Pub Date : 2023-01-01DOI: 10.2174/1872208316666220513093021
Mohamad Hesam Shahrajabian, Wenli Sun, Qi Cheng
Different compounds with bioactive constituents can be applied as biostimulants to increase plant growth and development under both normal and stressful conditions. Biostimulant utilization can be considered a sustainable and beneficial nutritional crop management, and may decrease the negative impacts of excessive chemical fertilization. Google scholar, Science Direct, CAB Direct, Springer Link, Scopus, Web of Science, Taylor and Francis, and Wiley Online Library have been checked. The search was done to all manuscript sections according to the terms "Glomus intraradices", "Trichoderma atroviride", "Trichoderma reesei", "Heteroconium chaetospira", "Arthrobacter spp.", "Acintobacter spp.", "Enterobacer spp.", "Pseudomonas spp.", "Ochrobactrum spp.", "Bacilus spp.", "Rhodococcus spp.", "Biostimulants", and "Plant growth promotion". On the basis of the initial check, Titles and Abstracts were reviewed based on online literature, and then articles were read carefully. Within the framework of sustainable crop management, this review article aimed to provide an overview of the application of the most common fungi and bacteria as plant biostimulants on various crops.
具有生物活性成分的不同化合物可作为生物刺激剂在正常和胁迫条件下促进植物生长发育。利用生物刺激素可被认为是一种可持续的、有益的作物营养管理方法,并可减少过量化学施肥的负面影响。已检查Google scholar、Science Direct、CAB Direct、Springer Link、Scopus、Web of Science、Taylor and Francis、Wiley Online Library。对所有文献章节进行检索,检索词为“球囊内球囊菌”、“atroviride木霉”、“reesei木霉”、“毛毛螺旋体异菌”、“节杆菌”、“不动杆菌”、“肠杆菌”、“假单胞菌”、“嗜铬杆菌”、“芽孢杆菌”、“红球菌”、“生物刺激素”和“植物生长促进剂”。在初步检查的基础上,根据网络文献对标题和摘要进行审查,然后仔细阅读文章。在作物可持续管理的框架下,本文综述了真菌和细菌作为植物生物刺激素在各种作物上的应用。
{"title":"Using Bacteria and Fungi as Plant Biostimulants for Sustainable Agricultural Production Systems.","authors":"Mohamad Hesam Shahrajabian, Wenli Sun, Qi Cheng","doi":"10.2174/1872208316666220513093021","DOIUrl":"https://doi.org/10.2174/1872208316666220513093021","url":null,"abstract":"<p><p>Different compounds with bioactive constituents can be applied as biostimulants to increase plant growth and development under both normal and stressful conditions. Biostimulant utilization can be considered a sustainable and beneficial nutritional crop management, and may decrease the negative impacts of excessive chemical fertilization. Google scholar, Science Direct, CAB Direct, Springer Link, Scopus, Web of Science, Taylor and Francis, and Wiley Online Library have been checked. The search was done to all manuscript sections according to the terms \"Glomus intraradices\", \"Trichoderma atroviride\", \"Trichoderma reesei\", \"Heteroconium chaetospira\", \"Arthrobacter spp.\", \"Acintobacter spp.\", \"Enterobacer spp.\", \"Pseudomonas spp.\", \"Ochrobactrum spp.\", \"Bacilus spp.\", \"Rhodococcus spp.\", \"Biostimulants\", and \"Plant growth promotion\". On the basis of the initial check, Titles and Abstracts were reviewed based on online literature, and then articles were read carefully. Within the framework of sustainable crop management, this review article aimed to provide an overview of the application of the most common fungi and bacteria as plant biostimulants on various crops.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":"17 3","pages":"206-244"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9468742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.2174/1872208317666230111105223
Bryan Oronsky, Scott Caroen, Franck Brinkhaus, Tony Reid, Meaghan Stirn, Raj Kumar
Despite an ever-increasing need for newer, safer, more effective, and more affordable therapies to treat a multitude of diseases and conditions, drug development takes too long, costs too much, and is too uncertain to be undertaken without the conferment of exclusionary rights or entry barriers to motivate and sustain investment in it. These entry barriers take the form of patents that protect intellectual property and marketing exclusivity provisions that are provided by statute. This review focuses on the basic ins and outs of regulatory and patent exclusivities for which new chemical entities (NCEs), referring to never-before approved drugs with an entirely new active ingredient, are eligible and uses RRx-001, a small molecule aerospace-derived NCE in development for the treatment of cancer, radiation toxicity, and diseases of the NLR family pyrin domain containing 3 (NLRP3) inflammasome, as a "real world" example. This is intended as a '101-type' of primer; its aim is to help developers of original pharmaceuticals navigate the maze of patents, other IP regulations, and statutory exclusivities in major markets so that they can make proper use of them.
{"title":"Patent and Marketing Exclusivities 101 for Drug Developers.","authors":"Bryan Oronsky, Scott Caroen, Franck Brinkhaus, Tony Reid, Meaghan Stirn, Raj Kumar","doi":"10.2174/1872208317666230111105223","DOIUrl":"https://doi.org/10.2174/1872208317666230111105223","url":null,"abstract":"<p><p>Despite an ever-increasing need for newer, safer, more effective, and more affordable therapies to treat a multitude of diseases and conditions, drug development takes too long, costs too much, and is too uncertain to be undertaken without the conferment of exclusionary rights or entry barriers to motivate and sustain investment in it. These entry barriers take the form of patents that protect intellectual property and marketing exclusivity provisions that are provided by statute. This review focuses on the basic ins and outs of regulatory and patent exclusivities for which new chemical entities (NCEs), referring to never-before approved drugs with an entirely new active ingredient, are eligible and uses RRx-001, a small molecule aerospace-derived NCE in development for the treatment of cancer, radiation toxicity, and diseases of the NLR family pyrin domain containing 3 (NLRP3) inflammasome, as a \"real world\" example. This is intended as a '101-type' of primer; its aim is to help developers of original pharmaceuticals navigate the maze of patents, other IP regulations, and statutory exclusivities in major markets so that they can make proper use of them.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":"17 3","pages":"257-270"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10242760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9592079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.2174/1872208317666221212122656
Shestakova Anna, Lyamina Veronika, Timorshina Svetlana, Osmolovskiy Alexander
Proteases that perform keratin hydrolysis (keratinases) have great potential in biotechnology. After investigation, the next step to an industrial application is protecting intellectual property by patenting. There are many fields of discovered keratinase implementation dictated by features of the molecule and its producer. This article provides an overview of existing patents on keratinases. Among the patents found using terms related to 'keratinase', only those that contain data on the structure and features of the enzyme to provide a sufficient overview of the current situation are covered. It includes information on publication timelines of patents, as well as their origin; features of cultivation process and producers, such as fermentation type and pathogenicity; and features of enzymes, such as their classes, pH, and temperature optima. This article summarizes information about proprietary keratinases and reflects trends and dependencies in their production and application development. It is also the first review of existing patents on keratinases, which emphasizes the uniqueness and novelty of this article.
{"title":"Patented Keratinolytic Enzymes for Industrial Application: An Overview.","authors":"Shestakova Anna, Lyamina Veronika, Timorshina Svetlana, Osmolovskiy Alexander","doi":"10.2174/1872208317666221212122656","DOIUrl":"https://doi.org/10.2174/1872208317666221212122656","url":null,"abstract":"<p><p>Proteases that perform keratin hydrolysis (keratinases) have great potential in biotechnology. After investigation, the next step to an industrial application is protecting intellectual property by patenting. There are many fields of discovered keratinase implementation dictated by features of the molecule and its producer. This article provides an overview of existing patents on keratinases. Among the patents found using terms related to 'keratinase', only those that contain data on the structure and features of the enzyme to provide a sufficient overview of the current situation are covered. It includes information on publication timelines of patents, as well as their origin; features of cultivation process and producers, such as fermentation type and pathogenicity; and features of enzymes, such as their classes, pH, and temperature optima. This article summarizes information about proprietary keratinases and reflects trends and dependencies in their production and application development. It is also the first review of existing patents on keratinases, which emphasizes the uniqueness and novelty of this article.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":"17 4","pages":"346-363"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9689610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}