首页 > 最新文献

Respiratory Physiology & Neurobiology最新文献

英文 中文
Effect of the NLRP3 inflammasome on increased hypoxic ventilation response after CIH exposure in mice NLRP3 炎性体对小鼠暴露于 CIH 后缺氧通气反应增加的影响
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2023-12-19 DOI: 10.1016/j.resp.2023.104204
Xinyun Jia , Jianxia Sun , Qingya Zhuo , Baosheng Zhao , Yuzhen Liu

Background

Chronic intermittent hypoxia (CIH) increases the hypoxic ventilation response (HVR). The downstream cytokine IL-1β of the NLRP3 inflammasome regulates respiration by acting on the carotid body (CB) and neurons in the respiratory center, but the effect of the NLRP3 inflammasome on HVR induced by CIH remains unclear.

Objective

To investigate the effect of NLRP3 on the increased HVR and spontaneous apnea events and duration induced by CIH, the expression and localization of NLRP3 in the respiratory regulatory center of the rostral ventrolateral medulla (RVLM), and the effect of CIH on the activation of the NLRP3 inflammasome in the RVLM.

Methods

Eighteen male, 7-week-old C57BL/6 N mice and eighteen male, 7-week-old C57BL/6 N NLRP3 knockout mice were randomly divided into CON-WT, CON-NLRP3-/-, CIH-WT and CIH-NLRP3-/- groups. Respiratory changes in mice were continuously detected using whole-body plethysmography. The expression and localization of the NLRP3 protein and the formation of apoptosis-associated speck-like protein containing CARD (ASC) specks were detected using immunofluorescence staining.

Results

NLRP3 knockout reduced the increased HVR and the incidence and duration of spontaneous apnea events associated with CIH. The increase in HVR caused by CIH partially recovered after reoxygenation. After CIH, NLRP3 inflammasome activation in the RVLM, which is related to respiratory regulation after hypoxia, increased, which was consistent with the trend of the ventilation response.

Conclusion

The NLRP3 inflammasome may be involved in the increase in the HVR and the incidence and duration of spontaneous apnea induced by CIH. NLRP3 inhibitors may help reduce the increase in the HVR after CIH, which is important for ensuring sleep quality at night in patients with obstructive sleep apnea.

背景 慢性间歇性缺氧(CIH)会增加缺氧通气反应(HVR)。NLRP3 炎性体的下游细胞因子 IL-1β 通过作用于颈动脉体(CB)和呼吸中枢的神经元来调节呼吸,但 NLRP3 炎性体对 CIH 诱导的 HVR 的影响仍不清楚。目的 研究NLRP3对CIH诱导的HVR增加和自发性呼吸暂停事件及持续时间的影响、NLRP3在喙腹外侧延髓(RVLM)呼吸调节中枢的表达和定位以及CIH对RVLM中NLRP3炎性体激活的影响。方法将18只7周大的雄性C57BL/6 N小鼠和18只7周大的雄性C57BL/6 N NLRP3基因敲除小鼠随机分为CON-WT组、CON-NLRP3-/-组、CIH-WT组和CIH-NLRP3-/-组。小鼠的呼吸变化通过全身胸透进行连续检测。结果NLRP3基因敲除降低了与CIH相关的HVR升高以及自发性呼吸暂停事件的发生率和持续时间。CIH 导致的 HVR 增加在复氧后部分恢复。结论 NLRP3 炎性体可能与 CIH 引起的 HVR 增加、自发性呼吸暂停的发生率和持续时间有关。NLRP3 抑制剂可能有助于减少 CIH 后 HVR 的增加,这对确保阻塞性睡眠呼吸暂停患者的夜间睡眠质量非常重要。
{"title":"Effect of the NLRP3 inflammasome on increased hypoxic ventilation response after CIH exposure in mice","authors":"Xinyun Jia ,&nbsp;Jianxia Sun ,&nbsp;Qingya Zhuo ,&nbsp;Baosheng Zhao ,&nbsp;Yuzhen Liu","doi":"10.1016/j.resp.2023.104204","DOIUrl":"10.1016/j.resp.2023.104204","url":null,"abstract":"<div><h3>Background</h3><p><span>Chronic intermittent hypoxia<span> (CIH) increases the hypoxic ventilation response (HVR). The downstream cytokine IL-1β of the NLRP3 inflammasome regulates respiration by acting on the </span></span>carotid body<span> (CB) and neurons in the respiratory center, but the effect of the NLRP3 inflammasome on HVR induced by CIH remains unclear.</span></p></div><div><h3>Objective</h3><p>To investigate the effect of NLRP3 on the increased HVR and spontaneous apnea events and duration induced by CIH, the expression and localization of NLRP3 in the respiratory regulatory center of the rostral ventrolateral medulla (RVLM), and the effect of CIH on the activation of the NLRP3 inflammasome in the RVLM.</p></div><div><h3>Methods</h3><p><span>Eighteen male, 7-week-old C57BL/6 N mice and eighteen male, 7-week-old C57BL/6 N NLRP3 knockout mice were randomly divided into CON-WT, CON-NLRP3</span><sup>-/-</sup>, CIH-WT and CIH-NLRP3<sup>-/-</sup><span><span> groups. Respiratory changes in mice were continuously detected using whole-body plethysmography. The expression and localization of the NLRP3 protein and the formation of apoptosis-associated speck-like protein containing CARD (ASC) specks were detected using immunofluorescence </span>staining.</span></p></div><div><h3>Results</h3><p><span>NLRP3 knockout reduced the increased HVR and the incidence and duration of spontaneous apnea events associated with CIH. The increase in HVR caused by CIH partially recovered after reoxygenation. After CIH, NLRP3 inflammasome activation in the RVLM, which is related to </span>respiratory regulation after hypoxia, increased, which was consistent with the trend of the ventilation response.</p></div><div><h3>Conclusion</h3><p>The NLRP3 inflammasome may be involved in the increase in the HVR and the incidence and duration of spontaneous apnea induced by CIH. NLRP3 inhibitors may help reduce the increase in the HVR after CIH, which is important for ensuring sleep quality at night in patients<span> with obstructive sleep apnea.</span></p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"321 ","pages":"Article 104204"},"PeriodicalIF":2.3,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138745075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paralemmin-3 augments lipopolysaccharide-induced acute lung injury with M1 macrophage polarization via the notch signaling pathway Paralemmin-3 通过缺口信号通路增强脂多糖诱导的急性肺损伤与 M1 巨噬细胞极化作用
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2023-12-14 DOI: 10.1016/j.resp.2023.104203
Xuxin Chen , Fan Wang , Jian Tang , Jiguang Meng, Zhihai Han

Background

Acute lung injury (ALI) involves severe lung damage and respiratory failure, which are accompanied by alveolar macrophage (AM) activation. The aim of this article is to verify the influence of paralemmin-3 (PALM3) on alveolar macrophage (AM) polarization in ALI and the underlying mechanism of action.

Methods

An ALI rat model was established by successive lipopolysaccharide (LPS) inhalations. The influence of PALM3 on the survival rate, severity of lung injury, and macrophage polarization was analyzed. Furthermore, we explored the underlying mechanism of PALM3 in regulating macrophage polarization.

Results

PALM3 overexpression increased mortality of ALI rats, augmented lung pathological damage, and promoted AM polarization toward M1 cells. Conversely, PALM3 knockdown had the opposite effects. Mechanistically, PALM3 might promote M1 polarization by acting as an adaptor to facilitate transduction of Notch signaling.

Conclusion

PALM3 aggravates lung injury and induces macrophage polarization toward M1 cells by activating the Notch signaling pathway in LPS-induced ALI, which may shed light on ALI/ARDS treatments.

背景急性肺损伤(ALI)包括严重的肺损伤和呼吸衰竭,并伴随着肺泡巨噬细胞(AM)的活化。方法通过连续吸入脂多糖(LPS)建立 ALI 大鼠模型。分析了 PALM3 对大鼠存活率、肺损伤严重程度和巨噬细胞极化的影响。结果PALM3过表达会增加ALI大鼠的死亡率,加重肺部病理损伤,并促进AM向M1细胞极化。相反,PALM3 基因敲除则会产生相反的效果。结论在LPS诱导的ALI中,PALM3通过激活Notch信号通路加重肺损伤并诱导巨噬细胞向M1细胞极化,这可能对ALI/ARDS的治疗有所启示。
{"title":"Paralemmin-3 augments lipopolysaccharide-induced acute lung injury with M1 macrophage polarization via the notch signaling pathway","authors":"Xuxin Chen ,&nbsp;Fan Wang ,&nbsp;Jian Tang ,&nbsp;Jiguang Meng,&nbsp;Zhihai Han","doi":"10.1016/j.resp.2023.104203","DOIUrl":"https://doi.org/10.1016/j.resp.2023.104203","url":null,"abstract":"<div><h3>Background</h3><p>Acute lung injury (ALI) involves severe lung damage and respiratory failure, which are accompanied by alveolar macrophage (AM) activation. The aim of this article is to verify the influence of paralemmin-3 (PALM3) on alveolar macrophage (AM) polarization in ALI and the underlying mechanism of action.</p></div><div><h3>Methods</h3><p>An ALI rat model was established by successive lipopolysaccharide (LPS) inhalations. The influence of PALM3 on the survival rate, severity of lung injury, and macrophage polarization was analyzed. Furthermore, we explored the underlying mechanism of PALM3 in regulating macrophage polarization.</p></div><div><h3>Results</h3><p>PALM3 overexpression increased mortality of ALI rats, augmented lung pathological damage, and promoted AM polarization toward M1 cells. Conversely, PALM3 knockdown had the opposite effects. Mechanistically, PALM3 might promote M1 polarization by acting as an adaptor to facilitate transduction of Notch signaling.</p></div><div><h3>Conclusion</h3><p>PALM3 aggravates lung injury and induces macrophage polarization toward M1 cells by activating the Notch signaling pathway in LPS-induced ALI, which may shed light on ALI/ARDS treatments.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"320 ","pages":"Article 104203"},"PeriodicalIF":2.3,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S156990482300191X/pdfft?md5=116d5dd81d3a59b0c50605f74dbb0cea&pid=1-s2.0-S156990482300191X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138769764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The pre-Bötzinger complex is necessary for the expression of inspiratory and post-inspiratory motor discharge of the vagus pre-Bötzinger复合体对于迷走神经的吸气和吸气后运动放电的表达是必需的。
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2023-12-02 DOI: 10.1016/j.resp.2023.104202
Rishi R. Dhingra , Werner I. Furuya , Yi Kee Yoong , Mathias Dutschmann

The mammalian three-phase respiratory motor pattern of inspiration, post-inspiration and expiration is expressed in spinal and cranial motor nerve discharge and is generated by a distributed ponto-medullary respiratory pattern generating network. Respiratory motor pattern generation depends on a rhythmogenic kernel located within the pre-Bötzinger complex (pre-BötC). In the present study, we tested the effect of unilateral and bilateral inactivation of the pre-BötC after local microinjection of the GABAA receptor agonist isoguvacine (10 mM, 50 nl) on phrenic (PNA), hypoglossal (HNA) and vagal nerve (VNA) respiratory motor activities in an in situ perfused brainstem preparation of rats. Bilateral inactivation of the pre-BötC triggered cessation of phrenic (PNA), hypoglossal (HNA) and vagal (VNA) nerve activities for 15–20 min. Ipsilateral isoguvacine injections into the pre-BötC triggered transient (6–8 min) cessation of inspiratory and post-inspiratory VNA (p < 0.001) and suppressed inspiratory HNA by − 70 ± 15% (p < 0.01), while inspiratory PNA burst frequency increased by 46 ± 30% (p < 0.01). Taken together, these observations confirm the role of the pre-BötC as the rhythmogenic kernel of the mammalian respiratory network in situ and highlight a significant role for the pre-BötC in the transmission of vagal inspiratory and post-inspiratory pre-motor drive to the nucleus ambiguus.

哺乳动物吸气、吸气后和呼气的三相呼吸运动模式以脊髓和颅运动神经放电的形式表达,由分布的桥髓呼吸模式生成网络产生。呼吸运动模式的产生依赖于位于pre-Bötzinger复合体内的节律性核(pre-BötC)。在本研究中,我们测试了局部微量注射GABAA受体激动剂异guvacine (10mM, 50nl)后对大鼠原位灌注脑干制剂中膈神经(PNA)、舌下神经(HNA)和迷走神经(VNA)呼吸运动活动的影响。双侧pre-BötC失活触发膈神经(PNA)、舌下神经(HNA)和迷走神经(VNA)活动停止15-20min。同侧异古瓦卡因注射pre-BötC触发吸气和吸气后VNA短暂(6-8min)停止(p
{"title":"The pre-Bötzinger complex is necessary for the expression of inspiratory and post-inspiratory motor discharge of the vagus","authors":"Rishi R. Dhingra ,&nbsp;Werner I. Furuya ,&nbsp;Yi Kee Yoong ,&nbsp;Mathias Dutschmann","doi":"10.1016/j.resp.2023.104202","DOIUrl":"10.1016/j.resp.2023.104202","url":null,"abstract":"<div><p><span>The mammalian three-phase respiratory motor pattern of inspiration, post-inspiration and expiration is expressed in spinal and cranial motor nerve discharge and is generated by a distributed ponto-medullary respiratory pattern<span> generating network. Respiratory motor pattern generation depends on a rhythmogenic kernel located within the pre-Bötzinger complex (pre-BötC). In the present study, we tested the effect of unilateral and bilateral inactivation of the pre-BötC after local microinjection of the GABA</span></span><sub>A</sub><span><span> receptor agonist isoguvacine<span> (10 mM, 50 nl) on phrenic (PNA), hypoglossal (HNA) and vagal nerve (VNA) respiratory motor activities in an in situ perfused brainstem preparation of rats. Bilateral inactivation of the pre-BötC triggered cessation of phrenic (PNA), hypoglossal (HNA) and vagal (VNA) </span></span>nerve activities<span> for 15–20 min. Ipsilateral isoguvacine injections into the pre-BötC triggered transient (6–8 min) cessation of inspiratory and post-inspiratory VNA (p &lt; 0.001) and suppressed inspiratory HNA by − 70 ± 15% (p &lt; 0.01), while inspiratory PNA burst frequency increased by 46 ± 30% (p &lt; 0.01). Taken together, these observations confirm the role of the pre-BötC as the rhythmogenic kernel of the mammalian respiratory network in situ and highlight a significant role for the pre-BötC in the transmission of vagal inspiratory and post-inspiratory pre-motor drive to the nucleus ambiguus.</span></span></p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"320 ","pages":"Article 104202"},"PeriodicalIF":2.3,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138482911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction between Kölliker-Fuse/A7 and the parafacial respiratory region on the control of respiratory regulation Kölliker-Fuse/A7与面旁呼吸区在呼吸调节中的相互作用。
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2023-12-01 DOI: 10.1016/j.resp.2023.104201
Luiz M. Oliveira , Thiago S. Moreira , Ana C. Takakura

Respiration is regulated by various types of neurons located in the pontine-medullary regions. The Kölliker-Fuse (KF)/A7 noradrenergic neurons play a role in modulating the inspiratory cycle by influencing the respiratory output. These neurons are interconnected and may also project to brainstem and spinal cord, potentially involved in regulating the post-inspiratory phase. In the present study, we hypothesize that the parafacial (pF) neurons, in conjunction with adrenergic mechanisms originating from the KF/A7 region, may provide the neurophysiological basis for breathing modulation. We conducted experiments using urethane-anesthetized, vagotomized, and artificially ventilated male Wistar rats. Injection of L-glutamate into the KF/A7 region resulted in inhibition of inspiratory activity, and a prolonged and high-amplitude genioglossal activity (GGEMG). Blockade of the α1 adrenergic receptors (α1-AR) or the ionotropic glutamatergic receptors in the pF region decrease the activity of the GGEMG without affecting inspiratory cessation. In contrast, blockade of α2-AR in the pF region extended the duration of GG activity. Notably, the inspiratory and GGEMG activities induced by KF/A7 stimulation were completely blocked by bilateral blockade of glutamatergic receptors in the Bötzinger complex (BötC). While our study found a limited role for α1 and α2 adrenergic receptors at the pF level in modulating the breathing response to KF/A7 stimulation, it became evident that BötC neurons are responsible for the respiratory effects induced by KF/A7 stimulation.

呼吸是由位于脑桥-髓质区的各种类型的神经元调节的。Kölliker-Fuse (KF)/A7去甲肾上腺素能神经元通过影响呼吸输出量来调节吸气周期。这些神经元相互连接,也可能投射到脑干和脊髓,可能参与调节吸气后阶段。在本研究中,我们假设面旁神经元(pF)与起源于KF/A7区的肾上腺素能机制一起,可能为呼吸调节提供了神经生理学基础。实验采用聚氨酯麻醉、迷走神经切断和人工通气的雄性Wistar大鼠。在KF/A7区注射l -谷氨酸可抑制吸气活动,延长和高振幅的颏舌活动(GGEMG)。阻断pF区α1肾上腺素能受体(α1- ar)或嗜离子性谷氨酸能受体可降低GGEMG的活性,但不影响吸气停止。相反,阻断pF区α2-AR可延长GG活性的持续时间。值得注意的是,KF/A7刺激诱导的吸气和GGEMG活动被Bötzinger复合体中谷氨酸能受体的双侧阻断(BötC)完全阻断。虽然我们的研究发现α1和α2肾上腺素能受体在pF水平上在调节KF/A7刺激下的呼吸反应中的作用有限,但很明显BötC神经元负责KF/A7刺激诱导的呼吸效应。
{"title":"Interaction between Kölliker-Fuse/A7 and the parafacial respiratory region on the control of respiratory regulation","authors":"Luiz M. Oliveira ,&nbsp;Thiago S. Moreira ,&nbsp;Ana C. Takakura","doi":"10.1016/j.resp.2023.104201","DOIUrl":"10.1016/j.resp.2023.104201","url":null,"abstract":"<div><p><span>Respiration is regulated by various types of neurons located in the pontine-medullary regions. The Kölliker-Fuse (KF)/A7 noradrenergic neurons play a role in modulating the inspiratory cycle by influencing the respiratory output. These neurons are interconnected and may also project to brainstem<span> and spinal cord, potentially involved in regulating the post-inspiratory phase. In the present study, we hypothesize that the parafacial (pF) neurons, in conjunction with adrenergic mechanisms originating from the KF/A7 region, may provide the neurophysiological basis for breathing modulation. We conducted experiments using urethane-anesthetized, vagotomized, and artificially ventilated male Wistar rats. Injection of L-glutamate into the KF/A7 region resulted in inhibition of inspiratory activity, and a prolonged and high-amplitude genioglossal activity (GG</span></span><sub>EMG</sub>). Blockade of the α<sub>1</sub><span> adrenergic receptors (α</span><sub>1</sub><span>-AR) or the ionotropic glutamatergic receptors in the pF region decrease the activity of the GG</span><sub>EMG</sub> without affecting inspiratory cessation. In contrast, blockade of α<sub>2</sub>-AR in the pF region extended the duration of GG activity. Notably, the inspiratory and GG<sub>EMG</sub> activities induced by KF/A7 stimulation were completely blocked by bilateral blockade of glutamatergic receptors in the Bötzinger complex (BötC). While our study found a limited role for α<sub>1</sub> and α<sub>2</sub><span> adrenergic receptors at the pF level in modulating the breathing response to KF/A7 stimulation, it became evident that BötC neurons are responsible for the respiratory effects induced by KF/A7 stimulation.</span></p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"320 ","pages":"Article 104201"},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138478434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic Intermittent Hypoxia Attenuates Noradrenergic Innervation of Hypoglossal Motor Nucleus 慢性间歇性缺氧会削弱舌下运动核的去甲肾上腺素能神经支配
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2023-12-01 DOI: 10.1016/j.resp.2023.104206
Rachael Herlihy, Leonardo Frasson Dos Reis, A. Gvritishvili, Maya Kvizhinadze, Elizabeth Dybas, Atul Malhotra, V. Fenik, I. Rukhadze
{"title":"Chronic Intermittent Hypoxia Attenuates Noradrenergic Innervation of Hypoglossal Motor Nucleus","authors":"Rachael Herlihy, Leonardo Frasson Dos Reis, A. Gvritishvili, Maya Kvizhinadze, Elizabeth Dybas, Atul Malhotra, V. Fenik, I. Rukhadze","doi":"10.1016/j.resp.2023.104206","DOIUrl":"https://doi.org/10.1016/j.resp.2023.104206","url":null,"abstract":"","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"230 ","pages":"104206"},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139016347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reproducibility and responsiveness of airway impedance measures derived from the forced oscillation technique across different operating lung volumes 强迫振荡技术在不同肺容量下气道阻抗测量的再现性和反应性。
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2023-11-28 DOI: 10.1016/j.resp.2023.104200
Craig R. Aitken , Girish Pathangey , Mathew Stamos , Chul-Ho Kim , Bruce D. Johnson , Glenn M. Stewart

Background

The forced oscillation technique (FOT) enables non-invasive measurement of respiratory system impedance. Limited data exists on how changes in operating lung volume (OLV) impact FOT-derived measures of airway resistance (Rrs) and reactance (Xrs).

Objectives

This study examined the reproducibility and responsiveness of FOT-derived measures of Rrs and Xrs during simulated changes in OLV.

Methods

Participants simulated breathing at six OLVs: total lung capacity (TLC), ∼50% of inspiratory reserve volume (IRV50), ∼two-times tidal volume (VT2), tidal volume (VT), ∼50% of expiratory reserve volume (ERV50), and residual volume (RV), on a commercially available FOT device. Each simulated OLV manuever was performed in triplicate and in random order. Total Rrs and Xrs were recorded at 5, 11, and 19 Hz.

Results

Twelve healthy participants (2 female) completed the study (weight: 76.5 ± 13.6 kg, height: 178.6 ± 9.7 cm, body mass index: 23.9 ± 3.1 kg/m2). Reproducibility of Rrs and Xrs at VT, VT2 and IRV50 was good to excellent (Range: ICC: 0.89–0.98, 95% confidence interval (CI): 0.70–0.98), while reproducibility at TLC, RV, and ERV50 was poor to excellent (Range: ICC: 0.60–0.98, 95% CI: 0.36–0.97). Rrs and Xrs were not different between VT and VT2 at any frequency (P > .05). With lung hyperinflation from VT to TLC, Rrs and Xrs decreased at all three frequencies (e.g., At 5 Hz Rrs: mean difference (MD): − 0.89, 95%CI: − 0.03 to − 1.75, P = .04; Xrs: MD: − 0.56, 95%CI: − 0.25 to − 0.86, P < .01). With lung hypoinflated from VT to RV, Rrs increased, and Xrs decreased for all frequencies (e.g., MD at 5 Hz, Rrs: MD: 2.31, 95%CI: 0.94–3.67, P < .01; Xrs: MD: −2.53, 95%CI: −4.02 to −1.04, P < .01).

Conclusion

FOT-derived measures of airway Rrs and Xrs are reproducible across a range of OLV’s, and are responsive to hyper- and hypo-inflation of the lung. To further understand the impact of lung hyper- and hypo-inflation on FOT-derived airway impedance additional study is required in individuals with pathological variations in operating lung volume.

背景:强迫振荡技术(FOT)使呼吸系统阻抗的无创测量成为可能。关于操作肺体积(OLV)的变化如何影响fft衍生的气道阻力(Rrs)和电抗(Xrs)测量的数据有限。目的:本研究考察了模拟OLV变化过程中fft衍生的Rrs和Xrs测量的可重复性和响应性。方法:参与者在市售的FOT设备上模拟6种olv的呼吸:总肺活量(TLC)、~50%吸气储备量(IRV50)、~ 2倍潮气量(VT2)、潮气量(VT)、~50%呼气储备量(ERV50)和残留量(RV)。每个模拟的OLV操纵都是随机进行的,重复三次。记录5、11和19Hz的总Rrs和Xrs。结果:12名健康受试者(2名女性)完成研究(体重:76.5±13.6kg,身高:178.6±9.7cm,体质指数:23.9±3.1kg/m2)。VT、VT2和IRV50的Rrs和Xrs的再现性从好到优(范围:ICC: 0.89 ~ 0.98, 95%可信区间(CI): 0.70 ~ 0.98),而TLC、RV和ERV50的再现性从差到优(范围:ICC: 0.60 ~ 0.98, 95% CI: 0.36 ~ 0.97)。VT和VT2在任何频率下的Rrs和Xrs均无差异(P> 0.05)。从VT到TLC的肺恶性膨胀,Rrs和Xrs在所有三个频率上都下降(例如,在5Hz时,Rrs:平均差(MD): -0.89, 95%CI: -0.03至-1.75,P= 0.04;Xrs: MD: -0.56, 95%CI: -0.25至-0.86,p结论:fft衍生的气道Rrs和Xrs测量在OLV范围内是可重复的,并且对肺的高和低充气有反应。为了进一步了解肺高和低充气对fft衍生的气道阻抗的影响,需要对手术肺容量有病理变化的个体进行额外的研究。
{"title":"Reproducibility and responsiveness of airway impedance measures derived from the forced oscillation technique across different operating lung volumes","authors":"Craig R. Aitken ,&nbsp;Girish Pathangey ,&nbsp;Mathew Stamos ,&nbsp;Chul-Ho Kim ,&nbsp;Bruce D. Johnson ,&nbsp;Glenn M. Stewart","doi":"10.1016/j.resp.2023.104200","DOIUrl":"10.1016/j.resp.2023.104200","url":null,"abstract":"<div><h3>Background</h3><p>The forced oscillation technique (FOT) enables non-invasive measurement of respiratory system impedance. Limited data exists on how changes in operating lung volume (OLV) impact FOT-derived measures of airway resistance (Rrs) and reactance (Xrs).</p></div><div><h3>Objectives</h3><p>This study examined the reproducibility and responsiveness of FOT-derived measures of Rrs and Xrs during simulated changes in OLV.</p></div><div><h3>Methods</h3><p>Participants simulated breathing at six OLVs: total lung capacity (TLC), ∼50% of inspiratory reserve volume (IRV<sub>50</sub>), ∼two-times tidal volume (VT<sub>2</sub>), tidal volume (VT), ∼50% of expiratory reserve volume (ERV<sub>50</sub>), and residual volume (RV), on a commercially available FOT device. Each simulated OLV manuever was performed in triplicate and in random order. Total Rrs and Xrs were recorded at 5, 11, and 19 Hz.</p></div><div><h3>Results</h3><p>Twelve healthy participants (2 female) completed the study (weight: 76.5 ± 13.6 kg, height: 178.6 ± 9.7 cm, body mass index: 23.9 ± 3.1 kg/m<sup>2</sup>). Reproducibility of Rrs and Xrs at VT, VT<sub>2</sub> and IRV<sub>50</sub> was good to excellent (Range: ICC: 0.89–0.98, 95% confidence interval (CI): 0.70–0.98), while reproducibility at TLC, RV, and ERV<sub>50</sub> was poor to excellent (Range: ICC: 0.60–0.98, 95% CI: 0.36–0.97). Rrs and Xrs were not different between VT and VT<sub>2</sub> at any frequency (<em>P</em> &gt; .05). With lung hyperinflation from VT to TLC, Rrs and Xrs decreased at all three frequencies (e.g., At 5 Hz Rrs: mean difference (MD): − 0.89, 95%CI: − 0.03 to − 1.75, <em>P</em> = .04; Xrs: MD: − 0.56, 95%CI: − 0.25 to − 0.86, <em>P</em> &lt; .01). With lung hypoinflated from VT to RV, Rrs increased, and Xrs decreased for all frequencies (e.g., MD at 5 Hz, Rrs: MD: 2.31, 95%CI: 0.94–3.67, <em>P</em> &lt; .01; Xrs: MD: −2.53, 95%CI: −4.02 to −1.04, <em>P</em> &lt; .01).</p></div><div><h3>Conclusion</h3><p>FOT-derived measures of airway Rrs and Xrs are reproducible across a range of OLV’s, and are responsive to hyper- and hypo-inflation of the lung. To further understand the impact of lung hyper- and hypo-inflation on FOT-derived airway impedance additional study is required in individuals with pathological variations in operating lung volume.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"320 ","pages":"Article 104200"},"PeriodicalIF":2.3,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S156990482300188X/pdfft?md5=7d0891985bf465877d1164d80ae90fc7&pid=1-s2.0-S156990482300188X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138462328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indirect cardiac output assessment in a swine pediatric acute respiratory distress syndrome model 猪小儿急性呼吸窘迫综合征模型的间接心输出量评估。
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2023-11-23 DOI: 10.1016/j.resp.2023.104199
Lorenzo A. Miller , Rudolf K. Braun , Regina J. Golding , Michael Lasarev , Allison C. Rodgers , Sarah El-Meanawy , Timothy A. Hacker , Marlowe W. Eldridge , Awni M. Al-Subu

Purpose

To investigate the correlation between volume of carbon dioxide elimination (V̇CO2) and end-tidal carbon dioxide (PETCO2) with cardiac output (CO) in a swine pediatric acute respiratory distress syndrome (ARDS) model.

Methods

Respiratory and hemodynamic variables were collected from twenty-six mechanically ventilated juvenile pigs under general anesthesia before and after inducing ARDS, using oleic acid infusion.

Results

Prior to ARDS induction, mean (SD) CO, V̇CO2, PETCO2, and dead space to tidal volume ratio (Vd/Vt) were 4.16 (1.10) L/min, 103.69 (18.06) ml/min, 40.72 (3.88) mmHg and 0.25 (0.09) respectively. Partial correlation coefficients between average CO, V̇CO2, and PETCO2 were 0.44 (95% confidence interval: 0.18–0.69) and 0.50 (0.18–0.74), respectively. After ARDS induction, mean CO, V̇CO2, PETCO2, and Vd/Vt were 3.33 (0.97) L/min, 113.71 (22.97) ml/min, 50.17 (9.73) mmHg and 0.40 (0.08). Partial correlations between CO and V̇CO2 was 0.01 (−0.31 to 0.37) and between CO and PETCO2 was 0.35 (−0.002 to 0.65).

Conclusion

ARDS may limit the utility of volumetric capnography to monitor CO.

目的:探讨猪小儿急性呼吸窘迫综合征(ARDS)模型的二氧化碳消除量(V / CO2)和潮末二氧化碳(PETCO2)与心输出量(CO)的相关性。方法:采用油酸输注方法,对26头全麻机械通气仔猪在诱导ARDS前后的呼吸和血流动力学指标进行测定。结果:ARDS诱导前,平均(SD) CO、V (CO2)、PETCO2和死空潮容比(Vd/Vt)分别为4.16 (1.10)L/min、103.69 (18.06)ml/min、40.72 (3.88)mmHg和0.25(0.09)。平均CO、V³CO2和PETCO2的偏相关系数分别为0.44(95%可信区间0.18 ~ 0.69)和0.50(95%可信区间0.18 ~ 0.74)。ARDS诱导后,平均CO、V / CO2、PETCO2、Vd/Vt分别为3.33 (0.97)L/min、113.71 (22.97)ml/min、50.17 (9.73)mmHg、0.40(0.08)。CO与V ~ CO2的偏相关为0.01 (-0.31 ~ 0.37),CO与PETCO2的偏相关为0.35(-0.002 ~ 0.65)。结论:ARDS可能限制容积容积造影监测CO的应用。
{"title":"Indirect cardiac output assessment in a swine pediatric acute respiratory distress syndrome model","authors":"Lorenzo A. Miller ,&nbsp;Rudolf K. Braun ,&nbsp;Regina J. Golding ,&nbsp;Michael Lasarev ,&nbsp;Allison C. Rodgers ,&nbsp;Sarah El-Meanawy ,&nbsp;Timothy A. Hacker ,&nbsp;Marlowe W. Eldridge ,&nbsp;Awni M. Al-Subu","doi":"10.1016/j.resp.2023.104199","DOIUrl":"10.1016/j.resp.2023.104199","url":null,"abstract":"<div><h3>Purpose</h3><p>To investigate the correlation between volume of carbon dioxide elimination (V̇CO<sub>2</sub>) and end-tidal carbon dioxide (PETCO<sub>2</sub><span><span>) with cardiac output (CO) in a swine pediatric </span>acute respiratory distress syndrome </span><strong>(</strong>ARDS) model.</p></div><div><h3>Methods</h3><p><span><span>Respiratory and hemodynamic variables were collected from twenty-six mechanically ventilated juvenile pigs under </span>general anesthesia before and after inducing ARDS, using </span>oleic acid infusion.</p></div><div><h3>Results</h3><p>Prior to ARDS induction, mean (SD) CO, V̇CO<sub>2</sub>, PETCO<sub>2</sub><span>, and dead space to tidal volume ratio (V</span><sub>d</sub>/V<sub>t</sub>) were 4.16 (1.10) L/min, 103.69 (18.06) ml/min, 40.72 (3.88) mmHg and 0.25 (0.09) respectively. Partial correlation coefficients between average CO, V̇CO<sub>2</sub>, and PETCO<sub>2</sub> were 0.44 (95% confidence interval: 0.18–0.69) and 0.50 (0.18–0.74), respectively. After ARDS induction, mean CO, V̇CO<sub>2</sub>, PETCO<sub>2</sub>, and V<sub>d</sub>/V<sub>t</sub> were 3.33 (0.97) L/min, 113.71 (22.97) ml/min, 50.17 (9.73) mmHg and 0.40 (0.08). Partial correlations between CO and V̇CO<sub>2</sub> was 0.01 (−0.31 to 0.37) and between CO and PETCO<sub>2</sub> was 0.35 (−0.002 to 0.65).</p></div><div><h3>Conclusion</h3><p>ARDS may limit the utility of volumetric capnography to monitor CO.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"320 ","pages":"Article 104199"},"PeriodicalIF":2.3,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138434929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardiorespiratory coupling is associated with exercise capacity in athletes: A cross-sectional study 心肺偶联与运动员的运动能力有关:一项横断面研究。
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2023-11-11 DOI: 10.1016/j.resp.2023.104198
Raphael Martins de Abreu , Beatrice Cairo , Patricia Rehder-Santos , Claudio Donisete da Silva , Étore De Favari Signini , Juliana Cristina Milan-Mattos , Camila Akemi Sakaguchi , Aparecida Maria Catai , Alberto Porta

Purpose

To determine the association between exercise capacity based on peak oxygen uptake (VO2peak) and resting cardiorespiratory coupling (CRC) levels in athletes and non-athletes’ subjects.

Methods

A cross-sectional study was carried out in 42 apparently healthy male subjects, aged between 20 and 40 years old. The participants were allocated into athletes (n = 21) and non-athletes (n = 21) groups. Resting electrocardiogram and respiratory movement (RESP) were simultaneously acquired during 15 min in supine position and quiet breathing. The beat-to-beat heart period (HP) and RESP series were determined from the recorded signals. Traditional analysis of HP based on frequency domain indexes was performed considering the high-frequency (0.15 – 0.45 Hz) components. To compute the CRC, the linear association between HP and RESP series was determined via squared coherence function and directionality of interaction was investigated through the causal extension of this approach. The exercise capacity was assessed through incremental cardiopulmonary exercise testing in order to determine the VO2peak.

Results

Traditional analysis of HP based on high-frequency index was not correlated with exercise capacity in the athletes (r = −0.1, p = 0.5) and non-athletes (r = −0.1, p = 0.3) cohorts. However, resting CRC values was associated with exercise capacity in athletes (r = 0.4, p = 0.03), but not in the non-athletes group (r = −0.2, p = 0.3).

Conclusion

These results suggest that improved resting values of CRC is associated with higher exercise capacity (VO2peak) in endurance athletes. Moreover, frequency domain of HP was not sensitive to identifying this relationship, probably because effects of training on parasympathetic modulation might be affected by respiratory dynamics, and this influence has a directionality (i.e., from RESP to HP).

目的:确定运动员和非运动员受试者中基于峰值摄氧量(vo2峰值)的运动能力与静息心肺偶联(CRC)水平之间的关系。方法:对42例20 ~ 40岁表面健康男性进行横断面研究。参与者被分为运动员组(n=21)和非运动员组(n=21)。静息心电图和呼吸运动(RESP)在静息仰卧位和静息呼吸15min时同时采集。根据记录的信号测定心跳周期(HP)和RESP序列。传统的基于频域指标的HP分析是考虑高频(0.15 ~ 0.45Hz)分量。为了计算CRC,通过平方相干函数确定HP和RESP系列之间的线性关联,并通过该方法的因果扩展研究相互作用的方向性。通过增量心肺运动试验评估运动能力,以确定vo2峰值。结果:基于高频指数的传统HP分析在运动员(r = -0.1, p = 0.5)和非运动员(r = -0.1, p = 0.3)队列中与运动能力无关。然而,运动员的静息CRC值与运动能力相关(r = 0.4, p = 0.03),而非运动员组则与此无关(r = -0.2, p = 0.3)。结论:这些结果表明,耐力运动员CRC静息值的改善与更高的运动能力(vo2峰值)有关。此外,HP的频域对识别这种关系并不敏感,可能是因为训练对副交感神经调节的影响可能受到呼吸动力学的影响,并且这种影响具有方向性(即从RESP到HP)。
{"title":"Cardiorespiratory coupling is associated with exercise capacity in athletes: A cross-sectional study","authors":"Raphael Martins de Abreu ,&nbsp;Beatrice Cairo ,&nbsp;Patricia Rehder-Santos ,&nbsp;Claudio Donisete da Silva ,&nbsp;Étore De Favari Signini ,&nbsp;Juliana Cristina Milan-Mattos ,&nbsp;Camila Akemi Sakaguchi ,&nbsp;Aparecida Maria Catai ,&nbsp;Alberto Porta","doi":"10.1016/j.resp.2023.104198","DOIUrl":"10.1016/j.resp.2023.104198","url":null,"abstract":"<div><h3>Purpose</h3><p>To determine the association between exercise capacity based on peak oxygen uptake (VO<sub>2peak</sub><span>) and resting cardiorespiratory coupling (CRC) levels in athletes and non-athletes’ subjects.</span></p></div><div><h3>Methods</h3><p><span><span>A cross-sectional study was carried out in 42 apparently healthy male subjects, aged between 20 and 40 years old. The participants were allocated into athletes (n = 21) and non-athletes (n = 21) groups. Resting electrocardiogram and respiratory movement (RESP) were simultaneously acquired during 15 min in </span>supine position and quiet breathing. The beat-to-beat heart period (HP) and RESP series were determined from the recorded signals. Traditional analysis of HP based on frequency domain indexes was performed considering the high-frequency (0.15 – 0.45 Hz) components. To compute the CRC, the linear association between HP and RESP series was determined via squared coherence function and directionality of interaction was investigated through the causal extension of this approach. The exercise capacity was assessed through incremental cardiopulmonary exercise testing in order to determine the VO</span><sub>2peak</sub>.</p></div><div><h3>Results</h3><p>Traditional analysis of HP based on high-frequency index was not correlated with exercise capacity in the athletes (r = −0.1, <em>p</em> = 0.5) and non-athletes (r = −0.1, <em>p</em> = 0.3) cohorts. However, resting CRC values was associated with exercise capacity in athletes (r = 0.4, p = 0.03), but not in the non-athletes group (r = −0.2, <em>p</em> = 0.3).</p></div><div><h3>Conclusion</h3><p>These results suggest that improved resting values of CRC is associated with higher exercise capacity (VO<sub>2peak</sub>) in endurance athletes. Moreover, frequency domain of HP was not sensitive to identifying this relationship, probably because effects of training on parasympathetic modulation might be affected by respiratory dynamics, and this influence has a directionality (i.e., from RESP to HP).</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"320 ","pages":"Article 104198"},"PeriodicalIF":2.3,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92156277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-vivo optogenetic identification and electrophysiology of glycinergic neurons in pre-Bötzinger complex of mice 小鼠前Bötzinger复合体甘氨酸能神经元的体内光遗传学鉴定和电生理学。
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2023-11-07 DOI: 10.1016/j.resp.2023.104188
Behnam Vafadari , Yoshitaka Oku , Charlotte Tacke , Ali Harb , Swen Hülsmann

Breathing requires distinct patterns of neuronal activity in the brainstem. The most critical part of the neuronal network responsible for respiratory rhythm generation is the preBötzinger Complex (preBötC), located in the ventrolateral medulla. This area contains both rhythmogenic glutamatergic neurons and also a high number of inhibitory neurons. Here, we aimed to analyze the activity of glycinergic neurons in the preBötC in anesthetized mice. To identify inhibitory neurons, we used a transgenic mouse line that allows expression of Channelrhodopsin 2 in glycinergic neurons. Using juxtacellular recordings and optogenetic activation via a single recording electrode, we were able to identify neurons as inhibitory and define their activity pattern in relation to the breathing rhythm. We could show that the activity pattern of glycinergic respiratory neurons in the preBötC was heterogeneous. Interestingly, only a minority of the identified glycinergic neurons showed a clear phase-locked activity pattern in every respiratory cycle. Taken together, we could show that neuron identification is possible by a combination of juxtacellular recordings and optogenetic activation via a single recording electrode.

呼吸需要脑干中神经元活动的不同模式。负责呼吸节律产生的神经元网络的最关键部分是位于髓质腹外侧的前Bötzinger复合体(preBötC)。该区域既包含促韵律谷氨酸能神经元,也包含大量的抑制性神经元。在此,我们旨在分析麻醉小鼠前BötC中甘氨酸能神经元的活性。为了鉴定抑制性神经元,我们使用了一种转基因小鼠系,该系允许在甘氨酸能神经元中表达通道视紫红质2。使用细胞旁记录和通过单个记录电极的光遗传学激活,我们能够识别出神经元具有抑制性,并确定它们与呼吸节律相关的活动模式。我们可以表明,前BötC中甘氨酸能呼吸神经元的活动模式是异质的。有趣的是,只有少数已鉴定的甘氨酸能神经元在每个呼吸周期中都表现出明显的锁相活动模式。总之,我们可以证明,通过单个记录电极将细胞旁记录和光遗传学激活相结合,神经元识别是可能的。
{"title":"In-vivo optogenetic identification and electrophysiology of glycinergic neurons in pre-Bötzinger complex of mice","authors":"Behnam Vafadari ,&nbsp;Yoshitaka Oku ,&nbsp;Charlotte Tacke ,&nbsp;Ali Harb ,&nbsp;Swen Hülsmann","doi":"10.1016/j.resp.2023.104188","DOIUrl":"10.1016/j.resp.2023.104188","url":null,"abstract":"<div><p><span><span><span><span>Breathing requires distinct patterns of neuronal activity in the </span>brainstem. The most critical part of the neuronal network responsible for </span>respiratory rhythm generation<span> is the preBötzinger Complex (preBötC), located in the ventrolateral medulla. This area contains both rhythmogenic glutamatergic neurons and also a high number of inhibitory neurons. Here, we aimed to analyze the activity of </span></span>glycinergic neurons in the preBötC in anesthetized mice. To identify inhibitory neurons, we used a </span>transgenic mouse<span> line that allows expression of Channelrhodopsin<span> 2 in glycinergic neurons. Using juxtacellular recordings and optogenetic<span> activation via a single recording electrode, we were able to identify neurons as inhibitory and define their activity pattern in relation to the breathing rhythm. We could show that the activity pattern of glycinergic respiratory neurons in the preBötC was heterogeneous. Interestingly, only a minority of the identified glycinergic neurons showed a clear phase-locked activity pattern in every respiratory cycle. Taken together, we could show that neuron identification is possible by a combination of juxtacellular recordings and optogenetic activation via a single recording electrode.</span></span></span></p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"320 ","pages":"Article 104188"},"PeriodicalIF":2.3,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71522530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “The course of lung inflation alters the central pattern of tracheobronchial cough in cat – The evidence for volume feedback during cough” [Respir. Physiol. Neurobiol. 229 (2016) 43–50] 更正“肺膨胀过程改变猫气管支气管咳嗽的中心模式-咳嗽过程中音量反馈的证据”[Respir.Physiol.Neurobiol.229(2016)43-50]。
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2023-11-07 DOI: 10.1016/j.resp.2023.104184
Ivan Poliacek , Michal Simera , Marcel Veternik , Zuzana Kotmanova , Teresa Pitts , Jan Hanacek , Jana Plevkova , Peter Machac , Nadezda Visnovcova , Jakub Misek , Jan Jakus
{"title":"Corrigendum to “The course of lung inflation alters the central pattern of tracheobronchial cough in cat – The evidence for volume feedback during cough” [Respir. Physiol. Neurobiol. 229 (2016) 43–50]","authors":"Ivan Poliacek ,&nbsp;Michal Simera ,&nbsp;Marcel Veternik ,&nbsp;Zuzana Kotmanova ,&nbsp;Teresa Pitts ,&nbsp;Jan Hanacek ,&nbsp;Jana Plevkova ,&nbsp;Peter Machac ,&nbsp;Nadezda Visnovcova ,&nbsp;Jakub Misek ,&nbsp;Jan Jakus","doi":"10.1016/j.resp.2023.104184","DOIUrl":"10.1016/j.resp.2023.104184","url":null,"abstract":"","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"319 ","pages":"Article 104184"},"PeriodicalIF":2.3,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569904823001726/pdfft?md5=2cafd9bcc9b95c7c36cdb498f0fae26b&pid=1-s2.0-S1569904823001726-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72015245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Respiratory Physiology & Neurobiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1