Pub Date : 2025-01-10eCollection Date: 2025-01-01DOI: 10.34133/research.0587
Hao Chi Zhang, Sen Gong, Le Peng Zhang, Yaxin Zhang, Tie Jun Cui
Electromagnetic (EM) metamaterials represent a cutting-edge field that achieves anomalously macroscopic properties through artificial design and arrangement of microstructure arrays to freely manipulate EM fields and waves in desired ways. The unit cell of a microstructure array is also called a meta-atom, which can construct effective medium parameters that do not exist in traditional materials or are difficult to realize with traditional technologies. By deep integration with digital information, the meta-atom is evolved to a digital meta-atom, leading to the emergence of information metamaterials. Information metamaterials break the inherent barriers between the EM and digital domains, providing a physical platform for controlling EM waves and modulating digital information simultaneously. The concepts of meta-atoms and metamaterials are also introduced to high-frequency integrated circuit designs to address issues that cannot be solved by traditional methods, since lumped-parameter models become unsustainable at microscopic scales. By incorporating several meta-atoms to form a metachip, precise manipulation of the EM field distribution can be achieved at microscopic scales. In this perspective, we summarize the physical connotations and main classifications of meta-atoms and briefly discuss their future development trends. Through this article, we hope to draw more research attention to explore the potential values of meta-atoms, thereby opening up a broader stage for the in-depth development of metamaterials.
{"title":"Meta-atoms: From Metamaterials to Metachips.","authors":"Hao Chi Zhang, Sen Gong, Le Peng Zhang, Yaxin Zhang, Tie Jun Cui","doi":"10.34133/research.0587","DOIUrl":"10.34133/research.0587","url":null,"abstract":"<p><p>Electromagnetic (EM) metamaterials represent a cutting-edge field that achieves anomalously macroscopic properties through artificial design and arrangement of microstructure arrays to freely manipulate EM fields and waves in desired ways. The unit cell of a microstructure array is also called a meta-atom, which can construct effective medium parameters that do not exist in traditional materials or are difficult to realize with traditional technologies. By deep integration with digital information, the meta-atom is evolved to a digital meta-atom, leading to the emergence of information metamaterials. Information metamaterials break the inherent barriers between the EM and digital domains, providing a physical platform for controlling EM waves and modulating digital information simultaneously. The concepts of meta-atoms and metamaterials are also introduced to high-frequency integrated circuit designs to address issues that cannot be solved by traditional methods, since lumped-parameter models become unsustainable at microscopic scales. By incorporating several meta-atoms to form a metachip, precise manipulation of the EM field distribution can be achieved at microscopic scales. In this perspective, we summarize the physical connotations and main classifications of meta-atoms and briefly discuss their future development trends. Through this article, we hope to draw more research attention to explore the potential values of meta-atoms, thereby opening up a broader stage for the in-depth development of metamaterials.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0587"},"PeriodicalIF":11.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10eCollection Date: 2025-01-01DOI: 10.34133/research.0580
Jun Xie, Xuanyu Shan, Ningbo Zou, Ya Lin, Zhongqiang Wang, Ye Tao, Xiaoning Zhao, Haiyang Xu, Yichun Liu
The optoelectronic memristor integrates the multifunctionalities of image sensing, storage, and processing, which has been considered as the leading candidate to construct novel neuromorphic visual system. In particular, memristive materials with all-optical modulation and complementary metal oxide semiconductor (CMOS) compatibility are highly desired for energy-efficient image perception. As a p-type oxide material, Cu2O exhibits outstanding theoretical photoelectric conversion efficiency and broadband photoresponse. In this work, an all-optically controlled memristor based on the Cu2O/TiO2/sodium alginate nanocomposite film is developed. Optical potentiation and depression behaviors have been implemented by utilizing visible (680 nm) and ultraviolet (350 nm) light. Furthermore, a 7 × 9 optoelectronic memristive array with satisfactory device variation and environment stability is constructed to emulate the image preprocessing function in biological retina. The random noise can be reduced effectively by utilizing bidirectional optical input. Beneficial from the image preprocessing function, the accuracy of handwritten digit classification increases more than 60%. Our work presents a pathway toward high-efficient neuromorphic visual system and promotes the development of artificial intelligence technology.
{"title":"All-Optically Controlled Memristive Device Based on Cu<sub>2</sub>O/TiO<sub>2</sub> Heterostructure Toward Neuromorphic Visual System.","authors":"Jun Xie, Xuanyu Shan, Ningbo Zou, Ya Lin, Zhongqiang Wang, Ye Tao, Xiaoning Zhao, Haiyang Xu, Yichun Liu","doi":"10.34133/research.0580","DOIUrl":"10.34133/research.0580","url":null,"abstract":"<p><p>The optoelectronic memristor integrates the multifunctionalities of image sensing, storage, and processing, which has been considered as the leading candidate to construct novel neuromorphic visual system. In particular, memristive materials with all-optical modulation and complementary metal oxide semiconductor (CMOS) compatibility are highly desired for energy-efficient image perception. As a p-type oxide material, Cu<sub>2</sub>O exhibits outstanding theoretical photoelectric conversion efficiency and broadband photoresponse. In this work, an all-optically controlled memristor based on the Cu<sub>2</sub>O/TiO<sub>2</sub>/sodium alginate nanocomposite film is developed. Optical potentiation and depression behaviors have been implemented by utilizing visible (680 nm) and ultraviolet (350 nm) light. Furthermore, a 7 × 9 optoelectronic memristive array with satisfactory device variation and environment stability is constructed to emulate the image preprocessing function in biological retina. The random noise can be reduced effectively by utilizing bidirectional optical input. Beneficial from the image preprocessing function, the accuracy of handwritten digit classification increases more than 60%. Our work presents a pathway toward high-efficient neuromorphic visual system and promotes the development of artificial intelligence technology.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0580"},"PeriodicalIF":11.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142972173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08eCollection Date: 2025-01-01DOI: 10.34133/research.0549
Sen Meng, Hao Liu, Jiayu Xu, Chuyin Deng, Xingyou Qian, Sufang Chu, Wei-Guo Zhu, Jiuling Zhu, Hongmei Yong, Zhongwei Li, Jin Bai
Numerous diseases have been connected to protein arginine methylations mediated by protein arginine methyltransferase 5 (PRMT5). Clinical investigations of the PRMT5-specific inhibitor GSK3326595 are currently being conducted, and the results are promising for preventing cancers. However, the detailed mechanism of PRMT5 promoting colorectal cancer (CRC) malignant progression remains unclear. Here, we found that PRMT5 directly catalyzes AlkB homologue 5 (ALKBH5) symmetric dimethylation at the R316 residue (meR316-ALKBH5), which enhances TRIM28-mediated ALKBH5 ubiquitination degradation. Then, an ALKBH5 decrease attenuates ALKBH5-mediated m6A demethylation on the CD276 transcript 3' untranslated region, which increases CD276 messenger RNA stability and its expression in CRC cells. Furthermore, a CD276 expression increase facilitates CRC immune evasion by inhibiting cytotoxic T-cell functions. Moreover, we revealed that PRMT5-mediated meR316-ALKBH5 activates CD276 transcription by increasing its messenger RNA m6A modification to increase CRC immune evasion in vitro and in vivo. Furthermore, we consistently showed a strong association between meR316-ALKBH5 and poor outcomes in patients with CRC. Finally, we demonstrated that combining an anti-PD1 antibody with the PRMT5 inhibitor GSK3326595 markedly halts the progression of CRC. Our findings could serve as a basis for the development of a PRMT5-meR316-ALKBH5-CD276 axis-targeting treatment approach for CRC.
{"title":"PRMT5-Mediated ALKBH5 Methylation Promotes Colorectal Cancer Immune Evasion via Increasing CD276 Expression.","authors":"Sen Meng, Hao Liu, Jiayu Xu, Chuyin Deng, Xingyou Qian, Sufang Chu, Wei-Guo Zhu, Jiuling Zhu, Hongmei Yong, Zhongwei Li, Jin Bai","doi":"10.34133/research.0549","DOIUrl":"https://doi.org/10.34133/research.0549","url":null,"abstract":"<p><p>Numerous diseases have been connected to protein arginine methylations mediated by protein arginine methyltransferase 5 (PRMT5). Clinical investigations of the PRMT5-specific inhibitor GSK3326595 are currently being conducted, and the results are promising for preventing cancers. However, the detailed mechanism of PRMT5 promoting colorectal cancer (CRC) malignant progression remains unclear. Here, we found that PRMT5 directly catalyzes AlkB homologue 5 (ALKBH5) symmetric dimethylation at the R316 residue (meR316-ALKBH5), which enhances TRIM28-mediated ALKBH5 ubiquitination degradation. Then, an ALKBH5 decrease attenuates ALKBH5-mediated m6A demethylation on the CD276 transcript 3' untranslated region, which increases CD276 messenger RNA stability and its expression in CRC cells. Furthermore, a CD276 expression increase facilitates CRC immune evasion by inhibiting cytotoxic T-cell functions. Moreover, we revealed that PRMT5-mediated meR316-ALKBH5 activates CD276 transcription by increasing its messenger RNA m6A modification to increase CRC immune evasion in vitro and in vivo. Furthermore, we consistently showed a strong association between meR316-ALKBH5 and poor outcomes in patients with CRC. Finally, we demonstrated that combining an anti-PD1 antibody with the PRMT5 inhibitor GSK3326595 markedly halts the progression of CRC. Our findings could serve as a basis for the development of a PRMT5-meR316-ALKBH5-CD276 axis-targeting treatment approach for CRC.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0549"},"PeriodicalIF":11.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142954131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The presence of Hg2+ causes substantial stress to plants, adversely affecting growth and health by disrupting cell cycle divisions, photosynthesis, and ionic homeostasis. Accurate visualization of the spatiotemporal distribution of Hg2+ in plant tissues is crucial for the management of Hg pollution; however, the related research is still at its early stage. Herein, a small-molecule amphiphilic fluorescent probe (termed LJTP2) was developed for the specific detection of Hg2+ with a high sensitivity (~16 nM). Fluorescent imaging applications with LJTP2 not only detected the dynamic distribution of Hg2+ within plant cells at the subcellular level but also enabled the understanding of cell membrane health under Hg2+ stress. This study introduces a valuable imaging tool for elucidating the molecular mechanism of Hg2+ stress in plants, demonstrating the potential of the application of small-molecule fluorescent probes in plant science.
{"title":"Visualization of Hg<sup>2+</sup> Stress on Plant Health at the Subcellular Level Revealed by a Highly Sensitive Fluorescent Sensor.","authors":"Sumeera Asghar, Zhenyang Yu, Zheng Zhu, Dengyue Zheng, Zimo Zhao, Yuming Xu, Xiao Liu, Chao Yuan, Yan Li, Wei Wang, Jianfeng Xu, Huailong Teng, Jun Li, Wen-Chao Yang, Chunli Chen","doi":"10.34133/research.0570","DOIUrl":"https://doi.org/10.34133/research.0570","url":null,"abstract":"<p><p>The presence of Hg<sup>2+</sup> causes substantial stress to plants, adversely affecting growth and health by disrupting cell cycle divisions, photosynthesis, and ionic homeostasis. Accurate visualization of the spatiotemporal distribution of Hg<sup>2+</sup> in plant tissues is crucial for the management of Hg pollution; however, the related research is still at its early stage. Herein, a small-molecule amphiphilic fluorescent probe (termed <b>LJTP2</b>) was developed for the specific detection of Hg<sup>2+</sup> with a high sensitivity (~16 nM). Fluorescent imaging applications with <b>LJTP2</b> not only detected the dynamic distribution of Hg<sup>2+</sup> within plant cells at the subcellular level but also enabled the understanding of cell membrane health under Hg<sup>2+</sup> stress. This study introduces a valuable imaging tool for elucidating the molecular mechanism of Hg<sup>2+</sup> stress in plants, demonstrating the potential of the application of small-molecule fluorescent probes in plant science.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0570"},"PeriodicalIF":11.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704093/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142954135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-07eCollection Date: 2025-01-01DOI: 10.34133/research.0574
Chao Wang, Bing Yu, Han Zhou, Huanting Li, Shifang Li, Xiaolu Li, Wentao Wang, Yugong Feng, Tao Yu
Transfer RNA-derived small RNAs, a recently identified class of small noncoding RNAs, play a crucial role in regulating gene expression and are implicated in cerebrovascular diseases. However, the specific biological roles and mechanisms of transfer RNA-derived small RNAs in intracranial aneurysms (IAs) remain unclear. In this study, we identified that the transfer RNA-Asp-GTC derived fragment (tRF-AspGTC) is highly expressed in the IA tissues of both humans and mice. tRF-AspGTC promotes IA formation by facilitating the phenotypic switching of vascular smooth muscle cells, increasing of matrix metalloproteinase 9 expression, and inducing of oxidative stress and inflammatory responses. Mechanistically, tRF-AspGTC binds to galectin-3, inhibiting tripartite motif 29-mediated ubiquitination and stabilizing galectin-3. This stabilization activates the toll-like receptor 4/MyD88/nuclear factor kappa B pathway, further driving phenotypic switching and inflammation. Clinically, circulating exosomal tRF-AspGTC demonstrates strong diagnostic efficacy for IAs and is identified as an independent risk factor for IA occurrence. These findings highlight the potential of tRF-AspGTC as a promising diagnostic biomarker and therapeutic target for IAs.
{"title":"tRF-AspGTC Promotes Intracranial Aneurysm Formation by Controlling TRIM29-Mediated Galectin-3 Ubiquitination.","authors":"Chao Wang, Bing Yu, Han Zhou, Huanting Li, Shifang Li, Xiaolu Li, Wentao Wang, Yugong Feng, Tao Yu","doi":"10.34133/research.0574","DOIUrl":"https://doi.org/10.34133/research.0574","url":null,"abstract":"<p><p>Transfer RNA-derived small RNAs, a recently identified class of small noncoding RNAs, play a crucial role in regulating gene expression and are implicated in cerebrovascular diseases. However, the specific biological roles and mechanisms of transfer RNA-derived small RNAs in intracranial aneurysms (IAs) remain unclear. In this study, we identified that the transfer RNA-Asp-GTC derived fragment (tRF-AspGTC) is highly expressed in the IA tissues of both humans and mice. tRF-AspGTC promotes IA formation by facilitating the phenotypic switching of vascular smooth muscle cells, increasing of matrix metalloproteinase 9 expression, and inducing of oxidative stress and inflammatory responses. Mechanistically, tRF-AspGTC binds to galectin-3, inhibiting tripartite motif 29-mediated ubiquitination and stabilizing galectin-3. This stabilization activates the toll-like receptor 4/MyD88/nuclear factor kappa B pathway, further driving phenotypic switching and inflammation. Clinically, circulating exosomal tRF-AspGTC demonstrates strong diagnostic efficacy for IAs and is identified as an independent risk factor for IA occurrence. These findings highlight the potential of tRF-AspGTC as a promising diagnostic biomarker and therapeutic target for IAs.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0574"},"PeriodicalIF":11.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704088/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142954133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-02eCollection Date: 2025-01-01DOI: 10.34133/research.0545
Kaixiang Zhu, Deepak Rohila, Yuanling Zhao, Dmytro Shytikov, Lize Wu, Fan Zhao, Shurong Hu, Qin Xu, Xuexiao Jin, Linrong Lu
Protein phosphatase 2A (PP2A) is one of the most abundant serine/threonine phosphatases and plays critical roles in regulating cell fate and function. We previously showed that PP2A regulates the differentiation of CD4+ T cells and the development of thymocytes. Nevertheless, its role in CD8+ T cells remains elusive. By ablating the catalytic subunit α (Cα) of PP2A in CD8+ T cells, we revealed the essential role of PP2A in promoting the effector functions of CD8+ T cells. Notably, PP2A Cα-deficient CD8+ T cells exhibit reduced proliferation and decreased cytokine production upon stimulation in vitro. In vivo, mice lacking PP2A Cα in T cells displayed defective immune responses against lymphocytic choriomeningitis virus infection, associated with reduced CD8+ T cell expansion and decreased cytokine production. Consistently, the ablation of the PP2A Cα subunit in CD8+ T cells results in attenuated antitumor activity in mice. There is a notable decrease in the infiltration of PP2A Cα-deficient CD8+ T cells within the tumor microenvironment, and the cells that do infiltrate exhibit diminished effector functions. Mechanistically, PP2A Cα deficiency impedes CD28-induced AKT Ser473 phosphorylation, thus impairing CD8+ T cell costimulation signal. Collectively, our findings underscore the critical role of phosphatase PP2A as a propeller for CD28-mediated costimulation signaling in CD8+ T cell effector function by fine-tuning T cell activation.
{"title":"Protein Phosphatase 2A Promotes CD8<sup>+</sup> T Cell Effector Function through the Augmentation of CD28 Costimulation.","authors":"Kaixiang Zhu, Deepak Rohila, Yuanling Zhao, Dmytro Shytikov, Lize Wu, Fan Zhao, Shurong Hu, Qin Xu, Xuexiao Jin, Linrong Lu","doi":"10.34133/research.0545","DOIUrl":"https://doi.org/10.34133/research.0545","url":null,"abstract":"<p><p>Protein phosphatase 2A (PP2A) is one of the most abundant serine/threonine phosphatases and plays critical roles in regulating cell fate and function. We previously showed that PP2A regulates the differentiation of CD4<sup>+</sup> T cells and the development of thymocytes. Nevertheless, its role in CD8<sup>+</sup> T cells remains elusive. By ablating the catalytic subunit α (Cα) of PP2A in CD8<sup>+</sup> T cells, we revealed the essential role of PP2A in promoting the effector functions of CD8<sup>+</sup> T cells. Notably, PP2A Cα-deficient CD8<sup>+</sup> T cells exhibit reduced proliferation and decreased cytokine production upon stimulation in vitro. In vivo, mice lacking PP2A Cα in T cells displayed defective immune responses against lymphocytic choriomeningitis virus infection, associated with reduced CD8<sup>+</sup> T cell expansion and decreased cytokine production. Consistently, the ablation of the PP2A Cα subunit in CD8<sup>+</sup> T cells results in attenuated antitumor activity in mice. There is a notable decrease in the infiltration of PP2A Cα-deficient CD8<sup>+</sup> T cells within the tumor microenvironment, and the cells that do infiltrate exhibit diminished effector functions. Mechanistically, PP2A Cα deficiency impedes CD28-induced AKT Ser<sup>473</sup> phosphorylation, thus impairing CD8<sup>+</sup> T cell costimulation signal. Collectively, our findings underscore the critical role of phosphatase PP2A as a propeller for CD28-mediated costimulation signaling in CD8<sup>+</sup> T cell effector function by fine-tuning T cell activation.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0545"},"PeriodicalIF":11.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694323/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-26eCollection Date: 2024-01-01DOI: 10.34133/research.0518
Jinhui Tang, Chang Gao, Yi Li, Jie Xu, Jiale Huang, Disheng Xu, Zhangli Hu, Fangyu Han, Jiaping Liu
Concrete is the most widely used and highest-volume basic material in the word today. Enhancing its toughness, including tensile strength and deformation resistance, can boost the structural load-bearing capacity, minimize cracking, and decrease the amount of concrete and steel required in engineering projects. These advancements are crucial for the safety, durability, energy efficiency, and emission reduction of structural engineering. This paper systematically summarized the brittle characteristics of concrete and the various structural factors influencing its performance at multiple scales, including molecular, nano-micro, and meso-macro levels. It outlines the principles and impacts of concrete toughening and crack prevention from both internal and external perspectives, and discusses recent advancements and engineering applications of toughened concrete. In situ polymerization and fiber reinforcement are currently practical and highly efficient methods for enhancing concrete toughness. These techniques can boost the matrix's flexural strength by 30% and double its fracture energy, achieving an ultimate tensile strength of up to 20 MPa and a tensile strain exceeding 0.6%. In the future, achieving breakthroughs in concrete toughening will probably rely heavily on the seamless integration and effective synergy of multi-scale toughening methods.
{"title":"A Review on Multi-Scale Toughening and Regulating Methods for Modern Concrete: From Toughening Theory to Practical Engineering Application.","authors":"Jinhui Tang, Chang Gao, Yi Li, Jie Xu, Jiale Huang, Disheng Xu, Zhangli Hu, Fangyu Han, Jiaping Liu","doi":"10.34133/research.0518","DOIUrl":"10.34133/research.0518","url":null,"abstract":"<p><p>Concrete is the most widely used and highest-volume basic material in the word today. Enhancing its toughness, including tensile strength and deformation resistance, can boost the structural load-bearing capacity, minimize cracking, and decrease the amount of concrete and steel required in engineering projects. These advancements are crucial for the safety, durability, energy efficiency, and emission reduction of structural engineering. This paper systematically summarized the brittle characteristics of concrete and the various structural factors influencing its performance at multiple scales, including molecular, nano-micro, and meso-macro levels. It outlines the principles and impacts of concrete toughening and crack prevention from both internal and external perspectives, and discusses recent advancements and engineering applications of toughened concrete. In situ polymerization and fiber reinforcement are currently practical and highly efficient methods for enhancing concrete toughness. These techniques can boost the matrix's flexural strength by 30% and double its fracture energy, achieving an ultimate tensile strength of up to 20 MPa and a tensile strain exceeding 0.6%. In the future, achieving breakthroughs in concrete toughening will probably rely heavily on the seamless integration and effective synergy of multi-scale toughening methods.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0518"},"PeriodicalIF":11.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670900/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142897272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-23eCollection Date: 2024-01-01DOI: 10.34133/research.0560
Ke Wu, Xia Zhu, Xiaoguang Zhao, Stephan W Anderson, Xin Zhang
Metamaterials hold great potential to enhance the imaging performance of magnetic resonance imaging (MRI) as auxiliary devices, due to their unique ability to confine and enhance electromagnetic fields. Despite their promise, the current implementation of metamaterials faces obstacles for practical clinical adoption due to several notable limitations, including their bulky and rigid structures, deviations from optimal resonance frequency, and inevitable interference with the radiofrequency (RF) transmission field in MRI. Herein, we address these restrictions by introducing a flexible and smart metamaterial that enhances sensitivity by conforming to patient anatomies while ensuring comfort during MRI procedures. The proposed metamaterial selectively amplifies the magnetic field during the RF reception phase by passively sensing the excitation signal strength, remaining "off" during the RF transmission phase. Additionally, the metamaterial can be readily tuned to achieve a precise frequency match with the MRI system through a controlling circuit. The metamaterial presented here paves the way for the widespread utilization of metamaterials in clinical MRI, thereby translating this promising technology to the MRI bedside.
{"title":"Conformal Metamaterials with Active Tunability and Self-Adaptivity for Magnetic Resonance Imaging.","authors":"Ke Wu, Xia Zhu, Xiaoguang Zhao, Stephan W Anderson, Xin Zhang","doi":"10.34133/research.0560","DOIUrl":"10.34133/research.0560","url":null,"abstract":"<p><p>Metamaterials hold great potential to enhance the imaging performance of magnetic resonance imaging (MRI) as auxiliary devices, due to their unique ability to confine and enhance electromagnetic fields. Despite their promise, the current implementation of metamaterials faces obstacles for practical clinical adoption due to several notable limitations, including their bulky and rigid structures, deviations from optimal resonance frequency, and inevitable interference with the radiofrequency (RF) transmission field in MRI. Herein, we address these restrictions by introducing a flexible and smart metamaterial that enhances sensitivity by conforming to patient anatomies while ensuring comfort during MRI procedures. The proposed metamaterial selectively amplifies the magnetic field during the RF reception phase by passively sensing the excitation signal strength, remaining \"off\" during the RF transmission phase. Additionally, the metamaterial can be readily tuned to achieve a precise frequency match with the MRI system through a controlling circuit. The metamaterial presented here paves the way for the widespread utilization of metamaterials in clinical MRI, thereby translating this promising technology to the MRI bedside.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0560"},"PeriodicalIF":11.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-23eCollection Date: 2024-01-01DOI: 10.34133/research.0566
Yue Li, Yingjie Wu, Qiang He
Living microorganisms can perform directed migration for foraging in response to a chemoattractant gradient. We report a biomimetic strategy that rotary FoF1-ATPase (adenosine triphosphatase)-propelled flasklike colloidal motors exhibit positive chemotaxis resembling the chemotactic behavior of bacteria. The streamlined flasklike colloidal particles are fabricated through polymerization, expansion, surface rupture, and re-polymerizing nanoemulsions composed of triblock copolymers and ribose. The as-synthesized particles enable the incorporation of thylakoid vesicles into the cavity, ensuring a geometric asymmetric nanoarchitecture. The chemical gradient in the neck channel across flasklike colloidal motors facilitates autonomous movement at a speed of 1.19 μm/s in a ΔpH value of 4. Computer simulations reveal the self-actuated flasklike colloidal motors driven by self-diffusiophoretic force. These flasklike colloidal motors display positive directional motion along an adenosine diphosphate (ADP) concentration gradient during adenosine triphosphate (ATP) synthesis. The positive chemotaxis is ascribed that the phosphorylation reaction occurring inside colloidal motors generates 2 distinct phoretic torques at the bottom and the opening owing to the diffusion of ADP, thereby a continuous reorientation motion. Such a biophysical strategy that nanosized rotary protein molecular motors propel the directional movement of a flasklike colloidal motor holds promise for designing new types of biomedical swimming nanobots.
{"title":"Positive Chemotactic Flasklike Colloidal Motors Propelled by Rotary F<sub>o</sub>F<sub>1</sub>-ATP Synthases.","authors":"Yue Li, Yingjie Wu, Qiang He","doi":"10.34133/research.0566","DOIUrl":"10.34133/research.0566","url":null,"abstract":"<p><p>Living microorganisms can perform directed migration for foraging in response to a chemoattractant gradient. We report a biomimetic strategy that rotary F<sub>o</sub>F<sub>1</sub>-ATPase (adenosine triphosphatase)-propelled flasklike colloidal motors exhibit positive chemotaxis resembling the chemotactic behavior of bacteria. The streamlined flasklike colloidal particles are fabricated through polymerization, expansion, surface rupture, and re-polymerizing nanoemulsions composed of triblock copolymers and ribose. The as-synthesized particles enable the incorporation of thylakoid vesicles into the cavity, ensuring a geometric asymmetric nanoarchitecture. The chemical gradient in the neck channel across flasklike colloidal motors facilitates autonomous movement at a speed of 1.19 μm/s in a ΔpH value of 4. Computer simulations reveal the self-actuated flasklike colloidal motors driven by self-diffusiophoretic force. These flasklike colloidal motors display positive directional motion along an adenosine diphosphate (ADP) concentration gradient during adenosine triphosphate (ATP) synthesis. The positive chemotaxis is ascribed that the phosphorylation reaction occurring inside colloidal motors generates 2 distinct phoretic torques at the bottom and the opening owing to the diffusion of ADP, thereby a continuous reorientation motion. Such a biophysical strategy that nanosized rotary protein molecular motors propel the directional movement of a flasklike colloidal motor holds promise for designing new types of biomedical swimming nanobots.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0566"},"PeriodicalIF":11.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665525/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-23eCollection Date: 2024-01-01DOI: 10.34133/research.0557
Yingzhe Li, Tao Chen, Yihuang Chen
Photoelectrochemistry provides an important application in the production of high-value-added chemicals. However, photoelectrochemical organic transformation with high product selectivity remains a challenge. Until now, various technologies have been developed to promote the selectivity of photoelectrochemical high-value-added chemical production. Herein, a novel ion-shielding heterogeneous photoelectrocatalysis strategy for the production of trifluoromethyl group (CF3)-containing compounds with high selectivity is described.
{"title":"Photoelectrochemical High-Value-Added Chemical Production with Improved Selectivity.","authors":"Yingzhe Li, Tao Chen, Yihuang Chen","doi":"10.34133/research.0557","DOIUrl":"10.34133/research.0557","url":null,"abstract":"<p><p>Photoelectrochemistry provides an important application in the production of high-value-added chemicals. However, photoelectrochemical organic transformation with high product selectivity remains a challenge. Until now, various technologies have been developed to promote the selectivity of photoelectrochemical high-value-added chemical production. Herein, a novel ion-shielding heterogeneous photoelectrocatalysis strategy for the production of trifluoromethyl group (CF<sub>3</sub>)-containing compounds with high selectivity is described.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0557"},"PeriodicalIF":11.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}