首页 > 最新文献

Respiratory Physiology & Neurobiology最新文献

英文 中文
Neuroanatomical frameworks for volitional control of breathing and orofacial behaviors 自主控制呼吸和口面部行为的神经解剖学框架
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-01-29 DOI: 10.1016/j.resp.2024.104227
Pedro Trevizan-Baú , Davor Stanić , Werner I. Furuya , Rishi R. Dhingra , Mathias Dutschmann

Breathing is the only vital function that can be volitionally controlled. However, a detailed understanding how volitional (cortical) motor commands can transform vital breathing activity into adaptive breathing patterns that accommodate orofacial behaviors such as swallowing, vocalization or sniffing remains to be developed. Recent neuroanatomical tract tracing studies have identified patterns and origins of descending forebrain projections that target brain nuclei involved in laryngeal adductor function which is critically involved in orofacial behavior. These nuclei include the midbrain periaqueductal gray and nuclei of the respiratory rhythm and pattern generating network in the brainstem, specifically including the pontine Kölliker-Fuse nucleus and the pre-Bötzinger complex in the medulla oblongata. This review discusses the functional implications of the forebrain-brainstem anatomical connectivity that could underlie the volitional control and coordination of orofacial behaviors with breathing.

呼吸是唯一可以通过意志控制的生命功能。然而,人们对意志(大脑皮层)运动指令如何将重要的呼吸活动转化为适应吞咽、发声或嗅觉等口腔行为的适应性呼吸模式仍有待深入了解。最近的神经解剖学束追踪研究确定了前脑下降投射的模式和起源,这些投射的目标脑核涉及喉内收功能,而喉内收功能与口面部行为密切相关。这些核团包括中脑会厌灰以及脑干呼吸节律和模式生成网络的核团,具体包括延髓中的桥脑 Kölliker-Fuse 核团和前 Bötzinger 复合体。这篇综述讨论了前脑-脑干解剖学连接的功能意义,它可能是口面部行为与呼吸的意志控制和协调的基础。
{"title":"Neuroanatomical frameworks for volitional control of breathing and orofacial behaviors","authors":"Pedro Trevizan-Baú ,&nbsp;Davor Stanić ,&nbsp;Werner I. Furuya ,&nbsp;Rishi R. Dhingra ,&nbsp;Mathias Dutschmann","doi":"10.1016/j.resp.2024.104227","DOIUrl":"10.1016/j.resp.2024.104227","url":null,"abstract":"<div><p>Breathing is the only vital function that can be volitionally controlled. However, a detailed understanding how volitional (cortical) motor commands can transform vital breathing activity into adaptive breathing patterns that accommodate orofacial behaviors such as swallowing, vocalization or sniffing remains to be developed. Recent neuroanatomical tract tracing studies have identified patterns and origins of descending forebrain projections that target brain nuclei involved in laryngeal adductor function which is critically involved in orofacial behavior. These nuclei include the midbrain periaqueductal gray and nuclei of the respiratory rhythm and pattern generating network in the brainstem, specifically including the pontine Kölliker-Fuse nucleus and the pre-Bötzinger complex in the medulla oblongata. This review discusses the functional implications of the forebrain-brainstem anatomical connectivity that could underlie the volitional control and coordination of orofacial behaviors with breathing.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"323 ","pages":"Article 104227"},"PeriodicalIF":2.3,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139579073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obituary Fulvia Bongianni 1960–2023 讣告 Fulvia Bongianni 1960-2023
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-01-25 DOI: 10.1016/j.resp.2024.104226
Donatella Mutolo, Elenia Cinelli, Tito Pantaleo
{"title":"Obituary Fulvia Bongianni 1960–2023","authors":"Donatella Mutolo,&nbsp;Elenia Cinelli,&nbsp;Tito Pantaleo","doi":"10.1016/j.resp.2024.104226","DOIUrl":"10.1016/j.resp.2024.104226","url":null,"abstract":"","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"323 ","pages":"Article 104226"},"PeriodicalIF":2.3,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139561952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Danshensu methyl ester attenuated LPS-induced acute lung injury by inhibiting TLR4/NF-κB pathway 丹参素甲酯通过抑制 TLR4/NF-κB 通路减轻 LPS 诱导的急性肺损伤
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-01-18 DOI: 10.1016/j.resp.2024.104219
Xuejia Han , Wensi Ding , Guiwu Qu , Youjie Li , Pingyu Wang , Jiahui Yu , Mingyue Liu , Xiulan Chen , Shuyang Xie , Jiankai Feng , Sen Xu

Acute Lung Injury (ALI) manifests as an acute exacerbation of pulmonary inflammation with high mortality. The potential application of Danshensu methyl ester (DME, synthesized in our lab) in ameliorating ALI has not been elucidated. Our results demonstrated that DME led to a remarkable reduction in lung injury. DME promoted a marked increase in antioxidant enzymes, like superoxide dismutase (SOD), and glutathione (GSH), accompanied by a substantial decrease in reactive oxygen species (ROS), myeloperoxidase (MPO), and malondialdehyde (MDA). Moreover, DME decreased the production of IL-1β, TNF-α and IL-6, in vitro and in vivo. TLR4 and MyD88 expression is reduced in the DME-treated cells or tissues, which further leading to a decrease of p-p65 and p-IκBα. Meanwhile, DME effectively facilitated an elevation in cytoplasmic p65 expression. In summary, DME could ameliorate ALI by its antioxidant functionality and anti-inflammation effects through TLR4/NF-κB, which implied that DME may be a viable medicine for lung injury.

急性肺损伤(ALI)表现为肺部炎症的急性加重,死亡率很高。丹参素甲酯(DME,由我们实验室合成)在改善急性肺损伤方面的潜在应用尚未阐明。我们的研究结果表明,丹参素甲酯能显著减轻肺损伤。DME促进了超氧化物歧化酶(SOD)和谷胱甘肽(GSH)等抗氧化酶的明显增加,同时大幅减少了活性氧(ROS)、髓过氧化物酶(MPO)和丙二醛(MDA)。此外,DME 还能减少体外和体内 IL-1β、TNF-α 和 IL-6 的产生。TLR4和MyD88在经DME处理的细胞或组织中的表达减少,从而进一步导致p-p65和p-IκBα的减少。同时,DME能有效促进细胞质p65表达的增加。综上所述,二甲双胍可通过其抗氧化功能和TLR4/NF-κB的抗炎作用改善ALI,这意味着二甲双胍可能是一种治疗肺损伤的可行药物。
{"title":"Danshensu methyl ester attenuated LPS-induced acute lung injury by inhibiting TLR4/NF-κB pathway","authors":"Xuejia Han ,&nbsp;Wensi Ding ,&nbsp;Guiwu Qu ,&nbsp;Youjie Li ,&nbsp;Pingyu Wang ,&nbsp;Jiahui Yu ,&nbsp;Mingyue Liu ,&nbsp;Xiulan Chen ,&nbsp;Shuyang Xie ,&nbsp;Jiankai Feng ,&nbsp;Sen Xu","doi":"10.1016/j.resp.2024.104219","DOIUrl":"10.1016/j.resp.2024.104219","url":null,"abstract":"<div><p><span><span>Acute Lung Injury (ALI) manifests as an acute exacerbation of pulmonary inflammation with high mortality. The potential application of </span>Danshensu<span><span><span><span> methyl ester (DME, synthesized in our lab) in ameliorating ALI has not been elucidated. Our results demonstrated that DME led to a remarkable reduction in lung injury. DME promoted a marked increase in </span>antioxidant enzymes, like </span>superoxide dismutase<span> (SOD), and glutathione<span> (GSH), accompanied by a substantial decrease in reactive oxygen species<span> (ROS), myeloperoxidase (MPO), and </span></span></span></span>malondialdehyde (MDA). Moreover, DME decreased the production of IL-1β, TNF-α and IL-6, </span></span><em>in vitro</em> and <em>in vivo</em><span>. TLR4<span> and MyD88 expression is reduced in the DME-treated cells or tissues, which further leading to a decrease of p-p65 and p-IκBα. Meanwhile, DME effectively facilitated an elevation in cytoplasmic p65 expression. In summary, DME could ameliorate ALI by its antioxidant functionality and anti-inflammation effects through TLR4/NF-κB, which implied that DME may be a viable medicine for lung injury.</span></span></p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"322 ","pages":"Article 104219"},"PeriodicalIF":2.3,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Longitudinal changes in respiratory reactance in patients with COPD: associations with longitudinal change in air-trapping, exacerbations, and mortality 慢性阻塞性肺病患者呼吸反应性的纵向变化:与空气捕获量、病情加重和死亡率的纵向变化相关。
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-01-17 DOI: 10.1016/j.resp.2024.104216
Yi Zhang , Naoya Tanabe , Susumu Sato , Yusuke Shiraishi , Tomoki Maetani , Ryo Sakamoto , Atsuyasu Sato , Shigeo Muro , Toyohiro Hirai

Introduction

Air-trapping affects clinical outcomes in patients with chronic obstructive pulmonary disease (COPD) and may be detected by reactance at 5 Hz (X5) on respiratory oscillometry because X5 sensitively reflects the elasticity of the chest wall, airway and lung. However, the longitudinal association between X5 and air-trapping remains to be explored. This study aimed to test whether longitudinal changes in X5 could be associated with air-trapping progression, exacerbations, and mortality in patients with COPD.

Methods

In this prospective COPD observational study, the follow-up period consisted of the first 4 years to obtain longitudinal changes in X5 and residual volume (RV) and number of exacerbations and the remaining years (year 4 to 10) to test mortality. Patients were divided into large, middle, and small X5 decline groups based on the tertiles of longitudinal change in X5, and mortality after 4 years was compared between the groups.

Results

Patients with COPD (n = 114) were enrolled. The large X5 decline group (n = 38) showed a greater longitudinal change in RV and more exacerbations compared with the small X5 decline group (n = 39) in multivariable models adjusted for age, sex, body mass index, and smoking history. Long-term mortality after the 4-year follow-up was higher in the large X5 decline group than in the small X5 decline group (hazard ratio [95 % confidence interval] = 8.37[1.01, 69.0]) in the multivariable Cox proportional hazard model.

Conclusion

Longitudinal changes in respiratory reactance could be associated with progressive air-trapping, exacerbation frequency, and increased mortality in patients with COPD.

简介:空气潴留会影响慢性阻塞性肺病(COPD)患者的临床预后,可通过呼吸振荡仪上 5Hz 的电抗(X5)检测到,因为 X5 能灵敏地反映胸壁、气道和肺的弹性。然而,X5 与空气潴留之间的纵向联系仍有待探索。本研究旨在检验 X5 的纵向变化是否与慢性阻塞性肺病患者的气道潴留进展、病情加重和死亡率有关:在这项前瞻性慢性阻塞性肺病观察研究中,随访期包括前 4 年,以了解 X5 和残气量(RV)的纵向变化以及恶化次数;其余年份(第 4 年至第 10 年)以检测死亡率。根据X5纵向变化的三等分法,将患者分为X5下降大、中、小三组,并比较各组4年后的死亡率:结果:共招募了 114 名慢性阻塞性肺病患者。在根据年龄、性别、体重指数和吸烟史进行调整后的多变量模型中,X5下降幅度大的一组(n=38)与X5下降幅度小的一组(n=39)相比,RV纵向变化更大,病情加重更多。在多变量考克斯比例危险模型中,X5下降大组在4年随访后的长期死亡率高于X5下降小组(危险比[95%置信区间]=8.37[1.01, 69.0]):结论:呼吸反应性的纵向变化可能与慢性阻塞性肺病患者的渐进性空气潴留、恶化频率和死亡率增加有关。
{"title":"Longitudinal changes in respiratory reactance in patients with COPD: associations with longitudinal change in air-trapping, exacerbations, and mortality","authors":"Yi Zhang ,&nbsp;Naoya Tanabe ,&nbsp;Susumu Sato ,&nbsp;Yusuke Shiraishi ,&nbsp;Tomoki Maetani ,&nbsp;Ryo Sakamoto ,&nbsp;Atsuyasu Sato ,&nbsp;Shigeo Muro ,&nbsp;Toyohiro Hirai","doi":"10.1016/j.resp.2024.104216","DOIUrl":"10.1016/j.resp.2024.104216","url":null,"abstract":"<div><h3>Introduction</h3><p><span>Air-trapping affects clinical outcomes in patients<span> with chronic obstructive pulmonary disease (COPD) and may be detected by reactance at 5 Hz (X5) on respiratory </span></span>oscillometry because X5 sensitively reflects the elasticity of the chest wall, airway and lung. However, the longitudinal association between X5 and air-trapping remains to be explored. This study aimed to test whether longitudinal changes in X5 could be associated with air-trapping progression, exacerbations, and mortality in patients with COPD.</p></div><div><h3>Methods</h3><p>In this prospective COPD observational study, the follow-up period consisted of the first 4 years to obtain longitudinal changes in X5 and residual volume (RV) and number of exacerbations and the remaining years (year 4 to 10) to test mortality. Patients were divided into large, middle, and small X5 decline groups based on the tertiles of longitudinal change in X5, and mortality after 4 years was compared between the groups.</p></div><div><h3>Results</h3><p><span>Patients with COPD (n = 114) were enrolled. The large X5 decline group (n = 38) showed a greater longitudinal change in RV and more exacerbations compared with the small X5 decline group (n = 39) in multivariable models adjusted for age, sex, body mass index, and smoking history. Long-term mortality after the 4-year follow-up was higher in the large X5 decline group than in the small X5 decline group (hazard ratio [95 % confidence interval] = 8.37[1.01, 69.0]) in the multivariable Cox </span>proportional hazard model.</p></div><div><h3>Conclusion</h3><p>Longitudinal changes in respiratory reactance could be associated with progressive air-trapping, exacerbation frequency, and increased mortality in patients with COPD.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"322 ","pages":"Article 104216"},"PeriodicalIF":2.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139492004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss-of-function of chemoreceptor neurons in the retrotrapezoid nucleus: What have we learned from it? 蛛网膜后核化学感受器神经元的功能缺失:我们从中学到了什么?
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-01-17 DOI: 10.1016/j.resp.2024.104217
George M.P.R. Souza, Stephen B.G. Abbott

Central respiratory chemoreceptors are cells in the brain that regulate breathing in relation to arterial pH and PCO2. Neurons located at the retrotrapezoid nucleus (RTN) have been hypothesized to be central chemoreceptors and/or to be part of the neural network that drives the central respiratory chemoreflex. The inhibition or ablation of RTN chemoreceptor neurons has offered important insights into the role of these cells on central respiratory chemoreception and the neural control of breathing over almost 60 years since the original identification of acid-sensitive properties of this ventral medullary site. Here, we discuss the current definition of chemoreceptor neurons in the RTN and describe how this definition has evolved over time. We then summarize the results of studies that use loss-of-function approaches to evaluate the effects of disrupting the function of RTN neurons on respiration. These studies offer evidence that RTN neurons are indispensable for the central respiratory chemoreflex in mammals and exert a tonic drive to breathe at rest. Moreover, RTN has an interdependent relationship with oxygen sensing mechanisms for the maintenance of the neural drive to breathe and blood gas homeostasis. Collectively, RTN neurons are a genetically-defined group of putative central respiratory chemoreceptors that generate CO2-dependent drive that supports eupneic breathing and stimulates the hypercapnic ventilatory reflex.

中枢呼吸化学感受器是大脑中与动脉 pH 和 PCO2 有关的调节呼吸的细胞。据推测,位于蛛网膜后核(RTN)的神经元是中枢化学感受器和/或驱动中枢呼吸化学反射的神经网络的一部分。抑制或消融 RTN 化学感受器神经元为研究这些细胞在中枢呼吸化学感受器和呼吸神经控制中的作用提供了重要见解。在此,我们将讨论目前对 RTN 化学感受器神经元的定义,并描述这一定义是如何随着时间的推移而演变的。然后,我们总结了使用功能缺失方法评估 RTN 神经元功能紊乱对呼吸影响的研究结果。这些研究提供了证据,证明 RTN 神经元是哺乳动物中枢呼吸化学反射不可或缺的神经元,并能在静息状态下产生强直性呼吸驱动力。此外,RTN 与氧传感机制有着相互依存的关系,可维持呼吸神经驱动和血气平衡。总而言之,RTN 神经元是一组基因定义的假定中枢呼吸化学感受器,可产生依赖二氧化碳的驱动力,支持通气呼吸并刺激高碳酸血症通气反射。
{"title":"Loss-of-function of chemoreceptor neurons in the retrotrapezoid nucleus: What have we learned from it?","authors":"George M.P.R. Souza,&nbsp;Stephen B.G. Abbott","doi":"10.1016/j.resp.2024.104217","DOIUrl":"10.1016/j.resp.2024.104217","url":null,"abstract":"<div><p><span>Central respiratory chemoreceptors<span> are cells in the brain that regulate breathing in relation to arterial pH and PCO</span></span><sub>2</sub><span><span><span>. Neurons located at the retrotrapezoid nucleus (RTN) have been hypothesized to be central chemoreceptors and/or to be part of the </span>neural network<span> that drives the central respiratory chemoreflex. The inhibition or ablation of RTN chemoreceptor neurons has offered important insights into the role of these cells on central respiratory chemoreception and the neural </span></span>control of breathing<span> over almost 60 years since the original identification of acid-sensitive properties of this ventral medullary site. Here, we discuss the current definition of chemoreceptor neurons in the RTN and describe how this definition has evolved over time. We then summarize the results of studies that use loss-of-function approaches to evaluate the effects of disrupting the function of RTN neurons on respiration. These studies offer evidence that RTN neurons are indispensable for the central respiratory chemoreflex in mammals and exert a tonic drive to breathe at rest. Moreover, RTN has an interdependent relationship with oxygen sensing mechanisms for the maintenance of the neural drive to breathe and blood gas homeostasis. Collectively, RTN neurons are a genetically-defined group of putative central respiratory chemoreceptors that generate CO</span></span><sub>2</sub>-dependent drive that supports eupneic breathing and stimulates the hypercapnic ventilatory reflex.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"322 ","pages":"Article 104217"},"PeriodicalIF":2.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139492006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Axonal projection of the medullary expiratory neurons in the feline thoracic spinal cord 猫胸脊髓延髓呼气神经元的轴突投射
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-01-16 DOI: 10.1016/j.resp.2024.104218
Kenta Kawamura , Kazumasa Sasaki , Sei-Ichi Sasaki , Kazuhide Tomita

Expiratory neurons in the caudal ventral respiratory group extend descending axons to the lumbar and sacral spinal cord, and they possess axon collaterals, the distribution of which has been well-documented. Likewise, these expiratory neurons extend axons to the thoracic spinal cord and innervate thoracic expiratory motoneurons. These axons also give rise to collaterals, and their distribution may influence the strength of synaptic connectivity between the axons and the thoracic expiratory motoneurons. We investigated the distribution of axon collaterals in the thoracic spinal cord using a microstimulation technique. This study was performed on cats; one cat was used to make an anatomical atlas and six were used in the experiment. Extracellular spikes of expiratory neurons were recorded in artificially ventilated cats. The thoracic spinal gray matter was microstimulated from dorsal to ventral sites at 100-μm intervals using a glass-insulated tungsten microelectrode with a current of 150–250 μA. The stimulation tracks were made at 1 mm intervals along the spinal cord in segments Th9 to Th13, and the effective stimulating sites of antidromic activation in axon collaterals were systematically mapped. The effective stimulating sites in the contralateral thoracic spinal cord with expiratory neurons in the caudal ventral respiratory group (cVRG) occupied 14.4% of the total length of the thoracic spinal cord examined. The mean percentage of effective stimulating tracks per unit was 18.6 ± 4.4%. The distribution of axon collaterals of expiratory neurons in the feline thoracic spinal cord indeed resembled that reported in the upper lumbar spinal cord. We propose that a single medullary expiratory neuron exerts excitatory effects across multiple segments of the thoracic spinal cord via its collaterals.

尾部腹侧呼吸群的呼气神经元将下行轴突延伸至腰部和骶部脊髓,它们拥有轴突袢,其分布已被详细记录。同样,这些呼气神经元将轴突延伸到胸脊髓,并支配胸廓呼气运动神经元。这些轴突也会产生旁路,其分布可能会影响轴突与胸廓呼气运动神经元之间的突触连接强度。我们使用微刺激技术研究了胸脊髓中轴突旁路的分布。这项研究是在猫身上进行的,其中一只用于制作解剖图谱,六只用于实验。在人工通气的猫身上记录了呼气神经元的胞外尖峰。使用玻璃绝缘钨微电极以 150-250 μA 的电流从背侧到腹侧以 100 μm 的间隔对胸椎灰质进行微刺激。在Th9至Th13节段的脊髓上以1毫米的间隔制作刺激轨迹,并系统地绘制出轴突络脉反向激活的有效刺激点。尾腹侧呼吸组(cVRG)呼气神经元对侧胸脊髓的有效刺激点占胸脊髓总长度的14.4%。每个单元的有效刺激轨平均百分比为 18.6±4.4%。猫胸脊髓中呼气神经元轴突侧支的分布与上腰椎脊髓中的情况非常相似。我们认为,单个延髓呼气神经元通过其轴索在胸脊髓的多个节段产生兴奋效应。
{"title":"Axonal projection of the medullary expiratory neurons in the feline thoracic spinal cord","authors":"Kenta Kawamura ,&nbsp;Kazumasa Sasaki ,&nbsp;Sei-Ichi Sasaki ,&nbsp;Kazuhide Tomita","doi":"10.1016/j.resp.2024.104218","DOIUrl":"10.1016/j.resp.2024.104218","url":null,"abstract":"<div><p><span><span>Expiratory neurons in the caudal ventral respiratory group extend descending axons to the lumbar and sacral spinal cord, and they possess axon collaterals, the distribution of which has been well-documented. Likewise, these expiratory neurons extend axons to the </span>thoracic spinal cord and innervate thoracic expiratory </span>motoneurons<span><span>. These axons also give rise to collaterals, and their distribution may influence the strength of synaptic connectivity between the axons and the thoracic expiratory motoneurons. We investigated the distribution of axon collaterals in the thoracic spinal cord using a microstimulation<span> technique. This study was performed on cats; one cat was used to make an anatomical atlas and six were used in the experiment. Extracellular spikes of expiratory neurons were recorded in artificially ventilated cats. The thoracic spinal gray matter was microstimulated from dorsal to ventral sites at 100-μm intervals using a glass-insulated tungsten microelectrode<span> with a current of 150–250 μA. The stimulation tracks were made at 1 mm intervals along the spinal cord in segments Th9 to Th13, and the effective stimulating sites of antidromic activation in axon collaterals were systematically mapped. The effective stimulating sites in the </span></span></span>contralateral<span> thoracic spinal cord with expiratory neurons in the caudal ventral respiratory group (cVRG) occupied 14.4% of the total length of the thoracic spinal cord examined. The mean percentage of effective stimulating tracks per unit was 18.6 ± 4.4%. The distribution of axon collaterals of expiratory neurons in the feline thoracic spinal cord indeed resembled that reported in the upper lumbar spinal cord. We propose that a single medullary expiratory neuron exerts excitatory effects across multiple segments of the thoracic spinal cord via its collaterals.</span></span></p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"322 ","pages":"Article 104218"},"PeriodicalIF":2.3,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139474686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural oscillations underlying the neural gating of respiratory sensations in generalized anxiety disorder 广泛性焦虑症患者呼吸感觉神经门控的基础神经振荡
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2024-01-09 DOI: 10.1016/j.resp.2024.104215
Kai-Jie Liang , Chia-Hsiung Cheng , Chia-Yih Liu , Shih-Chieh Hsu , Andreas von Leupoldt , Valentina Jelinčić , Pei-Ying S. Chan

Individuals with generalized anxiety disorder (GAD) have been shown to have altered neural gating of respiratory sensations (NGRS) using respiratory-related evoked potentials (RREP); however, corresponding neural oscillatory activities remain unexplored. The present study aimed to investigate altered NGRS in individuals with GAD using both time and time-frequency analysis. Nineteen individuals with GAD and 28 healthy controls were recruited. Paired inspiratory occlusions were delivered to elicit cortical neural activations measured from electroencephalography. The GAD group showed smaller N1 amplitudes to the first stimulus (S1), lower evoked gamma and larger evoked beta oscillations compared to controls. Both groups showed larger N1, P3, beta power and theta power in response to S1 compared to S2, suggesting a neural gating phenomenon. These findings suggest that N1, gamma and beta frequency oscillations may be indicators for altered respiratory sensation in GAD populations and that the N1, P3, beta and theta oscillations can reflect the neural gating of respiratory sensations.

利用呼吸相关诱发电位(RREP)研究表明,广泛性焦虑症(GAD)患者的呼吸感觉神经门控(NGRS)发生了改变;然而,相应的神经振荡活动仍未得到研究。本研究旨在使用时间和时间频率分析法研究 GAD 患者的 NGRS 变化。研究人员招募了 19 名 GAD 患者和 28 名健康对照者。通过脑电图测量成对吸气闭塞引起皮层神经激活。与对照组相比,GAD 组对第一个刺激(S1)表现出较小的 N1 振幅、较低的诱发伽马振荡和较大的诱发贝塔振荡。与 S2 相比,两组患者对 S1 的 N1、P3、β 功率和 Theta 功率都较大,这表明存在神经门控现象。这些研究结果表明,N1、γ和β频率振荡可能是GAD人群呼吸感觉改变的指标,N1、P3、β和θ振荡可反映呼吸感觉的神经门控。
{"title":"Neural oscillations underlying the neural gating of respiratory sensations in generalized anxiety disorder","authors":"Kai-Jie Liang ,&nbsp;Chia-Hsiung Cheng ,&nbsp;Chia-Yih Liu ,&nbsp;Shih-Chieh Hsu ,&nbsp;Andreas von Leupoldt ,&nbsp;Valentina Jelinčić ,&nbsp;Pei-Ying S. Chan","doi":"10.1016/j.resp.2024.104215","DOIUrl":"10.1016/j.resp.2024.104215","url":null,"abstract":"<div><p><span>Individuals with generalized anxiety disorder (GAD) have been shown to have altered neural gating of respiratory sensations (NGRS) using respiratory-related </span>evoked potentials<span> (RREP); however, corresponding neural oscillatory activities remain unexplored. The present study aimed to investigate altered NGRS in individuals with GAD using both time and time-frequency analysis. Nineteen individuals with GAD and 28 healthy controls were recruited. Paired inspiratory occlusions were delivered to elicit cortical neural activations measured from electroencephalography. The GAD group showed smaller N1 amplitudes to the first stimulus (S1), lower evoked gamma and larger evoked beta oscillations compared to controls. Both groups showed larger N1, P3, beta power and theta power in response to S1 compared to S2, suggesting a neural gating phenomenon. These findings suggest that N1, gamma and beta frequency oscillations may be indicators for altered respiratory sensation in GAD populations and that the N1, P3, beta and theta oscillations can reflect the neural gating of respiratory sensations.</span></p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"321 ","pages":"Article 104215"},"PeriodicalIF":2.3,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139420820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Respiratory sinus arrhythmia in spontaneously breathing, unanesthetized newborn and adult Wistar rats 未经麻醉的新生大鼠和成年 Wistar 大鼠自主呼吸时的呼吸窦性心律失常
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2023-12-29 DOI: 10.1016/j.resp.2023.104207
Nana Sato Hashizume, Yoichiro Kitajima, Ryoji Ide, Eishi Nakamura, Chikako Saiki

We examined respiratory sinus arrhythmia (RSA) and possible interaction with respiratory frequency (fR) and heart rate (HR) in spontaneously breathing, unanesthetized newborn Wistar rats (2- to 5-day-old; n = 54) and the adult rats (8-week-old; n = 34). Instantaneous heart rate (inst-HR) was calculated as the reciprocal of the inter-beat-interval. For each breath, RSA was determined as the difference between the maximum and minimum inst-HR value. The absolute RSA or RSA% (RSA per HR) were calculated as the average RSA of 10 consecutive breaths. RSA (or RSA%) in the newborn rats was significantly lower than that in the adult rats. Correlation coefficient between RSA (or RSA%) and 1/fR or HR/fR, but not HR, was significant in newborn rats, whereas only that between RSA (or RSA%) and HR was significant in adult rats. The power spectrum density of heartbeat fluctuation was detectable in both age groups. The present findings suggest that RSA exists and could be influenced by fR, rather than HR, in newborn rats.

我们研究了自主呼吸、未麻醉的新生 Wistar 大鼠(2 至 5 天大;n=54)和成年大鼠(8 周大;n=34)的呼吸窦性心律失常(RSA)以及与呼吸频率(fR)和心率(HR)之间可能存在的相互作用。瞬时心率(inst-HR)按搏动间隔的倒数计算。每次呼吸的 RSA 值为 inst-HR 最大值与最小值之差。绝对 RSA 或 RSA%(每 HR 的 RSA)按连续 10 次呼吸的平均 RSA 计算。新生大鼠的 RSA(或 RSA%)明显低于成年大鼠。新生大鼠的 RSA(或 RSA%)与 1/fR 或 HR/fR 的相关系数显著,但与 HR 的相关系数不显著,而成年大鼠只有 RSA(或 RSA%)与 HR 的相关系数显著。两个年龄组的大鼠都能检测到心跳波动的功率谱密度。本研究结果表明,新生大鼠存在RSA,并且可能受fR而非HR的影响。
{"title":"Respiratory sinus arrhythmia in spontaneously breathing, unanesthetized newborn and adult Wistar rats","authors":"Nana Sato Hashizume,&nbsp;Yoichiro Kitajima,&nbsp;Ryoji Ide,&nbsp;Eishi Nakamura,&nbsp;Chikako Saiki","doi":"10.1016/j.resp.2023.104207","DOIUrl":"10.1016/j.resp.2023.104207","url":null,"abstract":"<div><p>We examined respiratory sinus arrhythmia (RSA) and possible interaction with respiratory frequency (<em>f</em><sub>R</sub>) and heart rate (HR) in spontaneously breathing, unanesthetized newborn Wistar rats (2- to 5-day-old; n = 54) and the adult rats (8-week-old; n = 34). Instantaneous heart rate (<em>inst</em>-HR) was calculated as the reciprocal of the inter-beat-interval. For each breath, RSA was determined as the difference between the maximum and minimum <em>inst</em>-HR value. The absolute RSA or RSA% (RSA per HR) were calculated as the average RSA of 10 consecutive breaths. RSA (or RSA%) in the newborn rats was significantly lower than that in the adult rats. Correlation coefficient between RSA (or RSA%) and 1/<em>f</em><sub>R</sub> or HR/<em>f</em><sub>R</sub>, but not HR, was significant in newborn rats, whereas only that between RSA (or RSA%) and HR was significant in adult rats. The power spectrum density of heartbeat fluctuation was detectable in both age groups. The present findings suggest that RSA exists and could be influenced by <em>f</em><sub>R</sub>, rather than HR, in newborn rats.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"321 ","pages":"Article 104207"},"PeriodicalIF":2.3,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569904823001957/pdfft?md5=be5f9721538f1393cb872c340643dbba&pid=1-s2.0-S1569904823001957-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139069064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Divergent expiratory braking activity of costal and crural diaphragm 肋膜和胸膜的呼气制动活动存在差异。
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2023-12-21 DOI: 10.1016/j.resp.2023.104205
Giovanni Tagliabue , Michael Ji , Danny J. Zuege , Paul A. Easton

Background

There is increasing clinical interest in understanding the contribution of the diaphragm in early expiration, especially during mechanical ventilation. However, current experimental evidence is limited, so essential activity of the diaphragm during expiration and diaphragm segmental differences in expiratory activity, are unknown.

Objectives

To determine if: 1) the diaphragm is normally active into expiration during spontaneous breathing and hypercapnic ventilation, 2) expiratory diaphragmatic activity is distributed equally among the segments of the diaphragm, costal and crural.

Methods

In 30 spontaneously breathing male and female canines, awake without confounding anesthetic, we measured directly both inspiratory and expiratory electrical activity (EMG), and corresponding mechanical shortening, of costal and crural diaphragm, during room air and hypercapnia.

Results

During eupnea, costal and crural diaphragm are active into expiration, showing significant and distinct expiratory activity, with crural expiratory activity greater than costal, for both magnitude and duration. This diaphragm segmental difference diverged further during progressive hypercapnic ventilation: crural expiratory activity progressively increased, while costal expiratory activity disappeared.

Conclusion

The diaphragm is not passive during expiration. During spontaneous breathing, expiratory activity -“braking”- of the diaphragm is expressed routinely, but is not equally distributed. Crural muscle “braking” is greater than costal muscle in magnitude and duration.

With increasing ventilation during hypercapnia, expiratory activity -“braking”- diverges notably. Crural expiratory activity greatly increases, while costal expiratory “braking” decreases in magnitude and duration, and disappears.

Thus, diaphragm expiratory "braking" action represents an inherent, physiological function of the diaphragm, distinct for each segment, expressing differing neural activation.

背景:临床上越来越多的人希望了解膈肌在早期呼气中的作用,尤其是在机械通气过程中。然而,目前的实验证据有限,因此呼气时横膈膜的基本活动以及横膈膜在呼气活动中的节段性差异尚不清楚:目的:确定1) 在自主呼吸和高碳酸血症通气过程中,膈肌在呼气时是否正常活跃;2) 呼气膈肌活动是否在膈肌、肋肌和胸膜各节段之间平均分布:方法:在没有麻醉药干扰的清醒状态下,我们直接测量了30只自主呼吸的雌雄犬在室内空气和高碳酸血症状态下的吸气和呼气膈肌电活动(EMG)以及肋膜和胸膜相应的机械缩短:结果:在呼吸暂停时,肋膜和皱壁膈肌在呼气时都很活跃,表现出明显和独特的呼气活动,无论在幅度还是持续时间上,皱壁膈肌的呼气活动都大于肋膜。在进行性高碳酸血症通气时,这种膈肌节段差异进一步扩大:胸膜呼气活动逐渐增加,而肋膜呼气活动消失:结论:膈肌在呼气时并不是被动的。结论:膈肌在呼气时并不是被动的。在自主呼吸过程中,膈肌的呼气活动--"制动"--是常规表现,但分布不均。胸肌 "制动 "的幅度和持续时间都大于肋膜肌。在高碳酸血症期间,随着通气量的增加,呼气活动--"制动"--明显分化。胸膜呼气活动大大增加,而肋膜呼气 "制动 "的幅度和持续时间则减少并消失。因此,膈肌呼气 "制动 "动作代表了膈肌固有的生理功能,每个节段都不同,表现出不同的神经激活。
{"title":"Divergent expiratory braking activity of costal and crural diaphragm","authors":"Giovanni Tagliabue ,&nbsp;Michael Ji ,&nbsp;Danny J. Zuege ,&nbsp;Paul A. Easton","doi":"10.1016/j.resp.2023.104205","DOIUrl":"10.1016/j.resp.2023.104205","url":null,"abstract":"<div><h3>Background</h3><p>There is increasing clinical interest in understanding the contribution of the diaphragm in early expiration, especially during mechanical ventilation. However, current experimental evidence is limited, so essential activity of the diaphragm during expiration and diaphragm segmental differences in expiratory activity, are unknown.</p></div><div><h3>Objectives</h3><p>To determine if: 1) the diaphragm is normally active into expiration during spontaneous breathing and hypercapnic ventilation, 2) expiratory diaphragmatic activity is distributed equally among the segments of the diaphragm, costal and crural.</p></div><div><h3>Methods</h3><p>In 30 spontaneously breathing male and female canines, awake without confounding anesthetic, we measured directly both inspiratory and expiratory electrical activity (EMG), and corresponding mechanical shortening, of costal and crural diaphragm, during room air and hypercapnia.</p></div><div><h3>Results</h3><p>During eupnea, costal and crural diaphragm are active into expiration, showing significant and distinct expiratory activity, with crural expiratory activity greater than costal, for both magnitude and duration. This diaphragm segmental difference diverged further during progressive hypercapnic ventilation: crural expiratory activity progressively increased, while costal expiratory activity disappeared.</p></div><div><h3>Conclusion</h3><p>The diaphragm is not passive during expiration. During spontaneous breathing, expiratory activity -“braking”- of the diaphragm is expressed routinely, but is not equally distributed. Crural muscle “braking” is greater than costal muscle in magnitude and duration.</p><p>With increasing ventilation during hypercapnia, expiratory activity -“braking”- diverges notably. Crural expiratory activity greatly increases, while costal expiratory “braking” decreases in magnitude and duration, and disappears.</p><p>Thus, diaphragm expiratory \"braking\" action represents an inherent, physiological function of the diaphragm, distinct for each segment, expressing differing neural activation.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"321 ","pages":"Article 104205"},"PeriodicalIF":2.3,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138885983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic intermittent hypoxia attenuates noradrenergic innervation of hypoglossal motor nucleus 慢性间歇性缺氧会削弱舌下运动核的去甲肾上腺素能神经支配
IF 2.3 4区 医学 Q3 PHYSIOLOGY Pub Date : 2023-12-21 DOI: 10.1016/j.resp.2023.104206
Rachael Herlihy , Leonardo Frasson Dos Reis , Anzor Gvritishvili , Maya Kvizhinadze , Elizabeth Dybas , Atul Malhotra , Victor B. Fenik , Irma Rukhadze

The state-dependent noradrenergic activation of hypoglossal motoneurons plays an important role in the maintenance of upper airway patency and pathophysiology of obstructive sleep apnea (OSA). Chronic intermittent hypoxia (CIH), a major pathogenic factor of OSA, contributes to the risk for developing neurodegenerative disorders in OSA patients. Using anterograde tracer, channelrhodopsin-2, we mapped axonal projections from noradrenergic A7 and SubCoeruleus neurons to hypoglossal nucleus in DBH-cre mice and assessed the effect of CIH on these projections. We found that CIH significantly reduced the number of axonal projections from SubCoeruleus neurons to both dorsal (by 68%) and to ventral (by73%) subregions of the hypoglossal motor nucleus compared to sham-treated animals. The animals’ body weight was also negatively affected by CIH. Both effects, the decrease in axonal projections and body weight, were more pronounced in male than female mice, which was likely caused by less sensitivity of female mice to CIH as compared to males. The A7 neurons appeared to have limited projections to the hypoglossal nucleus. Our findings suggest that CIH-induced reduction of noradrenergic innervation of hypoglossal motoneurons may exacerbate progression of OSA, especially in men.

在维持上气道通畅和阻塞性睡眠呼吸暂停(OSA)的病理生理过程中,下舌运动神经元的状态依赖性去甲肾上腺素能激活起着重要作用。慢性间歇性缺氧(CIH)是 OSA 的主要致病因素,也是导致 OSA 患者罹患神经退行性疾病的风险因素之一。我们利用前向性示踪剂channelrhodopsin-2绘制了DBH-cre小鼠去甲肾上腺素能A7和小叶下神经元到舌下核的轴突投射图,并评估了CIH对这些投射的影响。我们发现,与假治疗动物相比,CIH 明显降低了从小叶下神经元向舌下运动核背侧(68%)和腹侧(73%)亚区的轴突投射数量。动物的体重也受到 CIH 的负面影响。雄性小鼠比雌性小鼠的轴突投射和体重下降更为明显,这可能是因为雌性小鼠对CIH的敏感性低于雄性小鼠。A7神经元对舌下核的投射似乎有限。我们的研究结果表明,CIH 引起的舌下运动神经元去甲肾上腺素能神经支配的减少可能会加剧 OSA 的恶化,尤其是对男性而言。
{"title":"Chronic intermittent hypoxia attenuates noradrenergic innervation of hypoglossal motor nucleus","authors":"Rachael Herlihy ,&nbsp;Leonardo Frasson Dos Reis ,&nbsp;Anzor Gvritishvili ,&nbsp;Maya Kvizhinadze ,&nbsp;Elizabeth Dybas ,&nbsp;Atul Malhotra ,&nbsp;Victor B. Fenik ,&nbsp;Irma Rukhadze","doi":"10.1016/j.resp.2023.104206","DOIUrl":"10.1016/j.resp.2023.104206","url":null,"abstract":"<div><p><span>The state-dependent noradrenergic activation of hypoglossal motoneurons<span> plays an important role in the maintenance of upper airway patency<span><span> and pathophysiology of </span>obstructive sleep apnea<span> (OSA). Chronic intermittent hypoxia (CIH), a major pathogenic factor of OSA, contributes to the risk for developing </span></span></span></span>neurodegenerative disorders<span><span> in OSA patients. Using anterograde tracer, channelrhodopsin-2, we mapped axonal projections from noradrenergic A7 and SubCoeruleus neurons to </span>hypoglossal nucleus<span> in DBH-cre mice and assessed the effect of CIH on these projections. We found that CIH significantly reduced the number of axonal projections from SubCoeruleus neurons to both dorsal (by 68%) and to ventral (by73%) subregions of the hypoglossal motor nucleus compared to sham-treated animals. The animals’ body weight was also negatively affected by CIH. Both effects, the decrease in axonal projections and body weight, were more pronounced in male than female mice, which was likely caused by less sensitivity of female mice to CIH as compared to males. The A7 neurons appeared to have limited projections to the hypoglossal nucleus. Our findings suggest that CIH-induced reduction of noradrenergic innervation of hypoglossal motoneurons may exacerbate progression of OSA, especially in men.</span></span></p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"321 ","pages":"Article 104206"},"PeriodicalIF":2.3,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139025467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Respiratory Physiology & Neurobiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1