Vaccines are biological preparations that improve immunity to particular diseases. Particularly for poor developing nations, edible vaccines show significant potential as a financially advantageous, simple to administer, straightforward to store, fail-safe, and socially and culturally acceptable vaccine delivery system. A vaccine incorporates the gene-encoding bacterial or viral disease-causing agent in plants without losing its immunogenic property. Potatoes, tomatoes, rice, soybeans, and bananas are the primary plants for edible vaccines. It activates the systemic and mucosal immunity responses against a foreign disease-causing organism. It offers exciting possibilities to reduce diseases like hepatitis B, rabies, HIV/AIDS (human immunodeficiency virus infection and acquired immune deficiency syndrome), etc. These vaccines provide many benefits, like being convenient to administer, efficiently storing, and readily acceptable drug delivery systems for patients of different age groups. So, an edible vaccine may be the most convenient vaccine to improve immunity. However, there are a lot of technical and regulatory challenges to overcome in the way of edible vaccine technology. Though all seem surmountable, various technical obstacles and regulatory and non-scientific challenges need to be overcome. Moreover, edible vaccine patents represent a cutting-edge area of biotechnology, where the integration of genetic material into edible substances holds great promise for revolutionizing vaccination methods. These patents aim to harness the potential of plants and other edibles to stimulate immune responses, offering a potential alternative to traditional injectable vaccines. This review states the technologies, host plants, current status, recent patents, the future of this new preventive modality, and different regulatory issues concerning edible vaccines.
Introduction: The present study examined Polyhydroxy butyrate production (PHB) potential of different photosynthetic microbes such as Chlorella vulgaris, Scenedesmus obliquus and Rhodobacter capsulatus-PK under different nutrient conditions. Biodegradable bioplastics, such as Poly-β-hydroxybutyrates (PHB), derived from these microbes provide a sustainable alternative to conventional petroleum-based nondegradable plastics.
Background: As the demand for clean and sustainable alternatives rises, bio-plastic is gaining attention as a viable substitute to conventional plastics. However, conventional sources of bio-plastic production have inherent limitations, which can be effectively addressed through the utilization of photosynthetic microbes e.g. microalgae, purple non sulphur bacteria.
Methodology: The production of bioplastic was evaluated by cultivating the microalgae in BG-11, BBM and PNSB in synthetic growth media (MI, MII) with different nitrogen concentrations of 0%, 50% and 100%. The biopolymer (PHB) was obtained from all experiments in a wide range of concentration (7-42.8%) of dry cell weight (DCW).
Results: In this study, algal isolate SK1 demonstrated the highest PHB content (42.8%) in BBM under 100% nitrogen starvations rendering the bioplastic exceptionally compatible and suitable for eco-friendly applications. Additionally, various patents cited by different authors on different aspects of microbial bioplastic production.
Conclusion: Nutrition depletion such as nitrogen scarcity induced stressful growth conditions that resulted in highest accumulation of the biopolymer PHB. Optimizing nitrogen availability is key to maximizing PHB production, making it a viable sustainable alternative to conventional plastics.
Background: The increasing industrialization and hydrocarbon use have led to concerning soil contamination. Oil spills and improper disposal of oily waste pose threats to ecosystems and human health. The recovery of these environments is essential, but separating oily components from soil remains challenging. Current bioremediation strategies using synthetic surfactants can cause secondary contamination. Microbial biosurfactants, which are biodegradable and low in toxicity, emerge as promising solutions, and this study reviews methods for utilizing these biosurfactants in the environmental bioremediation of hydrocarbons.
Objective: This study explores the efficient and eco-friendly use of biosurfactants for hydrocarbon- contaminated soil management, providing a market-oriented analysis of recent patents and trends, and highlighting the transition from academic research to industrial applications.
Method: The methodology involves an extensive literature review, careful selection of recent studies and patents on biosurfactants in hydrocarbon bioremediation, critical analysis of in-situ and ex-situ application methods, assessment of commercial viability, and synthesis of findings to contribute to sustainable solutions in contaminated environments.
Conclusion: The present study demonstrates the extensive applicability of biosurfactants across various industrial sectors. The increasing interest in incorporating biosurfactants into industrial processes is driven by the pressing need for sustainable solutions to address tangible market challenges. Notably, the cosmetics industry exhibited the highest number of patents related to the use of biosurfactants, underscoring its significant role in advancing the adoption of these environmentally friendly agents. This trend highlights the critical demand for sustainable alternatives in product formulations and underscores the pivotal role of biosurfactants in fostering eco-innovation within the industry.
Background: One of the main sources of contaminated dairy products is moldy fungi, specifically species of Aspergillus and Penicillium. This study aimed to evaluate the effect of the alcoholic extract of Allium jesdianum plant on the growth of molds contaminating dairy products in Isfahan.
Materials and methods: In this research, 200 samples of dairy products were gathered from different areas of Isfahan city, including 70 samples of cheese, 60 samples of buttermilk, 40 samples of yogurt, 20 samples of curd, and 10 samples of cream. The antifungal activity of Allium jesdianum plant was investigated by the diffusion method in disc, well, and agar dilution in various concentrations. Minimum inhibitory concentration (MIC) and minimum fatal concentration (MFC) were also determined. Aspergillus, Penicillium, Cladosporium, and Acremonium fungi were the most commonly found fungal contaminants of this investigation. Antifungal activity was not observed by disc diffusion and well diffusion methods.
Results: In the agar dilution method, ethanolic and methanolic extracts of stem and leaves in concentrations of 80, 60, 40, and 30 mg/ml, and ethanolic and methanolic extracts of plant bulbs in concentrations of 60 and 30 mg/ml revealed antifungal activity against Aspergillus niger, Penicillium notatum, and Penicillium chrysogenum. The MIC of stem and leaf ethanol extracts and onion ethanol for Aspergillus niger was 18.7, and for Penicillium notatum and Penicillium chrysogenum, it was 37.5, 37.5, 37.5, and 37.5 mg/ml. Fungal contamination of dairy products is a serious threat to the public health of society. Therefore, identifying medicinal plants with antifungal activity can be an effective step in preventing fungal contamination and increasing the shelf life of these products.
Conclusion: The results of this research have shown that the Allium jesdianum plant can inhibit the growth of Aspergillus niger, Penicillium notatum, and Penicillium chrysogenum.
Background: Among the bioactive isoflavones identified from different plants is formononetin. Formononetin's antioxidant, anti-inflammatory, and anti-cancer qualities have all received a lot of attention lately. The goal of the current investigation was to examine formononetin's antifungal and antibacterial activity against Candida albicans and Enterococcus faecalis in vitro, respectively.
Methods: The present study determined the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), and Minimum Fungicidal Concentration (MFC) of formononetin, chlorhexidine, formononetin + chlorhexidine, Formononetin+ nystatin, and nystatin against E. faecalis and C. albicans isolates. Next, SPSS version 25 was used to analyze the data. A significance cutoff of P<0.05 was taken into account.
Results: Chlorhexidine + formononetin and formononetin alone had the greatest and lowest minimum inhibitory concentrations (MIC) against E. faecalis, at 6.6 and 18.3 μg/ml, respectively. With MIC values of 0.66 and 8.3 μg/ml against a C. albicans isolate sensitive to nystatin, the combination of formononetin + nystatin and formononetin alone was shown to have the greatest and lowest anti-candida effects.
Conclusion: The findings demonstrated a considerably greater antibacterial effect (P<0.05) for the combinations of formononetin + nystatin and chlorhexidine as compared to nystatin and chlorhexidine alone.

