal for cartilage repair. However, the underlying mechanisms of chondrogenic differentiation driven by type I collagen hydrogel have not been fully clarified. Herein, we explored potential collagen receptors and chondrogenic signaling pathways through bioinformatical analysis to investigate the mechanism of collagen-induced chondrogenesis. Results showed that the super enhancer-related genes induced by collagen hydrogel were significantly enriched in the TGF-β signaling pathway, and integrin-β1 (ITGB1), a receptor of collagen, was highly expressed in bone marrow mesenchymal stem cells (BMSCs). Further analysis showed genes such as COL2A1 and Tenascin C (TNC) that interacted with ITGB1 were significantly enriched in extracellular matrix (ECM) structural constituents in the chondrogenic induction group. Knockdown of ITGB1 led to the downregulation of cartilage-specific genes (SOX9, ACAN, COL2A1), SMAD2 and TNC, as well as the downregulation of phosphorylation of SMAD2/3. Knockdown of TNC also resulted in the decrease of cartilage markers, ITGB1 and the SMAD2/3 phosphorylation but overexpression of TNC showed the opposite trend. Finally, in vitro and in vivo experiments confirmed the involvement of ITGB1 and TNC in collagen-mediated chondrogenic differentiation and cartilage regeneration. In summary, we demonstrated that ITGB1 was a crucial receptor for chondrogenic differentiation of BMSCs induced by collagen hydrogel. It can activate TGF-SMAD2/3 signaling, followed by impacting TNC expression, which in turn promotes the interaction of ITGB1 and TGF-SMAD2/3 signaling to enhance chondrogenesis. These may provide concernful support for cartilage tissue engineering and biomaterials development.

软骨缺损可能导致严重的关节退行性疾病。基于具有软骨潜能的 I 型胶原水凝胶的组织工程是软骨修复的理想选择。然而,I 型胶原水凝胶驱动软骨分化的内在机制尚未完全阐明。在此,我们通过生物信息学分析探索了潜在的胶原受体和软骨信号通路,以研究胶原诱导软骨形成的机制。结果表明,胶原水凝胶诱导的超级增强子相关基因明显富集于 TGF-β 信号通路,而作为胶原受体的整合素-β1(ITGB1)在骨髓间充质干细胞(BMSCs)中高表达。进一步的分析表明,在软骨诱导组中,与ITGB1相互作用的基因如COL2A1和Tenascin C(TNC)在细胞外基质(ECM)结构成分中明显富集。敲除 ITGB1 会导致软骨特异性基因(SOX9、ACAN、COL2A1)、SMAD2 和 TNC 的下调,以及 SMAD2/3 磷酸化的下调。敲除 TNC 也会导致软骨标志物、ITGB1 和 SMAD2/3 磷酸化的减少,但过表达 TNC 则显示出相反的趋势。最后,体外和体内实验证实了 ITGB1 和 TNC 参与了胶原介导的软骨分化和软骨再生。综上所述,我们证明了 ITGB1 是胶原水凝胶诱导 BMSCs 软骨分化的关键受体。它能激活 TGF-SMAD2/3 信号,继而影响 TNC 的表达,而 TNC 的表达又能促进 ITGB1 和 TGF-SMAD2/3 信号的相互作用,从而增强软骨形成。这些可能会为软骨组织工程和生物材料的开发提供值得关注的支持。
{"title":"Role of integrin β1 and tenascin C mediate TGF-SMAD2/3 signaling in chondrogenic differentiation of BMSCs induced by type I collagen hydrogel.","authors":"Yuanjun Huang, Miao Sun, Zhenhui Lu, Qiuling Zhong, Manli Tan, Qingjun Wei, Li Zheng","doi":"10.1093/rb/rbae017","DOIUrl":"10.1093/rb/rbae017","url":null,"abstract":"<p><p>Cartilage defects may lead to severe degenerative joint diseases. Tissue engineering based on type I collagen hydrogel that has chondrogenic potential is ideal for cartilage repair. However, the underlying mechanisms of chondrogenic differentiation driven by type I collagen hydrogel have not been fully clarified. Herein, we explored potential collagen receptors and chondrogenic signaling pathways through bioinformatical analysis to investigate the mechanism of collagen-induced chondrogenesis. Results showed that the super enhancer-related genes induced by collagen hydrogel were significantly enriched in the TGF-β signaling pathway, and integrin-β1 (ITGB1), a receptor of collagen, was highly expressed in bone marrow mesenchymal stem cells (BMSCs). Further analysis showed genes such as COL2A1 and Tenascin C (TNC) that interacted with ITGB1 were significantly enriched in extracellular matrix (ECM) structural constituents in the chondrogenic induction group. Knockdown of ITGB1 led to the downregulation of cartilage-specific genes (SOX9, ACAN, COL2A1), SMAD2 and TNC, as well as the downregulation of phosphorylation of SMAD2/3. Knockdown of TNC also resulted in the decrease of cartilage markers, ITGB1 and the SMAD2/3 phosphorylation but overexpression of TNC showed the opposite trend. Finally, <i>in vitro</i> and <i>in vivo</i> experiments confirmed the involvement of ITGB1 and TNC in collagen-mediated chondrogenic differentiation and cartilage regeneration. In summary, we demonstrated that ITGB1 was a crucial receptor for chondrogenic differentiation of BMSCs induced by collagen hydrogel. It can activate TGF-SMAD2/3 signaling, followed by impacting TNC expression, which in turn promotes the interaction of ITGB1 and TGF-SMAD2/3 signaling to enhance chondrogenesis. These may provide concernful support for cartilage tissue engineering and biomaterials development.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae017"},"PeriodicalIF":6.7,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10960929/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140207535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Regenerative Biomaterials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1