Abdul Jabbar, M. Jamshed, Q. Abbasi, Muhammad Imran, Masood Ur-Rehman
Industry 4.0 is a digital paradigm that refers to the integration of cutting-edge computing and digital technologies into global industries because of which the state of manufacturing, communication, and control of smart industries has changed altogether. Industry 4.0 has been profoundly influenced by some major disruptive technologies such as the Internet of Things (IoT), smart sensors, machine learning and artificial intelligence, cloud computing, big data analytics, advanced robotics, augmented reality, 3D printing, and smart adaptive communication. In this review paper, we discuss physical layer-based solutions with a focus on high reliability and seamless connectivity for Industry 4.0 and beyond applications. First, we present a harmonized review of the industrial revolution journey, industrial communication infrastructure, key performance requirements, and potential sub-6-GHz frequency bands. Then, based on that, we present a comprehensive review of intelligent tunable dynamic antenna systems at sub-6 GHz as key enablers for next-generation smart industrial applications. State-of-the-art smart antenna techniques such as agile pattern reconfigurability using electrical components, machine learning- and artificial intelligence-based agile beam-scanning antennas, and beam-steerable dynamic metasurface antennas are thoroughly reviewed and emphasized. We unfolded the exciting prospects of reconfigurable dynamic antennas for intelligent and reliable connectivity in application scenarios of Industry 4.0 and beyond such as Industrial IoT and smart manufacturing.
{"title":"Leveraging the Role of Dynamic Reconfigurable Antennas in Viewpoint of Industry 4.0 and Beyond","authors":"Abdul Jabbar, M. Jamshed, Q. Abbasi, Muhammad Imran, Masood Ur-Rehman","doi":"10.34133/research.0110","DOIUrl":"https://doi.org/10.34133/research.0110","url":null,"abstract":"Industry 4.0 is a digital paradigm that refers to the integration of cutting-edge computing and digital technologies into global industries because of which the state of manufacturing, communication, and control of smart industries has changed altogether. Industry 4.0 has been profoundly influenced by some major disruptive technologies such as the Internet of Things (IoT), smart sensors, machine learning and artificial intelligence, cloud computing, big data analytics, advanced robotics, augmented reality, 3D printing, and smart adaptive communication. In this review paper, we discuss physical layer-based solutions with a focus on high reliability and seamless connectivity for Industry 4.0 and beyond applications. First, we present a harmonized review of the industrial revolution journey, industrial communication infrastructure, key performance requirements, and potential sub-6-GHz frequency bands. Then, based on that, we present a comprehensive review of intelligent tunable dynamic antenna systems at sub-6 GHz as key enablers for next-generation smart industrial applications. State-of-the-art smart antenna techniques such as agile pattern reconfigurability using electrical components, machine learning- and artificial intelligence-based agile beam-scanning antennas, and beam-steerable dynamic metasurface antennas are thoroughly reviewed and emphasized. We unfolded the exciting prospects of reconfigurable dynamic antennas for intelligent and reliable connectivity in application scenarios of Industry 4.0 and beyond such as Industrial IoT and smart manufacturing.","PeriodicalId":21120,"journal":{"name":"Research","volume":"6 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47019883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-03DOI: 10.1101/2022.11.02.514936
Bohua Zhang, Huaiyu Wu, Howuk Kim, Phoebe J. Welch, Ashley M. Cornett, Greyson E. Stocker, R. Nogueira, Jinwook Kim, G. Owens, P. Dayton, Zhen Xu, Chengzhi Shi, Xiaoning Jiang
This research aims to demonstrate a novel vortex ultrasound enabled endovascular thrombolysis method designed for treating cerebral venous sinus thrombosis (CVST). This is a topic of significant importance since current treatment modalities for CVST still fail in as many as 20-40% of the cases and the incidence of CVST has increased since the outbreak of the COVID-19 pandemic. Compared with conventional anticoagulant or thrombolytic drugs, sonothrombolysis has the potential to remarkably shorten the required treatment time owing to the direct clot targeting with acoustic waves. However, previously reported strategies for sonothrombolysis have not demonstrated clinically meaningful outcomes (e.g., recanalization within 30 minutes) in treating large, completely occluded veins or arteries. In this paper, we demonstrated a new vortex ultrasound technique for endovascular sonothrombolysis utilizing wave-matter interaction-induced shear stress to enhance the lytic rate substantially. Our in vitro experiment showed that the lytic rate was increased by at least 64.3 % compared with the nonvortex endovascular ultrasound treatment. A 3.1 g, 7.5 cm long, completely occluded in vitro 3D model of acute CVST was fully recanalized within 8 minutes with a record-high lytic rate of 237.5 mg/min for acute bovine clot in vitro. Furthermore, we confirmed that the vortex ultrasound causes no vessel wall damage over ex vivo bovine veins. This vortex ultrasound thrombolysis technique potentially presents a new life-saving tool for severe CVST cases that cannot be efficaciously treated using existing therapies.
{"title":"A Model of High-Speed Endovascular Sonothrombolysis with Vortex Ultrasound-Induced Shear Stress to Treat Cerebral Venous Sinus Thrombosis","authors":"Bohua Zhang, Huaiyu Wu, Howuk Kim, Phoebe J. Welch, Ashley M. Cornett, Greyson E. Stocker, R. Nogueira, Jinwook Kim, G. Owens, P. Dayton, Zhen Xu, Chengzhi Shi, Xiaoning Jiang","doi":"10.1101/2022.11.02.514936","DOIUrl":"https://doi.org/10.1101/2022.11.02.514936","url":null,"abstract":"This research aims to demonstrate a novel vortex ultrasound enabled endovascular thrombolysis method designed for treating cerebral venous sinus thrombosis (CVST). This is a topic of significant importance since current treatment modalities for CVST still fail in as many as 20-40% of the cases and the incidence of CVST has increased since the outbreak of the COVID-19 pandemic. Compared with conventional anticoagulant or thrombolytic drugs, sonothrombolysis has the potential to remarkably shorten the required treatment time owing to the direct clot targeting with acoustic waves. However, previously reported strategies for sonothrombolysis have not demonstrated clinically meaningful outcomes (e.g., recanalization within 30 minutes) in treating large, completely occluded veins or arteries. In this paper, we demonstrated a new vortex ultrasound technique for endovascular sonothrombolysis utilizing wave-matter interaction-induced shear stress to enhance the lytic rate substantially. Our in vitro experiment showed that the lytic rate was increased by at least 64.3 % compared with the nonvortex endovascular ultrasound treatment. A 3.1 g, 7.5 cm long, completely occluded in vitro 3D model of acute CVST was fully recanalized within 8 minutes with a record-high lytic rate of 237.5 mg/min for acute bovine clot in vitro. Furthermore, we confirmed that the vortex ultrasound causes no vessel wall damage over ex vivo bovine veins. This vortex ultrasound thrombolysis technique potentially presents a new life-saving tool for severe CVST cases that cannot be efficaciously treated using existing therapies.","PeriodicalId":21120,"journal":{"name":"Research","volume":"6 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42035795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-02DOI: 10.1101/2022.09.01.22279492
Y. Zhu, Jie Gu, Y. Qiu, S. Chen
The real-world protection rates of vaccination (VPRs) against the SARS-Cov-2 infection are critical in formulating future vaccination strategies against the virus. Based on a varying coefficient stochastic epidemic model, we obtain seven countries' real-world VPRs using daily epidemiological and vaccination data, and find that the VPRs improved with more vaccine doses. The average VPR of the full vaccination was 82% (SE: 4%) and 61% (SE: 3%) in the pre-Delta and Delta-dominated periods, respectively. The Omicron variant reduced the average VPR of the full vaccination to 39% (SE: 2%). However, the booster dose restored the VPR to 63% (SE: 1%) which was significantly above the 50% threshold in the Omicron-dominated period. Scenario analyses show that the existing vaccination strategies have significantly delayed and reduced the timing and the magnitude of the infection peaks, respectively, and doubling the existing booster coverage would lead to 29% fewer confirmed cases and 17% fewer deaths in the seven countries compared to the outcomes at the existing booster taking rates. These call for higher full vaccine and booster coverage for all countries.
{"title":"Real-World COVID-19 Vaccine Protection Rates against Infection in the Delta and Omicron Eras","authors":"Y. Zhu, Jie Gu, Y. Qiu, S. Chen","doi":"10.1101/2022.09.01.22279492","DOIUrl":"https://doi.org/10.1101/2022.09.01.22279492","url":null,"abstract":"The real-world protection rates of vaccination (VPRs) against the SARS-Cov-2 infection are critical in formulating future vaccination strategies against the virus. Based on a varying coefficient stochastic epidemic model, we obtain seven countries' real-world VPRs using daily epidemiological and vaccination data, and find that the VPRs improved with more vaccine doses. The average VPR of the full vaccination was 82% (SE: 4%) and 61% (SE: 3%) in the pre-Delta and Delta-dominated periods, respectively. The Omicron variant reduced the average VPR of the full vaccination to 39% (SE: 2%). However, the booster dose restored the VPR to 63% (SE: 1%) which was significantly above the 50% threshold in the Omicron-dominated period. Scenario analyses show that the existing vaccination strategies have significantly delayed and reduced the timing and the magnitude of the infection peaks, respectively, and doubling the existing booster coverage would lead to 29% fewer confirmed cases and 17% fewer deaths in the seven countries compared to the outcomes at the existing booster taking rates. These call for higher full vaccine and booster coverage for all countries.","PeriodicalId":21120,"journal":{"name":"Research","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49438844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
How to achieve high thermoelectric figure of merit is still a scientific challenge. By solving the Boltzmann transport equation, thermoelectric properties can be written as integrals of a single function, the transport distribution function (TDF). In this work, the shape effects of transport distribution function in various typical functional forms on thermoelectric properties of materials are systematically investigated. It is found that the asymmetry of TDF, characterized by skewness, can be used to describe universally the trend of thermoelectric properties. By defining symmetric and asymmetric TDF functions, a novel skewness is then constructed for thermoelectric applications. It is demonstrated, by comparison with ab initio calculations and experiments, that the proposed thermoelectric skewness not only perfectly captures the main feature of conventional skewness but also is able to predict the thermoelectric power accurately. This comparison confirms the unique feature of our proposed thermoelectric skewness, as well as its special role of connection between the statistics of TDF and thermoelectric properties of materials. It is also found that the thermoelectric performance can be enhanced by increasing the asymmetry of TDF. Finally, it is also interesting to find that the thermoelectric transport properties based on typical quantum statistics (Fermi-Dirac distributions) can be well described by typical shape parameter (skewness) for classical statistics.
{"title":"Asymmetrical Transport Distribution Function: Skewness as a Key to Enhance Thermoelectric Performance","authors":"Jin-Cheng Zheng","doi":"10.34133/2022/9867639","DOIUrl":"https://doi.org/10.34133/2022/9867639","url":null,"abstract":"How to achieve high thermoelectric figure of merit is still a scientific challenge. By solving the Boltzmann transport equation, thermoelectric properties can be written as integrals of a single function, the transport distribution function (TDF). In this work, the shape effects of transport distribution function in various typical functional forms on thermoelectric properties of materials are systematically investigated. It is found that the asymmetry of TDF, characterized by skewness, can be used to describe universally the trend of thermoelectric properties. By defining symmetric and asymmetric TDF functions, a novel skewness is then constructed for thermoelectric applications. It is demonstrated, by comparison with ab initio calculations and experiments, that the proposed thermoelectric skewness not only perfectly captures the main feature of conventional skewness but also is able to predict the thermoelectric power accurately. This comparison confirms the unique feature of our proposed thermoelectric skewness, as well as its special role of connection between the statistics of TDF and thermoelectric properties of materials. It is also found that the thermoelectric performance can be enhanced by increasing the asymmetry of TDF. Finally, it is also interesting to find that the thermoelectric transport properties based on typical quantum statistics (Fermi-Dirac distributions) can be well described by typical shape parameter (skewness) for classical statistics.","PeriodicalId":21120,"journal":{"name":"Research","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41426029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lan Sun, Yangmei Li, Yun Yu, Peiliang Wang, Sheng-tao Zhu, K. Wu, Yan Liu, Ruixing Wang, L. Min, Cha-Wei Chang
Metastasis and metabolic disorders contribute to most cancer deaths and are potential drug targets in cancer treatment. However, corresponding drugs inevitably induce myeloid suppression and gastrointestinal toxicity. Here, we report a nonpharmaceutical and noninvasive electromagnetic intervention technique that exhibited long-term inhibition of cancer cells. Firstly, we revealed that optical radiation at the specific wavelength of 3.6 μm (i.e., 83 THz) significantly increased binding affinity between DNA and histone via molecular dynamics simulations, providing a theoretical possibility for THz modulation- (THM-) based cancer cell intervention. Subsequent cell functional assays demonstrated that low-power 3.6 μm THz wave could successfully inhibit cancer cell migration by 50% and reduce glycolysis by 60%. Then, mRNA sequencing and assays for transposase-accessible chromatin using sequencing (ATAC-seq) indicated that low-power THM at 3.6 μm suppressed the genes associated with glycolysis and migration by reducing the chromatin accessibility of certain gene loci. Furthermore, THM at 3.6 μm on HCT-116 cancer cells reduced the liver metastasis by 60% in a metastatic xenograft mouse model by splenic injection, successfully validated the inhibition of cancer cell migration by THM in vivo. Together, this work provides a new paradigm for electromagnetic irradiation-induced epigenetic changes and represents a theoretical basis for possible innovative therapeutic applications of THM as the future of cancer treatments.
{"title":"Inhibition of Cancer Cell Migration and Glycolysis by Terahertz Wave Modulation via Altered Chromatin Accessibility","authors":"Lan Sun, Yangmei Li, Yun Yu, Peiliang Wang, Sheng-tao Zhu, K. Wu, Yan Liu, Ruixing Wang, L. Min, Cha-Wei Chang","doi":"10.34133/2022/9860679","DOIUrl":"https://doi.org/10.34133/2022/9860679","url":null,"abstract":"Metastasis and metabolic disorders contribute to most cancer deaths and are potential drug targets in cancer treatment. However, corresponding drugs inevitably induce myeloid suppression and gastrointestinal toxicity. Here, we report a nonpharmaceutical and noninvasive electromagnetic intervention technique that exhibited long-term inhibition of cancer cells. Firstly, we revealed that optical radiation at the specific wavelength of 3.6 μm (i.e., 83 THz) significantly increased binding affinity between DNA and histone via molecular dynamics simulations, providing a theoretical possibility for THz modulation- (THM-) based cancer cell intervention. Subsequent cell functional assays demonstrated that low-power 3.6 μm THz wave could successfully inhibit cancer cell migration by 50% and reduce glycolysis by 60%. Then, mRNA sequencing and assays for transposase-accessible chromatin using sequencing (ATAC-seq) indicated that low-power THM at 3.6 μm suppressed the genes associated with glycolysis and migration by reducing the chromatin accessibility of certain gene loci. Furthermore, THM at 3.6 μm on HCT-116 cancer cells reduced the liver metastasis by 60% in a metastatic xenograft mouse model by splenic injection, successfully validated the inhibition of cancer cell migration by THM in vivo. Together, this work provides a new paradigm for electromagnetic irradiation-induced epigenetic changes and represents a theoretical basis for possible innovative therapeutic applications of THM as the future of cancer treatments.","PeriodicalId":21120,"journal":{"name":"Research","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48028156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongfa Cheng, Li Li, Zunyu Liu, Shuwen Yan, Feng Cheng, Yang Yue, Shuangfeng Jia, Jianbo Wang, Yihua Gao, Luying Li
The development of smart wearable electronic devices puts forward higher requirements for future flexible electronics. The design of highly sensitive and high-performance flexible pressure sensors plays an important role in promoting the development of flexible electronic devices. Recently, MXenes with excellent properties have shown great potential in the field of flexible electronics. However, the easy-stacking inclination of nanomaterials limits the development of their excellent properties and the performance improvement of related pressure sensors. Traditional methods for constructing 3D porous structures have the disadvantages of complexity, long period, and difficulty of scalability. Here, the gas foaming strategy is adopted to rapidly construct 3D porous MXene aerogels. Combining the excellent surface properties of MXenes with the porous structure of aerogel, the prepared MXene aerogels are successfully used in high-performance multifunctional flexible pressure sensors with high sensitivity (306 kPa-1), wide detection range (2.3 Pa to 87.3 kPa), fast response time (35 ms), and ultrastability (>20,000 cycles), as well as self-healing, waterproof, cold-resistant, and heat-resistant capabilities. MXene aerogel pressure sensors show great potential in harsh environment detection, behavior monitoring, equipment recovery, pressure array identification, remote monitoring, and human-computer interaction applications.
{"title":"3D Porous MXene Aerogel through Gas Foaming for Multifunctional Pressure Sensor","authors":"Yongfa Cheng, Li Li, Zunyu Liu, Shuwen Yan, Feng Cheng, Yang Yue, Shuangfeng Jia, Jianbo Wang, Yihua Gao, Luying Li","doi":"10.34133/2022/9843268","DOIUrl":"https://doi.org/10.34133/2022/9843268","url":null,"abstract":"The development of smart wearable electronic devices puts forward higher requirements for future flexible electronics. The design of highly sensitive and high-performance flexible pressure sensors plays an important role in promoting the development of flexible electronic devices. Recently, MXenes with excellent properties have shown great potential in the field of flexible electronics. However, the easy-stacking inclination of nanomaterials limits the development of their excellent properties and the performance improvement of related pressure sensors. Traditional methods for constructing 3D porous structures have the disadvantages of complexity, long period, and difficulty of scalability. Here, the gas foaming strategy is adopted to rapidly construct 3D porous MXene aerogels. Combining the excellent surface properties of MXenes with the porous structure of aerogel, the prepared MXene aerogels are successfully used in high-performance multifunctional flexible pressure sensors with high sensitivity (306 kPa-1), wide detection range (2.3 Pa to 87.3 kPa), fast response time (35 ms), and ultrastability (>20,000 cycles), as well as self-healing, waterproof, cold-resistant, and heat-resistant capabilities. MXene aerogel pressure sensors show great potential in harsh environment detection, behavior monitoring, equipment recovery, pressure array identification, remote monitoring, and human-computer interaction applications.","PeriodicalId":21120,"journal":{"name":"Research","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42928232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ideal single-cell viscometer has remained unachieved, leaving a gap in current palette of single-cell nanotools. Information of single-cell viscosity could contribute to our knowledge of fundamental biological processes, e.g., mass diffusion, biochemical interaction, and cellular responses to many diseases and pathologies. Although advances have been made to this end, existing methods generally suffer from limitations, e.g., low spatiotemporal resolution. Here, we describe a high spatiotemporal iontronic single-cell viscometer that operates upon a patch clamp integrated with double-barreled nanopores separated by a septum of ca. 32 nm. The system enables reversible electroosmotic manipulation of the adjacent small fluid bridging two nanopores, the viscous alternation of which could be sensitively monitored by the ionic responses. In practical cellular studies, significantly, our findings reveal not only the less deviated medium viscosities than those of lysosomes and mitochondria but also the highest viscosities in the near-nuclear region than those of mitochondrion-dense and lysosome-dense regions. This work has provided an accessible single-cell viscometer and enriched the armory of single-cell nanotools.
{"title":"A High Spatiotemporal Iontronic Single-Cell Viscometer","authors":"Tianyang Zhang, Siyuan Yu, Bing Wang, Yi-Wei Xu, Xiao-Mei Shi, Weiwei Zhao, Dechen Jiang, Hongyuan Chen, Jingjuan Xu","doi":"10.34133/2022/9859101","DOIUrl":"https://doi.org/10.34133/2022/9859101","url":null,"abstract":"Ideal single-cell viscometer has remained unachieved, leaving a gap in current palette of single-cell nanotools. Information of single-cell viscosity could contribute to our knowledge of fundamental biological processes, e.g., mass diffusion, biochemical interaction, and cellular responses to many diseases and pathologies. Although advances have been made to this end, existing methods generally suffer from limitations, e.g., low spatiotemporal resolution. Here, we describe a high spatiotemporal iontronic single-cell viscometer that operates upon a patch clamp integrated with double-barreled nanopores separated by a septum of ca. 32 nm. The system enables reversible electroosmotic manipulation of the adjacent small fluid bridging two nanopores, the viscous alternation of which could be sensitively monitored by the ionic responses. In practical cellular studies, significantly, our findings reveal not only the less deviated medium viscosities than those of lysosomes and mitochondria but also the highest viscosities in the near-nuclear region than those of mitochondrion-dense and lysosome-dense regions. This work has provided an accessible single-cell viscometer and enriched the armory of single-cell nanotools.","PeriodicalId":21120,"journal":{"name":"Research","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44052696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fangfang Liu, Yang Mao, Jiaqi Yan, Yu Sun, Z. Xie, Fei Li, Fei Yan, Hongbo Zhang, Pengfei Zhang
Rupture or erosion of inflammatory atherosclerotic vulnerable plaque is essential to acute coronary events, while the target intervene of vulnerable plaque is very challenging, due to the relatively small volume, high hemodynamic shear stress, and multifactorial nature of the lesion foci. Herein, we utilize the biological functionality of neutrophil and the versatility of microbubble in the acoustic field, to form Neu-balloon through CD11b antibody binding. The Neu-balloon inherits the advantage of neutrophils on firming the endothelium adhesion even at shear stress up to 16 dyne/cm2 and also maintains the acoustic enhancement property from the microbubble, to accumulate at atherosclerotic lesions under acoustic in an atherosclerotic Apo E−/− mice model. Interestingly, Neo-balloon also has high and broad drug loading capacity, which enables the delivery of indocyanine green and miR-126a-5p into vulnerable plagues in vivo. Overall, the bionic Neu-balloon holds great potential to boost on-demand drug transportation into plaques in vivo.
{"title":"Bionic Microbubble Neutrophil Composite for Inflammation-Responsive Atherosclerotic Vulnerable Plaque Pluripotent Intervention","authors":"Fangfang Liu, Yang Mao, Jiaqi Yan, Yu Sun, Z. Xie, Fei Li, Fei Yan, Hongbo Zhang, Pengfei Zhang","doi":"10.34133/2022/9830627","DOIUrl":"https://doi.org/10.34133/2022/9830627","url":null,"abstract":"Rupture or erosion of inflammatory atherosclerotic vulnerable plaque is essential to acute coronary events, while the target intervene of vulnerable plaque is very challenging, due to the relatively small volume, high hemodynamic shear stress, and multifactorial nature of the lesion foci. Herein, we utilize the biological functionality of neutrophil and the versatility of microbubble in the acoustic field, to form Neu-balloon through CD11b antibody binding. The Neu-balloon inherits the advantage of neutrophils on firming the endothelium adhesion even at shear stress up to 16 dyne/cm2 and also maintains the acoustic enhancement property from the microbubble, to accumulate at atherosclerotic lesions under acoustic in an atherosclerotic Apo E−/− mice model. Interestingly, Neo-balloon also has high and broad drug loading capacity, which enables the delivery of indocyanine green and miR-126a-5p into vulnerable plagues in vivo. Overall, the bionic Neu-balloon holds great potential to boost on-demand drug transportation into plaques in vivo.","PeriodicalId":21120,"journal":{"name":"Research","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48979505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}