首页 > 最新文献

环境科学研究最新文献

英文 中文
武汉市大气PM 2.5 中多环芳烃的分布特征及来源 Distribution characteristics and sources of polycyclic aromatic hydrocarbons in atmospheric PM 2.5 in Wuhan City
Q2 Environmental Science Pub Date : 2018-04-25 DOI: 10.13198/J.ISSN.1001-6929.2017.04.20
李宽, 周家斌, 袁畅, 邵轩, 黄凡
为研究武汉市大气质量状况,在武汉市ID(工业区)、DT(中心城区)、BG(植物园)设3个采样点,连续1 a同步采集了大气中的PM2.5(细颗粒物)样品,并研究了其中PAHs(多环芳烃)的质量浓度、来源和健康风险.结果表明,武汉市ID、DT、BG采样点的ρ(PAHs)年均值分别为(75.60±28.12)(59.77±22.81)(24.27±9.15)ng/m3,并呈冬季最高、夏季最低的季节性变化趋势.PMF(正定矩阵因子分析)结果显示,ID、DT、BG采样点的PAHs的主要来源分别为燃煤和扬尘(35%和33%)、机动车和扬尘(30%和34%)、机动车和木质燃烧(33%和32%),在ID和DT采样点,扬尘对大气颗粒物中PAHs的贡献都很大,而燃煤和木质燃烧分别是ID和BG采样点PAHs的重要来源,在3个采样点中,机动车对颗粒物中PAHs贡献都较大,尤其是DT和BG采样点,机动车的贡献都超过30%.利用后向轨迹模型分析采样期间武汉市的气团来源,并结合每天的ρ(PAHs)发现,不同聚类气团对应的ρ(PAHs)差异很小,表明区域传输对武汉市PAHs贡献不大.通过武汉市大气颗粒物中PAHs吸入风险评估发现,武汉市PAHs的吸入风险范围在10-7~10-5之间,ID和DT采样点的部分人群的吸入风险稍高于安全范围(10-6以下),有潜在的致癌风险.
To study the atmospheric quality status of Wuhan City, three sampling points were set up in ID (Industrial Zone), DT (Central Urban Area), and BG (Botanical Garden). PM2.5 (Fine Particle Matter) samples in the atmosphere were collected synchronously for one year, and the mass concentration, source, and health risks of PAHs (Polycyclic Aromatic Hydrocarbons) were studied. The results showed that the ID, DT, and BG sampling points in Wuhan City ρ The average annual values of (PAHs) were (75.60 ± 28.12) (59.77 ± 22.81) (24.27 ± 9.15) ng/m3, respectively, and showed a seasonal trend of highest in winter and lowest in summer. PMF (Positive Definite Matrix Factor Analysis) results showed that the main sources of PAHs at ID, DT, and BG sampling points were coal and dust (35% and 33%), motor vehicles and dust (30% and 34%), motor vehicles and wood combustion (33% and 32%), respectively, Dust contributes significantly to PAHs in atmospheric particulate matter, with coal burning and wood burning being important sources of PAHs at ID and BG sampling points, respectively. Among the three sampling points, motor vehicles contribute significantly to PAHs in particulate matter, especially at DT and BG sampling points, with motor vehicles contributing more than 30%. Backward trajectory models are used to analyze the source of air masses in Wuhan during the sampling period, and combined with daily ρ (PAHs) found that different clusters of air masses correspond to ρ The difference in PAHs is very small, indicating that regional transmission has little contribution to PAHs in Wuhan. Through the assessment of PAHs inhalation risk in atmospheric particulate matter in Wuhan, it was found that the inhalation risk range of PAHs in Wuhan is between 10-7 and 10-5, and some populations at ID and DT sampling points have slightly higher inhalation risk than the safe range (below 10-6), indicating a potential carcinogenic risk
{"title":"武汉市大气PM 2.5 中多环芳烃的分布特征及来源","authors":"李宽, 周家斌, 袁畅, 邵轩, 黄凡","doi":"10.13198/J.ISSN.1001-6929.2017.04.20","DOIUrl":"https://doi.org/10.13198/J.ISSN.1001-6929.2017.04.20","url":null,"abstract":"为研究武汉市大气质量状况,在武汉市ID(工业区)、DT(中心城区)、BG(植物园)设3个采样点,连续1 a同步采集了大气中的PM2.5(细颗粒物)样品,并研究了其中PAHs(多环芳烃)的质量浓度、来源和健康风险.结果表明,武汉市ID、DT、BG采样点的ρ(PAHs)年均值分别为(75.60±28.12)(59.77±22.81)(24.27±9.15)ng/m3,并呈冬季最高、夏季最低的季节性变化趋势.PMF(正定矩阵因子分析)结果显示,ID、DT、BG采样点的PAHs的主要来源分别为燃煤和扬尘(35%和33%)、机动车和扬尘(30%和34%)、机动车和木质燃烧(33%和32%),在ID和DT采样点,扬尘对大气颗粒物中PAHs的贡献都很大,而燃煤和木质燃烧分别是ID和BG采样点PAHs的重要来源,在3个采样点中,机动车对颗粒物中PAHs贡献都较大,尤其是DT和BG采样点,机动车的贡献都超过30%.利用后向轨迹模型分析采样期间武汉市的气团来源,并结合每天的ρ(PAHs)发现,不同聚类气团对应的ρ(PAHs)差异很小,表明区域传输对武汉市PAHs贡献不大.通过武汉市大气颗粒物中PAHs吸入风险评估发现,武汉市PAHs的吸入风险范围在10-7~10-5之间,ID和DT采样点的部分人群的吸入风险稍高于安全范围(10-6以下),有潜在的致癌风险.","PeriodicalId":21108,"journal":{"name":"环境科学研究","volume":"31 1","pages":"648-656"},"PeriodicalIF":0.0,"publicationDate":"2018-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47017808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
北京冬春和夏初季节大气O 3 浓度的垂直分布特征 Vertical distribution characteristics of atmospheric O3 concentration in Beijing during winter, spring, and early summer seasons
Q2 Environmental Science Pub Date : 2018-03-25 DOI: 10.13198/j.issn.1001-6929.2017.04.16
谷雨, 高庆先, 马占云, 张艳艳, 刘婷, 郑有飞
为探究北京地区不同季节大气O3浓度垂直分布特征,于2010年12月1日—2011年3月31日(冬春季)和2011年5月7日—6月9日(夏初),在北京北部地区的中国环境科学研究院内,利用第三代移动式大气环境激光雷达系统,对 $varphi $ (SO2)、 $varphi $ (NO2)以及 $varphi $ (O3)和气溶胶后向散射系数垂直方向和垂直剖面进行试验观测,并结合天气要素的变化进行了分析研究.结果表明:① $varphi $ (O3)存在明显的季节变化,表现为夏季>春季>冬季,同时晴天、微风、逆温条件等气象背景是O3污染过程出现的主要气象因素,在微风和南风的情况下,会出现高 $varphi $ (O3)带,在北风影响情况下, $varphi $ (O3)相对较低,雨水冲洗的作用对 $varphi $ (O3)分布也有明显的影响;② $varphi $ (O3)的日变化曲线呈单峰单谷型, $varphi $ (O3)峰值一般出现在14:00—18:00之间,谷值则出现在22:00—翌日09:00之间;③ $varphi $ (O3)垂直分布呈现单峰、双峰、多峰型分布等多种垂直分布特征,10 km以上高空这3种分布特征均有出现,但是在5 km以下的近地面 $varphi $ (O3)垂直和斜程分布基本呈现多峰型,斜程方向上 $varphi $ (O3)的高低与下垫面及其所排放的O3前体物有密切的关系;④ $varphi $ (O3)垂直分布呈现一定的不均匀性,其数值范围浮动比较小,最大值之间相差30×10-9.研究显示, $varphi $ (O3)垂直规律主要表现出两种分布特征,一种是在3~5 km处有高浓度的堆积区,另一种则没有明显高值堆积区.
为探究北京地区不同季节大气O3浓度垂直分布特征,于2010年12月1日—2011年3月31日(冬春季)和2011年5月7日—6月9日(夏初),在北京北部地区的中国环境科学研究院内,利用第三代移动式大气环境激光雷达系统,对 $varphi $ (SO2)、 $varphi $ (NO2)以及 $varphi $ (O3)和气溶胶后向散射系数垂直方向和垂直剖面进行试验观测,并结合天气要素的变化进行了分析研究.结果表明:① $varphi $ (O3)存在明显的季节变化,表现为夏季>春季>冬季,同时晴天、微风、逆温条件等气象背景是O3污染过程出现的主要气象因素,在微风和南风的情况下,会出现高 $varphi $ (O3)带,在北风影响情况下, $varphi $ (O3)相对较低,雨水冲洗的作用对 $varphi $ (O3)分布也有明显的影响;② $varphi $ (O3)的日变化曲线呈单峰单谷型, $varphi $ (O3)峰值一般出现在14:00—18:00之间,谷值则出现在22:00—翌日09:00之间;③ $varphi $ (O3)垂直分布呈现单峰、双峰、多峰型分布等多种垂直分布特征,10 km以上高空这3种分布特征均有出现,但是在5 km以下的近地面 $varphi $ (O3)垂直和斜程分布基本呈现多峰型,斜程方向上 $varphi $ (O3)的高低与下垫面及其所排放的O3前体物有密切的关系;④ $varphi $ (O3)垂直分布呈现一定的不均匀性,其数值范围浮动比较小,最大值之间相差30×10-9.研究显示, $varphi $ (O3)垂直规律主要表现出两种分布特征,一种是在3~5 km处有高浓度的堆积区,另一种则没有明显高值堆积区.
{"title":"北京冬春和夏初季节大气O 3 浓度的垂直分布特征","authors":"谷雨, 高庆先, 马占云, 张艳艳, 刘婷, 郑有飞","doi":"10.13198/j.issn.1001-6929.2017.04.16","DOIUrl":"https://doi.org/10.13198/j.issn.1001-6929.2017.04.16","url":null,"abstract":"为探究北京地区不同季节大气O3浓度垂直分布特征,于2010年12月1日—2011年3月31日(冬春季)和2011年5月7日—6月9日(夏初),在北京北部地区的中国环境科学研究院内,利用第三代移动式大气环境激光雷达系统,对 $varphi $ (SO2)、 $varphi $ (NO2)以及 $varphi $ (O3)和气溶胶后向散射系数垂直方向和垂直剖面进行试验观测,并结合天气要素的变化进行了分析研究.结果表明:① $varphi $ (O3)存在明显的季节变化,表现为夏季>春季>冬季,同时晴天、微风、逆温条件等气象背景是O3污染过程出现的主要气象因素,在微风和南风的情况下,会出现高 $varphi $ (O3)带,在北风影响情况下, $varphi $ (O3)相对较低,雨水冲洗的作用对 $varphi $ (O3)分布也有明显的影响;② $varphi $ (O3)的日变化曲线呈单峰单谷型, $varphi $ (O3)峰值一般出现在14:00—18:00之间,谷值则出现在22:00—翌日09:00之间;③ $varphi $ (O3)垂直分布呈现单峰、双峰、多峰型分布等多种垂直分布特征,10 km以上高空这3种分布特征均有出现,但是在5 km以下的近地面 $varphi $ (O3)垂直和斜程分布基本呈现多峰型,斜程方向上 $varphi $ (O3)的高低与下垫面及其所排放的O3前体物有密切的关系;④ $varphi $ (O3)垂直分布呈现一定的不均匀性,其数值范围浮动比较小,最大值之间相差30×10-9.研究显示, $varphi $ (O3)垂直规律主要表现出两种分布特征,一种是在3~5 km处有高浓度的堆积区,另一种则没有明显高值堆积区.","PeriodicalId":21108,"journal":{"name":"环境科学研究","volume":"31 1","pages":"457-464"},"PeriodicalIF":0.0,"publicationDate":"2018-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47557259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
广西PM 2.5 时空分布特征及污染天气类型 The spatiotemporal distribution characteristics and pollution weather types of PM 2.5 in Guangxi
Q2 Environmental Science Pub Date : 2018-03-25 DOI: 10.13198/J.ISSN.1001-6929.2017.03.85
潘润西, 陈蓓, 莫雨淳, 付洁, 和凌红, 周文强, 陆晓艳
研究区域ρ(PM2.5)的时空分布特征和污染天气类型的关系是开展大气污染防治和空气质量预报预警的关键支撑技术之一.基于2015—2016年广西14个城市环境空气质量日监测数据和相关气象资料,分析了2015—2016年广西空气质量概况和污染的基本特征,采用EOF(经验正交函数)分析和后向轨迹聚类分析方法表征了广西ρ(PM2.5)时空分布模态,统计了广西两年间24次区域范围(3个及以上连片城市)大气轻度及以上污染过程,分析了不同污染过程的天气类型和空气质量变化特点.结果表明:PM2.5是广西大气污染首要污染物,ρ(PM2.5)年均值呈北高南低的区域特征,月际变化基本呈正V字型分布;EOF分析和后向轨迹聚类分析显示,广西ρ(PM2.5)的时空结构主要有3种模态,其方差贡献率分别为78.9%、5.7%和3.7%,基本反映了广西ρ(PM2.5)变化的时空模态的主要特征,桂林和玉林两年间的后向轨迹聚类很好地解释了第二和第三模态的南北浓度和东西浓度异常反相位分布特征;广西14个城市两年间PM2.5区域性污染天气类型主要有10种,其中污染天气类型中占比较大的是弱冷高压脊型(24.4%)、均压场型(20.2%)、高压后部型(16.1%)和高压后部配合西南暖低压型(8.5%),是引发广西大范围大气污染的典型天气类型.研究显示,广西大气污染具有地域性、季节性和南北输送特征,污染过程的天气形势变化具有一定规律性.
Research Area ρ The relationship between the spatiotemporal distribution characteristics of (PM2.5) and the types of polluted weather is one of the key supporting technologies for air pollution prevention and control, as well as air quality prediction and early warning. Based on the daily monitoring data and related meteorological data of environmental air quality in 14 cities in Guangxi from 2015 to 2016, the air quality overview and basic characteristics of pollution in Guangxi from 2015 to 2016 were analyzed. EOF (empirical orthogonal function) analysis and backward trajectory clustering analysis were used to characterize Guangxi ρ (PM2.5) spatiotemporal distribution mode was used to analyze 24 regional atmospheric mild and above pollution processes (3 or more contiguous cities) in Guangxi over the past two years. The weather types and air quality variation characteristics of different pollution processes were analyzed. The results showed that PM2.5 was the primary pollutant in atmospheric pollution in Guangxi, ρ The average annual value of (PM2.5) shows a regional characteristic of high in the north and low in the south, and the monthly variation basically shows a positive V-shaped distribution; EOF analysis and backward trajectory clustering analysis show that Guangxi ρ The spatiotemporal structure of (PM2.5) mainly has three modes, with variance contribution rates of 78.9%, 5.7%, and 3.7%, respectively, which basically reflects Guangxi ρ The main characteristics of the spatiotemporal mode of (PM2.5) change, and the backward trajectory clustering between Guilin and Yulin in two years well explained the anti phase distribution characteristics of the north-south concentration and east-west concentration anomalies of the second and third modes; There are 10 main types of PM2.5 regional pollution weather in 14 cities in Guangxi over the past two years. Among them, the main types of pollution weather are weak cold high pressure ridge type (24.4%), uniform pressure field type (20.2%), high pressure rear type (16.1%), and high pressure rear combined with southwest warm low pressure type (8.5%), which are typical weather types that cause large-scale air pollution in Guangxi. Research shows that air pollution in Guangxi has regional, seasonal, and north-south transport characteristics, The weather situation changes during the pollution process have certain regularity
{"title":"广西PM 2.5 时空分布特征及污染天气类型","authors":"潘润西, 陈蓓, 莫雨淳, 付洁, 和凌红, 周文强, 陆晓艳","doi":"10.13198/J.ISSN.1001-6929.2017.03.85","DOIUrl":"https://doi.org/10.13198/J.ISSN.1001-6929.2017.03.85","url":null,"abstract":"研究区域ρ(PM2.5)的时空分布特征和污染天气类型的关系是开展大气污染防治和空气质量预报预警的关键支撑技术之一.基于2015—2016年广西14个城市环境空气质量日监测数据和相关气象资料,分析了2015—2016年广西空气质量概况和污染的基本特征,采用EOF(经验正交函数)分析和后向轨迹聚类分析方法表征了广西ρ(PM2.5)时空分布模态,统计了广西两年间24次区域范围(3个及以上连片城市)大气轻度及以上污染过程,分析了不同污染过程的天气类型和空气质量变化特点.结果表明:PM2.5是广西大气污染首要污染物,ρ(PM2.5)年均值呈北高南低的区域特征,月际变化基本呈正V字型分布;EOF分析和后向轨迹聚类分析显示,广西ρ(PM2.5)的时空结构主要有3种模态,其方差贡献率分别为78.9%、5.7%和3.7%,基本反映了广西ρ(PM2.5)变化的时空模态的主要特征,桂林和玉林两年间的后向轨迹聚类很好地解释了第二和第三模态的南北浓度和东西浓度异常反相位分布特征;广西14个城市两年间PM2.5区域性污染天气类型主要有10种,其中污染天气类型中占比较大的是弱冷高压脊型(24.4%)、均压场型(20.2%)、高压后部型(16.1%)和高压后部配合西南暖低压型(8.5%),是引发广西大范围大气污染的典型天气类型.研究显示,广西大气污染具有地域性、季节性和南北输送特征,污染过程的天气形势变化具有一定规律性.","PeriodicalId":21108,"journal":{"name":"环境科学研究","volume":"31 1","pages":"465-474"},"PeriodicalIF":0.0,"publicationDate":"2018-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49236890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
成都市PM 10 中碳质气溶胶长期来源特点 成都市PM 10 中碳质气溶胶长期来源特点
Q2 Environmental Science Pub Date : 2018-03-25 DOI: 10.13198/J.ISSN.1001-6929.2017.03.93
关辽, 杨卓然, 马彤, 宋丹林, 田瑛泽, 冯银厂
大气颗粒物中包含多种组分的气溶胶,其中碳质气溶胶由于对人体健康、能见度有较大影响,已受到越来越多的关注.为研究碳质气溶胶的长期变化规律,采集了成都市2009—2013年的PM10样品,对其中所含的无机元素、水溶性离子及碳组分分别进行测定,并使用“PMF(正定矩阵因子分解法)-比值”模型分别对PM10和所含的碳质气溶胶的来源进行分析.结果表明,1月、2月、5月和12月的碳质气溶胶浓度较高,其中1月、2月和12月的OC/EC(有机碳与元素碳质量浓度之比)较高,并且PMF-比值模型计算结果也显示冬季SOC增多,表明冬季可能有更多的二次有机碳(SOC)生成;5月的char-EC/soot-EC(二者质量浓度之比,其中char-EC=EC1-OP,soot-EC=EC2+EC3,它们可更好地区分源类)较高,K含量也较高,表明可能有更多的生物质燃烧排放.PM10解析共发现6类源,依次为地壳扬尘(26.5%)、二次硫酸盐(25.1%)、燃煤&生物质燃烧混合源(17.3%)、二次硝酸盐&二次有机碳混合源(12.3%)、机动车源(11.8%)和水泥尘源(7.0%);碳质气溶胶解析发现,OC主要来源依次为机动车源(38.2%)、燃煤&生物质燃烧混合源(33.1%)和二次有机碳(25.3%),char-EC的主要来源是燃煤&生物质燃烧混合源和机动车源,分别占50.5%和45.4%,soot-EC则主要受机动车影响(达73.2%).研究显示,成都市PM10主要来自于地壳扬尘、二次生成和燃煤&生物质燃烧,而碳质气溶胶主要来自于机动车、燃煤&生物质燃烧.
Atmospheric particulate matter contains multiple components of aerosols, among which carbon aerosols have received increasing attention due to their significant impact on human health and visibility. To study the long-term changes of carbon aerosols, PM10 samples from Chengdu from 2009 to 2013 were collected and their inorganic elements, water-soluble ions, and carbon components were measured, And the "PMF (Positive Definite Matrix Factorization) Ratio" model was used to analyze the sources of PM10 and the carbon aerosols contained in it. The results showed that the carbon aerosol concentrations were higher in January, February, May, and December, with higher OC/EC (organic carbon to elemental carbon mass concentration ratio) in January, February, and December, and the PMF Ratio model calculation results also showed an increase in winter SOC, Indicating that there may be more secondary organic carbon (SOC) generation in winter; In May, the char EC/soot-EC (mass concentration ratio of char EC=EC1-OP, soot-EC=EC2+EC3, which can better distinguish source types) was higher, and the K content was also higher, indicating that there may be more biomass combustion emissions. PM10 analysis revealed a total of 6 types of sources, followed by crustal dust (26.5%), secondary sulfate (25.1%), coal and biomass combustion mixed sources (17.3%), secondary nitrate and secondary organic carbon mixed sources (12.3%) Motor vehicle sources (11.8%) and cement dust sources (7.0%); Analysis of carbon aerosols revealed that the main sources of OC were motor vehicle sources (38.2%), coal-fired biomass combustion mixed sources (33.1%), and secondary organic carbon (25.3%). The main sources of char EC were coal-fired biomass combustion mixed sources and motor vehicle sources, accounting for 50.5% and 45.4%, respectively. Soot EC was mainly affected by motor vehicles (up to 73.2%). Research shows that PM10 in Chengdu mainly comes from crustal dust, secondary generation, and coal-fired biomass combustion, Carbon aerosols mainly come from motor vehicles, coal-fired and biomass combustion
{"title":"成都市PM 10 中碳质气溶胶长期来源特点","authors":"关辽, 杨卓然, 马彤, 宋丹林, 田瑛泽, 冯银厂","doi":"10.13198/J.ISSN.1001-6929.2017.03.93","DOIUrl":"https://doi.org/10.13198/J.ISSN.1001-6929.2017.03.93","url":null,"abstract":"大气颗粒物中包含多种组分的气溶胶,其中碳质气溶胶由于对人体健康、能见度有较大影响,已受到越来越多的关注.为研究碳质气溶胶的长期变化规律,采集了成都市2009—2013年的PM10样品,对其中所含的无机元素、水溶性离子及碳组分分别进行测定,并使用“PMF(正定矩阵因子分解法)-比值”模型分别对PM10和所含的碳质气溶胶的来源进行分析.结果表明,1月、2月、5月和12月的碳质气溶胶浓度较高,其中1月、2月和12月的OC/EC(有机碳与元素碳质量浓度之比)较高,并且PMF-比值模型计算结果也显示冬季SOC增多,表明冬季可能有更多的二次有机碳(SOC)生成;5月的char-EC/soot-EC(二者质量浓度之比,其中char-EC=EC1-OP,soot-EC=EC2+EC3,它们可更好地区分源类)较高,K含量也较高,表明可能有更多的生物质燃烧排放.PM10解析共发现6类源,依次为地壳扬尘(26.5%)、二次硫酸盐(25.1%)、燃煤&生物质燃烧混合源(17.3%)、二次硝酸盐&二次有机碳混合源(12.3%)、机动车源(11.8%)和水泥尘源(7.0%);碳质气溶胶解析发现,OC主要来源依次为机动车源(38.2%)、燃煤&生物质燃烧混合源(33.1%)和二次有机碳(25.3%),char-EC的主要来源是燃煤&生物质燃烧混合源和机动车源,分别占50.5%和45.4%,soot-EC则主要受机动车影响(达73.2%).研究显示,成都市PM10主要来自于地壳扬尘、二次生成和燃煤&生物质燃烧,而碳质气溶胶主要来自于机动车、燃煤&生物质燃烧.","PeriodicalId":21108,"journal":{"name":"环境科学研究","volume":"31 1","pages":"435-441"},"PeriodicalIF":0.0,"publicationDate":"2018-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41697034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FeCl 3 改性MOFs在低温下对Hg 0 的吸附性能 FeCl 3 改性MOFs在低温下对Hg 0 的吸附性能
Q2 Environmental Science Pub Date : 2018-03-25 DOI: 10.13198/J.ISSN.1001-6929.2017.04.24
周琪琪, 王学谦, 宁平, 黄红旗, 陶雷
为提高吸附剂对Hg0(零价汞)的吸附效率,利用MOFs(金属有机框架)材料发达的孔隙结构和高比表面积(1 997.010 0 m2/g),采用FeCl3溶液浸渍改性,制备了吸附剂FeCl3@MIL-101(Cr)用于脱除Hg0.在小型固定床反应器上考察了浸渍浓度、反应温度、氧含量等对Hg0去除的影响.结果表明:FeCl3@MIL-101(Cr)在进口ρ(Hg0)为2×10-3 mg/L,c(FeCl3)为0.2 mol/L,反应温度60℃,气体流速400 mL/min,φ(O2)为1%的条件下,吸附穿透时间长达62 h,相应的吸附容量为14.27 mg/g.在此基础上,进一步利用BET(比表面积测试)、SEM(扫描电镜)-EDX(能量色散X射线光谱)、XRD(X射线衍射)、XPS(X射线光电子能谱)等常用表征手段研究了改性前后吸附剂的物理化学特性,证明了吸附剂FeCl3@MIL-101(Cr)吸附零价汞是物理吸附与化学吸附共同作用的结果,含氯官能团在吸附Hg0过程中也发挥了相当大的作用,并且氧气可促进其吸附效果.最后,分析了其吸附机理.研究显示,该种吸附剂在低温条件下具有较为优良的脱汞性能,应用前景良好.
为提高吸附剂对Hg0(零价汞)的吸附效率,利用MOFs(金属有机框架)材料发达的孔隙结构和高比表面积(1 997.010 0 m2/g),采用FeCl3溶液浸渍改性,制备了吸附剂FeCl3@MIL-101(Cr)用于脱除Hg0.在小型固定床反应器上考察了浸渍浓度、反应温度、氧含量等对Hg0去除的影响.结果表明:FeCl3@MIL-101(Cr)在进口ρ(Hg0)为2×10-3 mg/L,c(FeCl3)为0.2 mol/L,反应温度60℃,气体流速400 mL/min,φ(O2)为1%的条件下,吸附穿透时间长达62 h,相应的吸附容量为14.27 mg/g.在此基础上,进一步利用BET(比表面积测试)、SEM(扫描电镜)-EDX(能量色散X射线光谱)、XRD(X射线衍射)、XPS(X射线光电子能谱)等常用表征手段研究了改性前后吸附剂的物理化学特性,证明了吸附剂FeCl3@MIL-101(Cr)吸附零价汞是物理吸附与化学吸附共同作用的结果,含氯官能团在吸附Hg0过程中也发挥了相当大的作用,并且氧气可促进其吸附效果.最后,分析了其吸附机理.研究显示,该种吸附剂在低温条件下具有较为优良的脱汞性能,应用前景良好.
{"title":"FeCl 3 改性MOFs在低温下对Hg 0 的吸附性能","authors":"周琪琪, 王学谦, 宁平, 黄红旗, 陶雷","doi":"10.13198/J.ISSN.1001-6929.2017.04.24","DOIUrl":"https://doi.org/10.13198/J.ISSN.1001-6929.2017.04.24","url":null,"abstract":"为提高吸附剂对Hg0(零价汞)的吸附效率,利用MOFs(金属有机框架)材料发达的孔隙结构和高比表面积(1 997.010 0 m2/g),采用FeCl3溶液浸渍改性,制备了吸附剂FeCl3@MIL-101(Cr)用于脱除Hg0.在小型固定床反应器上考察了浸渍浓度、反应温度、氧含量等对Hg0去除的影响.结果表明:FeCl3@MIL-101(Cr)在进口ρ(Hg0)为2×10-3 mg/L,c(FeCl3)为0.2 mol/L,反应温度60℃,气体流速400 mL/min,φ(O2)为1%的条件下,吸附穿透时间长达62 h,相应的吸附容量为14.27 mg/g.在此基础上,进一步利用BET(比表面积测试)、SEM(扫描电镜)-EDX(能量色散X射线光谱)、XRD(X射线衍射)、XPS(X射线光电子能谱)等常用表征手段研究了改性前后吸附剂的物理化学特性,证明了吸附剂FeCl3@MIL-101(Cr)吸附零价汞是物理吸附与化学吸附共同作用的结果,含氯官能团在吸附Hg0过程中也发挥了相当大的作用,并且氧气可促进其吸附效果.最后,分析了其吸附机理.研究显示,该种吸附剂在低温条件下具有较为优良的脱汞性能,应用前景良好.","PeriodicalId":21108,"journal":{"name":"环境科学研究","volume":"31 1","pages":"528-536"},"PeriodicalIF":0.0,"publicationDate":"2018-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43541604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
天津冬季一次污染过程中NO x 和O 3 的立体分布特征 天津冬季一次污染过程中NO x 和O 3 的立体分布特征
Q2 Environmental Science Pub Date : 2018-03-25 DOI: 10.13198/J.ISSN.1001-6929.2017.04.19
袁建昭, 赵若杰, 殷宝辉, 王歆华, 韩斌, 杨文, 白志鹏
由于大气是一个复杂介质,低层大气中湍流的存在使物质和能量的交换很剧烈,污染物的扩散传输现象明显.对不同高度不同区域的低层大气做立体观测,获取气态污染物浓度分布最直接的资料很有必要.综合利用地面观测站点、系留气球和飞机平台,于2016年11月25—26日在天津武清高村一次污染天气条件下对NOx和O3进行立体观测,得到了污染物的地面、垂直和低空区域分布特征,并结合气象因子进行分析研究.观测结果表明,地面 $varphi $ (NOx)水平较高,日均值为230×10-9,超过了GB 3095—2012《环境空气质量标准》二级标准的限值,反映了高村冬季较高的污染水平,主要受当地交通源排放的影响. $varphi $ (NOx)随高度的上升呈下降趋势,受风速的影响明显,主要积聚在逆温层以下.低空 $varphi $ (NOx)市区高于郊区,而处于更远郊区的高村 $varphi $ (NOx)与市区相当,也反映了高村本地较高的NOx污染.高村地面 $varphi $ (O3)低,日最大8 h平均值为8×10-9,反映了冬季低温辐射弱、光化学反应强度低的特点.随高度增加 $varphi $ (O3)呈上升趋势,垂直分布特征主要与温度层结有关.低空 $varphi $ (O3)呈郊区高于市区,高村(远郊区)高于近郊区的特征.研究显示, $varphi $ (NOx)的升高导致 $varphi $ (O3)下降,这可能与高村冬季的 $varphi $ (VOCs)/ $varphi $ (NOx)偏低有关,需要结合VOCs观测数据做进一步分析.
Due to the fact that the atmosphere is a complex medium, the presence of turbulence in the lower atmosphere causes intense exchange of matter and energy, and the diffusion and transmission of pollutants are obvious. It is necessary to conduct three-dimensional observations of the lower atmosphere at different heights and regions to obtain the most direct data on the concentration distribution of gaseous pollutants. It is necessary to comprehensively utilize ground observation stations, tethered balloons, and aircraft platforms, On November 25-26, 2016, a three-dimensional observation was conducted on NOx and O3 under polluted weather conditions in Gaocun, Wuqing, Tianjin. The distribution characteristics of pollutants in the ground, vertical, and low altitude areas were obtained, and analyzed and studied in conjunction with meteorological factors. The observation results showed that the surface level of NOx was relatively high, with a daily average value of 230 × 10-9, exceeding the limit of the second level standard of GB 3095-2012 "Environmental Air Quality Standard", reflects the high pollution level of Gaocun in winter, mainly affected by local traffic source emissions$ Varphi $(NOx) shows a decreasing trend with the increase of altitude, and is significantly affected by wind speed, mainly accumulating below the inversion layer. Low altitude $ varphi $(NOx) in urban areas is higher than that in suburban areas, while in more remote suburban areas, Gaocun $ varphi $(NOx) is equivalent to that in urban areas, which also reflects the high level of NOx pollution in Gaocun. Gaocun's ground $ varphi $(O3) is low, with a daily maximum 8-hour average value of 8 × 10-9 reflects the characteristics of weak low-temperature radiation and low intensity of photochemical reactions in winter. As altitude increases, $ varphi $(O3) shows an upward trend, and the vertical distribution characteristics are mainly related to temperature stratification. Low altitude $ varphi $(O3) shows a higher level in suburban areas than in urban areas, and a higher level in high villages (outer suburbs) than in suburban areas. Research shows that an increase in $ varphi $(NOx) leads to a decrease in $ varphi $(O3), This may be related to the low levels of $ varphi $(VOCs)/$ varphi $(NOx) in winter in Takamura, and further analysis is needed in conjunction with VOCs observation data
{"title":"天津冬季一次污染过程中NO x 和O 3 的立体分布特征","authors":"袁建昭, 赵若杰, 殷宝辉, 王歆华, 韩斌, 杨文, 白志鹏","doi":"10.13198/J.ISSN.1001-6929.2017.04.19","DOIUrl":"https://doi.org/10.13198/J.ISSN.1001-6929.2017.04.19","url":null,"abstract":"由于大气是一个复杂介质,低层大气中湍流的存在使物质和能量的交换很剧烈,污染物的扩散传输现象明显.对不同高度不同区域的低层大气做立体观测,获取气态污染物浓度分布最直接的资料很有必要.综合利用地面观测站点、系留气球和飞机平台,于2016年11月25—26日在天津武清高村一次污染天气条件下对NOx和O3进行立体观测,得到了污染物的地面、垂直和低空区域分布特征,并结合气象因子进行分析研究.观测结果表明,地面 $varphi $ (NOx)水平较高,日均值为230×10-9,超过了GB 3095—2012《环境空气质量标准》二级标准的限值,反映了高村冬季较高的污染水平,主要受当地交通源排放的影响. $varphi $ (NOx)随高度的上升呈下降趋势,受风速的影响明显,主要积聚在逆温层以下.低空 $varphi $ (NOx)市区高于郊区,而处于更远郊区的高村 $varphi $ (NOx)与市区相当,也反映了高村本地较高的NOx污染.高村地面 $varphi $ (O3)低,日最大8 h平均值为8×10-9,反映了冬季低温辐射弱、光化学反应强度低的特点.随高度增加 $varphi $ (O3)呈上升趋势,垂直分布特征主要与温度层结有关.低空 $varphi $ (O3)呈郊区高于市区,高村(远郊区)高于近郊区的特征.研究显示, $varphi $ (NOx)的升高导致 $varphi $ (O3)下降,这可能与高村冬季的 $varphi $ (VOCs)/ $varphi $ (NOx)偏低有关,需要结合VOCs观测数据做进一步分析.","PeriodicalId":21108,"journal":{"name":"环境科学研究","volume":"31 1","pages":"442-449"},"PeriodicalIF":0.0,"publicationDate":"2018-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45130911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
增强环保科技创新能力支撑环境管理决策:需求·挑战·对策 增强环保科技创新能力支撑环境管理决策:需求·挑战·对策
Q2 Environmental Science Pub Date : 2018-02-25 DOI: 10.13198/j.issn.1001-6929.2018.01.11
李海生
新时代我国环境保护形势面临着深刻变化,满足人民群众日益增长的对优质生态产品需求成为环保工作的主要矛盾.为落实党的十九大关于生态文明建设和环境保护的要求,牢固把握'环保科技的人民性',在对未来环境形势和环保科技创新需求分析判断的基础上,紧密围绕绿色发展和环境质量改善的目标,提出了加强环保科技创新发展的4个重点任务:面向国民经济绿色发展主战场,全面提升环保科技供给能力和水平;加强环境科学基础研究,引领环境质量改善;研发关键技术,突破环境治理技术瓶颈;加大生态系统保护力度,推进人与自然和谐共生.同时,提出了完善环保科技创新体制机制的5点建议:实施平台化、国际化、产业化、规范化、信息化管理,助推现代环境科研院所制度建设;加快环保科技创新体系建设,完善和补强科技创新链条;完善管理决策支撑机制,解决科研与管理脱节的问题;统筹全国环境科研力量,创新重大科研项目组织模式;加强人才队伍建设,充分调动人才创新活力,为环保科技创新提供政策和制度保障.
In the new era, China's environmental protection situation is facing profound changes, and meeting the growing demand for high-quality ecological products by the people has become the main contradiction in environmental protection work. In order to implement the requirements of the 19th National Congress of the Communist Party of China on ecological civilization construction and environmental protection, firmly grasp the 'people-oriented nature of environmental technology', based on the analysis and judgment of the future environmental situation and the demand for environmental technology innovation, closely revolve around the goals of green development and environmental quality improvement, Four key tasks were proposed to strengthen the innovative development of environmental protection technology: facing the main battlefield of green development of the national economy, comprehensively improving the supply capacity and level of environmental protection technology; Strengthen basic research in environmental science and lead the improvement of environmental quality; Research and develop key technologies to break through the bottleneck of environmental governance technology; Strengthen the protection of ecosystems and promote the harmonious coexistence of humans and nature. At the same time, five suggestions for improving the innovation system and mechanism of environmental protection technology have been proposed: implement platformization, internationalization, industrialization, standardization, and information management, and promote the construction of modern environmental research institutions; Accelerate the construction of the environmental protection technology innovation system, improve and strengthen the technology innovation chain; Improve the management decision-making support mechanism and solve the problem of disconnection between scientific research and management; Coordinate the national environmental research force and innovate the organizational model of major scientific research projects; Strengthen the construction of talent teams, fully mobilize the innovative vitality of talents, and provide policy and institutional guarantees for environmental protection technology innovation
{"title":"增强环保科技创新能力支撑环境管理决策:需求·挑战·对策","authors":"李海生","doi":"10.13198/j.issn.1001-6929.2018.01.11","DOIUrl":"https://doi.org/10.13198/j.issn.1001-6929.2018.01.11","url":null,"abstract":"新时代我国环境保护形势面临着深刻变化,满足人民群众日益增长的对优质生态产品需求成为环保工作的主要矛盾.为落实党的十九大关于生态文明建设和环境保护的要求,牢固把握'环保科技的人民性',在对未来环境形势和环保科技创新需求分析判断的基础上,紧密围绕绿色发展和环境质量改善的目标,提出了加强环保科技创新发展的4个重点任务:面向国民经济绿色发展主战场,全面提升环保科技供给能力和水平;加强环境科学基础研究,引领环境质量改善;研发关键技术,突破环境治理技术瓶颈;加大生态系统保护力度,推进人与自然和谐共生.同时,提出了完善环保科技创新体制机制的5点建议:实施平台化、国际化、产业化、规范化、信息化管理,助推现代环境科研院所制度建设;加快环保科技创新体系建设,完善和补强科技创新链条;完善管理决策支撑机制,解决科研与管理脱节的问题;统筹全国环境科研力量,创新重大科研项目组织模式;加强人才队伍建设,充分调动人才创新活力,为环保科技创新提供政策和制度保障.","PeriodicalId":21108,"journal":{"name":"环境科学研究","volume":"31 1","pages":"201-205"},"PeriodicalIF":0.0,"publicationDate":"2018-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44426423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SO 2 污染激活AT 1 R改变运动大鼠心肌胶原纤维形态学并导致心功能降低 SO 2 污染激活AT 1 R改变运动大鼠心肌胶原纤维形态学并导致心功能降低
Q2 Environmental Science Pub Date : 2017-11-25 DOI: 10.13198/j.issn.1001-6929.2017.02.99
陈平, 胡琰茹, 刘晓莉
为了观察SO2污染环境下运动对大鼠心功能的影响,从心脏局部肾素-血管紧张素系统(renin-angiotensin system,RAS)核心成员——血管紧张素Ⅱ(angiotensin Ⅱ,AngⅡ)Ⅰ型受体(AT1R)介导的心肌胶原纤维形态结构重塑的角度出发,应用心脏插管技术观察大鼠的心脏功能;采用放射免疫技术(ELISA)、免疫组织化学和胃酶酸解法等方法对心肌局部ρ(AngⅡ)、AT1R蛋白表达水平、w(HYP)(HYP为羟脯氨酸)及胶原容积分数进行检测.结果表明:①单纯运动组(EG)大鼠主动脉收缩压、左室内压峰值、±dp/dtmax(左室内压最大上升速率/下降速率)显著升高(P 0.01);②单纯SO2污染组(SRG)大鼠左室末期舒张压显著升高(P < 0.01),左室内压±dp/dtmax显著降低(P < 0.01);w(HYP)、w(CC)、PVCA、CVF、ρ(AngⅡ)及AT1R蛋白表达水平均显著升高(P < 0.01);③SO2污染+运动组(SEG)大鼠左室末期舒张压显著升高(P < 0.01),主动脉收缩压、左室内压峰值、左室内压±dp/dtmax显著降低(P < 0.01),w(HYP)、w(CC)、PVCA、CVF、ρ(AngⅡ)及AT1R蛋白表达水平均显著升高(P < 0.01),并且较SRG大鼠升高更显著(P < 0.01).研究显示,SO2污染导致运动大鼠心肌胶原纤维形态结构发生异常重塑,最终使大鼠的心功能产生显著的负性变力性效应,其机制可能与心脏局部RAS系统的激活有关.
为了观察SO2污染环境下运动对大鼠心功能的影响,从心脏局部肾素-血管紧张素系统(renin-angiotensin system,RAS)核心成员——血管紧张素Ⅱ(angiotensin Ⅱ,AngⅡ)Ⅰ型受体(AT1R)介导的心肌胶原纤维形态结构重塑的角度出发,应用心脏插管技术观察大鼠的心脏功能;采用放射免疫技术(ELISA)、免疫组织化学和胃酶酸解法等方法对心肌局部ρ(AngⅡ)、AT1R蛋白表达水平、w(HYP)(HYP为羟脯氨酸)及胶原容积分数进行检测.结果表明:①单纯运动组(EG)大鼠主动脉收缩压、左室内压峰值、±dp/dtmax(左室内压最大上升速率/下降速率)显著升高(P 0.01);②单纯SO2污染组(SRG)大鼠左室末期舒张压显著升高(P < 0.01),左室内压±dp/dtmax显著降低(P < 0.01);w(HYP)、w(CC)、PVCA、CVF、ρ(AngⅡ)及AT1R蛋白表达水平均显著升高(P < 0.01);③SO2污染+运动组(SEG)大鼠左室末期舒张压显著升高(P < 0.01),主动脉收缩压、左室内压峰值、左室内压±dp/dtmax显著降低(P < 0.01),w(HYP)、w(CC)、PVCA、CVF、ρ(AngⅡ)及AT1R蛋白表达水平均显著升高(P < 0.01),并且较SRG大鼠升高更显著(P < 0.01).研究显示,SO2污染导致运动大鼠心肌胶原纤维形态结构发生异常重塑,最终使大鼠的心功能产生显著的负性变力性效应,其机制可能与心脏局部RAS系统的激活有关.
{"title":"SO 2 污染激活AT 1 R改变运动大鼠心肌胶原纤维形态学并导致心功能降低","authors":"陈平, 胡琰茹, 刘晓莉","doi":"10.13198/j.issn.1001-6929.2017.02.99","DOIUrl":"https://doi.org/10.13198/j.issn.1001-6929.2017.02.99","url":null,"abstract":"为了观察SO2污染环境下运动对大鼠心功能的影响,从心脏局部肾素-血管紧张素系统(renin-angiotensin system,RAS)核心成员——血管紧张素Ⅱ(angiotensin Ⅱ,AngⅡ)Ⅰ型受体(AT1R)介导的心肌胶原纤维形态结构重塑的角度出发,应用心脏插管技术观察大鼠的心脏功能;采用放射免疫技术(ELISA)、免疫组织化学和胃酶酸解法等方法对心肌局部ρ(AngⅡ)、AT1R蛋白表达水平、w(HYP)(HYP为羟脯氨酸)及胶原容积分数进行检测.结果表明:①单纯运动组(EG)大鼠主动脉收缩压、左室内压峰值、±dp/dtmax(左室内压最大上升速率/下降速率)显著升高(P 0.01);②单纯SO2污染组(SRG)大鼠左室末期舒张压显著升高(P < 0.01),左室内压±dp/dtmax显著降低(P < 0.01);w(HYP)、w(CC)、PVCA、CVF、ρ(AngⅡ)及AT1R蛋白表达水平均显著升高(P < 0.01);③SO2污染+运动组(SEG)大鼠左室末期舒张压显著升高(P < 0.01),主动脉收缩压、左室内压峰值、左室内压±dp/dtmax显著降低(P < 0.01),w(HYP)、w(CC)、PVCA、CVF、ρ(AngⅡ)及AT1R蛋白表达水平均显著升高(P < 0.01),并且较SRG大鼠升高更显著(P < 0.01).研究显示,SO2污染导致运动大鼠心肌胶原纤维形态结构发生异常重塑,最终使大鼠的心功能产生显著的负性变力性效应,其机制可能与心脏局部RAS系统的激活有关.","PeriodicalId":21108,"journal":{"name":"环境科学研究","volume":"30 1","pages":"1739-1745"},"PeriodicalIF":0.0,"publicationDate":"2017-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47062716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
菏泽市冬季大气PM 2.5 和PM 10 中碳组分来源解析 Source Analysis of Carbon Components in Winter Atmospheric PM 2.5 and PM 10 in Heze City
Q2 Environmental Science Pub Date : 2017-11-25 DOI: 10.13198/J.ISSN.1001-6929.2017.03.11
张家营, 刘保双, 毕晓辉, 吴建会, 冯银厂, 张裕芬, 张勤勋
为研究菏泽市冬季大气颗粒物中碳组分的污染特征和来源,于2016年1月采集菏泽市冬季大气PM2.5和PM10样品,基于热光反射法分析样品中OC(有机碳)、EC(元素碳)及8个碳组分[OC1、OC2、OC3、OC4、EC1、EC2、EC3和OP(裂解碳)]的含量,并计算得到ρ(Char-EC)(Char-EC为燃料燃烧后固体残渣中的EC)和ρ(Soot-EC)(Soot-EC为燃烧后气相挥发物质再凝结形成的EC),以定性识别大气颗粒物中碳组分的来源.结果表明,菏泽市冬季大气颗粒物样品中碳组分浓度处于较高水平,PM2.5中的ρ(OC)、ρ(EC)分别为26.34、9.22 μg/m3,PM10中ρ(OC)、ρ(EC)分别为31.82、10.71 μg/m3.采样期间大气PM2.5中碳组分(OC、EC、OC1、OC2、OC3、OC4、EC1、EC2、EC3、Char-EC、Soot-EC)浓度与PM10中相应各组分浓度的比值均大于0.5(0.60~0.90),表明碳组分多集中于细粒子(PM2.5).大气颗粒物样品中各碳组分浓度具有明显空间差异,各点位大气PM2.5和PM10中ρ(OC)均显著高于ρ(EC)(T检验,P < 0.05).菏泽市冬季大气PM2.5和PM10中Char-EC/Soot-EC(二者质量浓度之比)分别为10.04、8.00,并且存在显著的空间差异性(T检验,P < 0.05).PMF(正定矩阵因子分解法)解析结果表明,菏泽市冬季大气PM2.5和PM10中碳组分来源主要有4类,包括两类柴油车(1类排放的碳组分中以EC2为主,定义为柴油车-1;1类排放的碳组分中以EC3为主,定义为柴油车-2)、汽油车、生物质燃烧和燃煤混合源,对大气PM2.5中碳组分的分担率分别为13.98%、5.13%、24.47%、41.97%,对大气PM10中碳组分的分担率分别为16.08%、8.21%、18.34%、47.35%.可见,菏泽市冬季大气PM2.5和PM10中碳的主要来源是柴油车、汽油车、生物质燃烧和燃煤.
In order to study the pollution characteristics and sources of carbon components in winter atmospheric particulate matter in Heze City, PM2.5 and PM10 samples were collected in January 2016. The content of OC (organic carbon), EC (elemental carbon), and 8 carbon components [OC1, OC2, OC3, OC4, EC1, EC2, EC3, and OP (pyrolysis carbon)] in the samples were analyzed using thermal light reflection method, and the results were calculated ρ (Char-EC) (Char-EC is the EC in the solid residue after fuel combustion) and ρ (Soot EC) (Soot EC is the EC formed by the condensation of volatile substances in the gas phase after combustion), in order to qualitatively identify the source of carbon components in atmospheric particulate matter. The results show that the carbon component concentration in winter atmospheric particulate matter samples in Heze City is at a high level, while in PM2.5 ρ (OC) ρ (EC) 26.34 and 9.22 respectively μ G/m3, in PM10 ρ (OC) ρ (EC) 31.82 and 10.71 respectively μ During the sampling period, the ratio of the concentration of carbon components (OC, EC, OC1, OC2, OC3, OC4, EC1, EC2, EC3, Char-EC, Soot EC) in atmospheric PM2.5 to the concentration of corresponding components in PM10 was greater than 0.5 (0.60-0.90), indicating that carbon components are mostly concentrated in fine particles (PM2.5). There are significant spatial differences in the concentration of carbon components in atmospheric particulate matter samples, and the concentrations of each carbon component in atmospheric PM2.5 and PM10 at each point are significant ρ (OC) are significantly higher than ρ (EC) (T-test, P<0.05). The Char-EC/Soot-EC (mass concentration ratio) in winter atmospheric PM2.5 and PM10 in Heze City are 10.04 and 8.00 respectively, and there is significant spatial difference (T-test, P<0.05). The analysis results of PMF (positive definite matrix factorization method) show that there are four main sources of carbon components in winter atmospheric PM2.5 and PM10 in Heze City, This includes two types of diesel vehicles (EC2 is the main carbon component in Class 1 emissions, defined as diesel vehicle-1; EC3 is the main carbon component in Class 1 emissions, defined as diesel vehicle-2), gasoline vehicles, biomass combustion, and coal-fired hybrid sources, with a contribution rate of 13.98%, 5.13%, 24.47%, 41.97% to the carbon component in atmospheric PM2.5, and 16.08%, 8.21%, 18.34%, and 47.35% to the carbon component in atmospheric PM10, respectively, The main sources of carbon in winter atmospheric PM2.5 and PM10 in Heze City are diesel vehicles, gasoline vehicles, biomass combustion, and coal combustion
{"title":"菏泽市冬季大气PM 2.5 和PM 10 中碳组分来源解析","authors":"张家营, 刘保双, 毕晓辉, 吴建会, 冯银厂, 张裕芬, 张勤勋","doi":"10.13198/J.ISSN.1001-6929.2017.03.11","DOIUrl":"https://doi.org/10.13198/J.ISSN.1001-6929.2017.03.11","url":null,"abstract":"为研究菏泽市冬季大气颗粒物中碳组分的污染特征和来源,于2016年1月采集菏泽市冬季大气PM2.5和PM10样品,基于热光反射法分析样品中OC(有机碳)、EC(元素碳)及8个碳组分[OC1、OC2、OC3、OC4、EC1、EC2、EC3和OP(裂解碳)]的含量,并计算得到ρ(Char-EC)(Char-EC为燃料燃烧后固体残渣中的EC)和ρ(Soot-EC)(Soot-EC为燃烧后气相挥发物质再凝结形成的EC),以定性识别大气颗粒物中碳组分的来源.结果表明,菏泽市冬季大气颗粒物样品中碳组分浓度处于较高水平,PM2.5中的ρ(OC)、ρ(EC)分别为26.34、9.22 μg/m3,PM10中ρ(OC)、ρ(EC)分别为31.82、10.71 μg/m3.采样期间大气PM2.5中碳组分(OC、EC、OC1、OC2、OC3、OC4、EC1、EC2、EC3、Char-EC、Soot-EC)浓度与PM10中相应各组分浓度的比值均大于0.5(0.60~0.90),表明碳组分多集中于细粒子(PM2.5).大气颗粒物样品中各碳组分浓度具有明显空间差异,各点位大气PM2.5和PM10中ρ(OC)均显著高于ρ(EC)(T检验,P < 0.05).菏泽市冬季大气PM2.5和PM10中Char-EC/Soot-EC(二者质量浓度之比)分别为10.04、8.00,并且存在显著的空间差异性(T检验,P < 0.05).PMF(正定矩阵因子分解法)解析结果表明,菏泽市冬季大气PM2.5和PM10中碳组分来源主要有4类,包括两类柴油车(1类排放的碳组分中以EC2为主,定义为柴油车-1;1类排放的碳组分中以EC3为主,定义为柴油车-2)、汽油车、生物质燃烧和燃煤混合源,对大气PM2.5中碳组分的分担率分别为13.98%、5.13%、24.47%、41.97%,对大气PM10中碳组分的分担率分别为16.08%、8.21%、18.34%、47.35%.可见,菏泽市冬季大气PM2.5和PM10中碳的主要来源是柴油车、汽油车、生物质燃烧和燃煤.","PeriodicalId":21108,"journal":{"name":"环境科学研究","volume":"30 1","pages":"1670-1679"},"PeriodicalIF":0.0,"publicationDate":"2017-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46636144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2015年北京采暖季城市森林内外SO 2 浓度的时空变化特征 The spatiotemporal variation characteristics of SO2 concentration inside and outside urban forests during the heating season in Beijing in 2015
Q2 Environmental Science Pub Date : 2017-11-25 DOI: 10.13198/j.issn.1001-6929.2017.03.08
蒋燕, 熊好琴, 鲁绍伟, 陈波, 李少宁
为探讨采暖季城市森林内外ρ(SO2)动态变化及差异性,基于西山国家森林公园林内空气质量监测站数据,结合北京市环境保护监测中心植物园监测站的实时数据,分析2015年采暖季城市森林内外ρ(SO2)变化和影响因素.结果表明:林内外ρ(SO2)日变化基本呈双峰双谷型,在09:00-11:00和20:00-22:00左右达到高峰;采样期间ρ(SO2)月变化呈不显著'V'型,最高值出现在1月,林内外分别为(25.8±9.2)和(31.7±23.4)μg/m3,最低值出现在11月,林内外分别为(19.0±5.2)和(13.0±11.2)μg/m3.林内ρ(SO2)在1-3月低于林外,11-12月高于林外,林内ρ(SO2)变化较林外平缓;气象条件对采暖季城市森林ρ(SO2)变化有重要影响:降水对ρ(SO2)消减效应明显,大风有驱散SO2的作用,同时受风向影响;ρ(SO2)和温度关系不显著(P=0.05,R < 0.40),但和空气相对湿度线性关系显著(α=0.05,Sig=0.00),林内受气象因素影响低于林外.研究显示,城市森林对气态污染物具有一定的缓冲、抵抗和吸收能力,因此应重视发展城市森林生态系统,充分发挥其生态效益,以提高城市大气环境质量.
To explore the heating season inside and outside urban forests ρ Based on the data from the air quality monitoring station in Xishan National Forest Park and the real-time data from the botanical garden monitoring station of the Beijing Environmental Protection Monitoring Center, the dynamic changes and differences of (SO2) were analyzed for the 2015 heating season in and out of urban forests ρ Changes and influencing factors of (SO2). The results indicate that: inside and outside the forest ρ The daily variation of (SO2) shows a double peak and double valley pattern, reaching its peak around 09:00 to 11:00 and 20:00 to 22:00; Sampling period ρ The monthly variation of (SO2) shows an insignificant 'V' pattern, with the highest value appearing in January. The values inside and outside the forest are (25.8 ± 9.2) and (31.7 ± 23.4), respectively μ G/m3, with the lowest value appearing in November, and the values inside and outside the forest are (19.0 ± 5.2) and (13.0 ± 11.2), respectively μ G/m3. In the forest ρ (SO2) is lower than outside the forest from January to March, higher than outside the forest from November to December, and within the forest ρ The change of SO2 is relatively gentle outside the forest; Meteorological conditions affecting urban forests during the heating season ρ Changes in (SO2) have a significant impact: precipitation has a significant impact on ρ (SO2) has a significant reduction effect, with strong winds having the effect of dispersing SO2 and being influenced by wind direction; ρ The relationship between (SO2) and temperature is not significant (P=0.05, R<0.40), but there is a significant linear relationship with relative humidity of the air( α= 0.05, Sig=0.00), the impact of meteorological factors inside the forest is lower than that outside the forest. Research has shown that urban forests have a certain buffering, resistance, and absorption capacity for gaseous pollutants. Therefore, attention should be paid to the development of urban forest ecosystems, and their ecological benefits should be fully utilized to improve the quality of urban atmospheric environment
{"title":"2015年北京采暖季城市森林内外SO 2 浓度的时空变化特征","authors":"蒋燕, 熊好琴, 鲁绍伟, 陈波, 李少宁","doi":"10.13198/j.issn.1001-6929.2017.03.08","DOIUrl":"https://doi.org/10.13198/j.issn.1001-6929.2017.03.08","url":null,"abstract":"为探讨采暖季城市森林内外ρ(SO2)动态变化及差异性,基于西山国家森林公园林内空气质量监测站数据,结合北京市环境保护监测中心植物园监测站的实时数据,分析2015年采暖季城市森林内外ρ(SO2)变化和影响因素.结果表明:林内外ρ(SO2)日变化基本呈双峰双谷型,在09:00-11:00和20:00-22:00左右达到高峰;采样期间ρ(SO2)月变化呈不显著'V'型,最高值出现在1月,林内外分别为(25.8±9.2)和(31.7±23.4)μg/m3,最低值出现在11月,林内外分别为(19.0±5.2)和(13.0±11.2)μg/m3.林内ρ(SO2)在1-3月低于林外,11-12月高于林外,林内ρ(SO2)变化较林外平缓;气象条件对采暖季城市森林ρ(SO2)变化有重要影响:降水对ρ(SO2)消减效应明显,大风有驱散SO2的作用,同时受风向影响;ρ(SO2)和温度关系不显著(P=0.05,R < 0.40),但和空气相对湿度线性关系显著(α=0.05,Sig=0.00),林内受气象因素影响低于林外.研究显示,城市森林对气态污染物具有一定的缓冲、抵抗和吸收能力,因此应重视发展城市森林生态系统,充分发挥其生态效益,以提高城市大气环境质量.","PeriodicalId":21108,"journal":{"name":"环境科学研究","volume":"30 1","pages":"1689-1696"},"PeriodicalIF":0.0,"publicationDate":"2017-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45902350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
环境科学研究
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1