Pub Date : 2024-11-01Epub Date: 2024-08-07DOI: 10.1007/s11427-023-2564-8
Suhua Chang, Jia Jia Liu, Yilu Zhao, Tao Pang, Xiangyu Zheng, Zhirui Song, Anyi Zhang, Xuping Gao, Lingxue Luo, Yanqing Guo, Jing Liu, Li Yang, Lin Lu
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with high genetic heritability but heterogeneity. Fully understanding its genetics requires whole-genome sequencing (WGS), but the ASD studies utilizing WGS data in Chinese population are limited. In this study, we present a WGS study for 334 individuals, including 112 ASD patients and their non-ASD parents. We identified 146 de novo variants in coding regions in 85 cases and 60 inherited variants in coding regions. By integrating these variants with an association model, we identified 33 potential risk genes (P<0.001) enriched in neuron and regulation related biological process. Besides the well-known ASD genes (SCN2A, NF1, SHANK3, CHD8 etc.), several high confidence genes were highlighted by a series of functional analyses, including CTNND1, DGKZ, LRP1, DDN, ZNF483, NR4A2, SMAD6, INTS1, and MRPL12, with more supported evidence from GO enrichment, expression and network analysis. We also integrated RNA-seq data to analyze the effect of the variants on the gene expression and found 12 genes in the individuals with the related variants had relatively biased expression. We further presented the clinical phenotypes of the proband carrying the risk genes in both our samples and Caucasian samples to show the effect of the risk genes on phenotype. Regarding variants in non-coding regions, a total of 74 de novo variants and 30 inherited variants were predicted as pathogenic with high confidence, which were mapped to specific genes or regulatory features. The number of de novo variants found in patient was significantly associated with the parents' ages at the birth of the child, and gender with trend. We also identified small de novo structural variants in ASD trios. The results in this study provided important evidence for understanding the genetic mechanism of ASD.
{"title":"Whole-genome sequencing identifies novel genes for autism in Chinese trios.","authors":"Suhua Chang, Jia Jia Liu, Yilu Zhao, Tao Pang, Xiangyu Zheng, Zhirui Song, Anyi Zhang, Xuping Gao, Lingxue Luo, Yanqing Guo, Jing Liu, Li Yang, Lin Lu","doi":"10.1007/s11427-023-2564-8","DOIUrl":"10.1007/s11427-023-2564-8","url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is a neurodevelopmental disorder with high genetic heritability but heterogeneity. Fully understanding its genetics requires whole-genome sequencing (WGS), but the ASD studies utilizing WGS data in Chinese population are limited. In this study, we present a WGS study for 334 individuals, including 112 ASD patients and their non-ASD parents. We identified 146 de novo variants in coding regions in 85 cases and 60 inherited variants in coding regions. By integrating these variants with an association model, we identified 33 potential risk genes (P<0.001) enriched in neuron and regulation related biological process. Besides the well-known ASD genes (SCN2A, NF1, SHANK3, CHD8 etc.), several high confidence genes were highlighted by a series of functional analyses, including CTNND1, DGKZ, LRP1, DDN, ZNF483, NR4A2, SMAD6, INTS1, and MRPL12, with more supported evidence from GO enrichment, expression and network analysis. We also integrated RNA-seq data to analyze the effect of the variants on the gene expression and found 12 genes in the individuals with the related variants had relatively biased expression. We further presented the clinical phenotypes of the proband carrying the risk genes in both our samples and Caucasian samples to show the effect of the risk genes on phenotype. Regarding variants in non-coding regions, a total of 74 de novo variants and 30 inherited variants were predicted as pathogenic with high confidence, which were mapped to specific genes or regulatory features. The number of de novo variants found in patient was significantly associated with the parents' ages at the birth of the child, and gender with trend. We also identified small de novo structural variants in ASD trios. The results in this study provided important evidence for understanding the genetic mechanism of ASD.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"2368-2381"},"PeriodicalIF":8.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-09DOI: 10.1007/s11427-023-2694-5
Kun Zhang, Xu Huang, Chongqing Wang, Xidan Xu, Xiaowei Xu, Xiaoping Dong, Qingwen Xiao, Jinhai Bai, Yue Zhou, Zhengkun Liu, Xinyi Deng, Yan Tang, Siyang Li, Enkui Hu, Wanjing Peng, Ling Xiong, Qinbo Qin, Shaojun Liu
Autotetraploid Carassius auratus is a stable hereditary autotetraploid fish resulting from the hybridization of Carassius auratus red var. (RCC, ♀) × Megalobrama amblycephala (BSB, ♂), containing four sets of RCC chromosomes. However, the molecular mechanism underlying the determination of sex in this species remains largely unknown. Currently, there lacks a full understanding of the molecular mechanisms governing sex determination and specific molecular markers to differentiate sex in this species. In this study, 25,801,677 SNPs (Single-nucleotide polymorphism) and 6,210,306 Indels (insertion-deletion) were obtained from whole-genome resequencing of 100 individuals (including 50 female and 50 male). Further identification confirmed the candidate chromosomes as Chr46B, with the sex-determining region located at Chr46B: 22,500,000-22,800,000 bp. Based on the male-specific insertion (26 bp) within the candidate sex-determining region, a pair of sex-specific molecular markers has been identified. In addition, based on the screening of candidate sex-determining region genes and RT-qPCR validation analysis, ADAM10, AQP9 and tc1a were identified as candidate sex-determining genes. These findings provide a robust foundation for investigating sex determination mechanisms in fish, the evolution of sex chromosomes, and the development of monosex populations.
{"title":"Unveiling potential sex-determining genes and sex-specific markers in autotetraploid Carassius auratus.","authors":"Kun Zhang, Xu Huang, Chongqing Wang, Xidan Xu, Xiaowei Xu, Xiaoping Dong, Qingwen Xiao, Jinhai Bai, Yue Zhou, Zhengkun Liu, Xinyi Deng, Yan Tang, Siyang Li, Enkui Hu, Wanjing Peng, Ling Xiong, Qinbo Qin, Shaojun Liu","doi":"10.1007/s11427-023-2694-5","DOIUrl":"10.1007/s11427-023-2694-5","url":null,"abstract":"<p><p>Autotetraploid Carassius auratus is a stable hereditary autotetraploid fish resulting from the hybridization of Carassius auratus red var. (RCC, ♀) × Megalobrama amblycephala (BSB, ♂), containing four sets of RCC chromosomes. However, the molecular mechanism underlying the determination of sex in this species remains largely unknown. Currently, there lacks a full understanding of the molecular mechanisms governing sex determination and specific molecular markers to differentiate sex in this species. In this study, 25,801,677 SNPs (Single-nucleotide polymorphism) and 6,210,306 Indels (insertion-deletion) were obtained from whole-genome resequencing of 100 individuals (including 50 female and 50 male). Further identification confirmed the candidate chromosomes as Chr46B, with the sex-determining region located at Chr46B: 22,500,000-22,800,000 bp. Based on the male-specific insertion (26 bp) within the candidate sex-determining region, a pair of sex-specific molecular markers has been identified. In addition, based on the screening of candidate sex-determining region genes and RT-qPCR validation analysis, ADAM10, AQP9 and tc1a were identified as candidate sex-determining genes. These findings provide a robust foundation for investigating sex determination mechanisms in fish, the evolution of sex chromosomes, and the development of monosex populations.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"2444-2458"},"PeriodicalIF":8.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-21DOI: 10.1007/s11427-024-2646-3
Yang Fang, Fengchao Zhang, Fangzhen Zhao, Jiajia Wang, Xinkai Cheng, Fei Ye, Jiayu He, Long Zhao, Ying Su
Switching from mitotic spermatogonia to meiotic spermatocytes is critical to producing haploid sperms during male germ cell differentiation. However, the underlying mechanisms of this switch remain largely unexplored. In Drosophila melanogaster, the gene RpL38 encodes the ribosomal protein L38, one component of the 60S subunit of ribosomes. We found that its depletion in spermatogonia severely diminished the production of mature sperms and thus led to the infertility of male flies. By examining the germ cell differentiation in testes, we found that RpL38-knockdown blocked the transition from spermatogonia to spermatocytes and accumulated spermatogonia in the testis. To understand the intrinsic reason for this blockage, we conducted proteomic analysis for these spermatogonia populations. Differing from the control spermatogonia, the accumulated spermatogonia in RpL38-knockdown testes already expressed many spermatocyte markers but lacked many meiosis-related proteins, suggesting that spermatogonia need to prepare some important proteins for meiosis to complete their switch into spermatocytes. Mechanistically, we found that the expression of bag of marbles (bam), a crucial determinant in the transition from spermatogonia to spermatocytes, was inhibited at both the mRNA and protein levels upon RpL38 depletion. We also confirmed that the bam loss phenocopied RpL38 RNAi in the testis phenotype and transcriptomic profiling. Strikingly, overexpressing bam was able to fully rescue the testis abnormality and infertility of RpL38-knockdown flies, indicating that bam is the key effector downstream of RpL38 to regulate spermatogonia differentiation. Overall, our data suggested that germ cells start to prepare meiosis-related proteins as early as the spermatogonial stage, and RpL38 in spermatogonia is required to regulate their transition toward spermatocytes in a bam-dependent manner, providing new knowledge for our understanding of the transition process from spermatogonia to spermatocytes in Drosophila spermatogenesis.
{"title":"RpL38 modulates germ cell differentiation by controlling Bam expression in Drosophila testis.","authors":"Yang Fang, Fengchao Zhang, Fangzhen Zhao, Jiajia Wang, Xinkai Cheng, Fei Ye, Jiayu He, Long Zhao, Ying Su","doi":"10.1007/s11427-024-2646-3","DOIUrl":"10.1007/s11427-024-2646-3","url":null,"abstract":"<p><p>Switching from mitotic spermatogonia to meiotic spermatocytes is critical to producing haploid sperms during male germ cell differentiation. However, the underlying mechanisms of this switch remain largely unexplored. In Drosophila melanogaster, the gene RpL38 encodes the ribosomal protein L38, one component of the 60S subunit of ribosomes. We found that its depletion in spermatogonia severely diminished the production of mature sperms and thus led to the infertility of male flies. By examining the germ cell differentiation in testes, we found that RpL38-knockdown blocked the transition from spermatogonia to spermatocytes and accumulated spermatogonia in the testis. To understand the intrinsic reason for this blockage, we conducted proteomic analysis for these spermatogonia populations. Differing from the control spermatogonia, the accumulated spermatogonia in RpL38-knockdown testes already expressed many spermatocyte markers but lacked many meiosis-related proteins, suggesting that spermatogonia need to prepare some important proteins for meiosis to complete their switch into spermatocytes. Mechanistically, we found that the expression of bag of marbles (bam), a crucial determinant in the transition from spermatogonia to spermatocytes, was inhibited at both the mRNA and protein levels upon RpL38 depletion. We also confirmed that the bam loss phenocopied RpL38 RNAi in the testis phenotype and transcriptomic profiling. Strikingly, overexpressing bam was able to fully rescue the testis abnormality and infertility of RpL38-knockdown flies, indicating that bam is the key effector downstream of RpL38 to regulate spermatogonia differentiation. Overall, our data suggested that germ cells start to prepare meiosis-related proteins as early as the spermatogonial stage, and RpL38 in spermatogonia is required to regulate their transition toward spermatocytes in a bam-dependent manner, providing new knowledge for our understanding of the transition process from spermatogonia to spermatocytes in Drosophila spermatogenesis.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"2411-2425"},"PeriodicalIF":8.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-06-26DOI: 10.1007/s11427-024-2652-y
Xinxin Tang, Yinkun Fu, Zhihui Zou, Yue Li, Ming He
{"title":"Androgens exert multifaceted functions in sex differences analyzed through single-cell transcriptome.","authors":"Xinxin Tang, Yinkun Fu, Zhihui Zou, Yue Li, Ming He","doi":"10.1007/s11427-024-2652-y","DOIUrl":"10.1007/s11427-024-2652-y","url":null,"abstract":"","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"2530-2531"},"PeriodicalIF":8.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Crossover recombination is a hallmark of meiosis that holds the paternal and maternal chromosomes (homologs) together for their faithful segregation, while promoting genetic diversity of the progeny. The pattern of crossover is mainly controlled by the architecture of the meiotic chromosomes. Environmental factors, especially temperature, also play an important role in modulating crossovers. However, it is unclear how temperature affects crossovers. Here, we examined the distribution of budding yeast axis components (Red1, Hop1, and Rec8) and the crossover-associated Zip3 foci in detail at different temperatures, and found that both increased and decreased temperatures result in shorter meiotic chromosome axes and more crossovers. Further investigations showed that temperature changes coordinately enhanced the hyperabundant accumulation of Hop1 and Red1 on chromosomes and the number of Zip3 foci. Most importantly, temperature-induced changes in the distribution of axis proteins and Zip3 foci depend on changes in DNA negative supercoils. These results suggest that yeast meiosis senses temperature changes by increasing the level of negative supercoils to increase crossovers and modulate chromosome organization. These findings provide a new perspective on understanding the effect and mechanism of temperature on meiotic recombination and chromosome organization, with important implications for evolution and breeding.
{"title":"Temperature regulates negative supercoils to modulate meiotic crossovers and chromosome organization.","authors":"Yingjin Tan, Taicong Tan, Shuxian Zhang, Bo Li, Beiyi Chen, Xu Zhou, Ying Wang, Xiao Yang, Binyuan Zhai, Qilai Huang, Liangran Zhang, Shunxin Wang","doi":"10.1007/s11427-024-2671-1","DOIUrl":"10.1007/s11427-024-2671-1","url":null,"abstract":"<p><p>Crossover recombination is a hallmark of meiosis that holds the paternal and maternal chromosomes (homologs) together for their faithful segregation, while promoting genetic diversity of the progeny. The pattern of crossover is mainly controlled by the architecture of the meiotic chromosomes. Environmental factors, especially temperature, also play an important role in modulating crossovers. However, it is unclear how temperature affects crossovers. Here, we examined the distribution of budding yeast axis components (Red1, Hop1, and Rec8) and the crossover-associated Zip3 foci in detail at different temperatures, and found that both increased and decreased temperatures result in shorter meiotic chromosome axes and more crossovers. Further investigations showed that temperature changes coordinately enhanced the hyperabundant accumulation of Hop1 and Red1 on chromosomes and the number of Zip3 foci. Most importantly, temperature-induced changes in the distribution of axis proteins and Zip3 foci depend on changes in DNA negative supercoils. These results suggest that yeast meiosis senses temperature changes by increasing the level of negative supercoils to increase crossovers and modulate chromosome organization. These findings provide a new perspective on understanding the effect and mechanism of temperature on meiotic recombination and chromosome organization, with important implications for evolution and breeding.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"2426-2443"},"PeriodicalIF":8.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-08-08DOI: 10.1007/s11427-024-2647-8
Rui Wang, Feixiang Bao, Manjiao Lu, Xiaoyun Jia, Jiahui Xiao, Yi Wu, Qingjiong Zhang, Xingguo Liu
Leber's hereditary optic neuropathy (LHON) is a debilitating mitochondrial disease associated with mutations in mitochondrial DNA (mtDNA). Unfortunately, the available treatment options for LHON patients are limited due to challenges in mitochondrial replacement. In our study, we reprogramming LHON urine cells into induced pluripotent stem cells (iPSCs) and differentiating them into neural progenitor cells (NPCs) and neurons for disease modeling. Our research revealed that LHON neurons exhibited significantly higher levels of mtDNA mutations and reduced mitochondrial function, confirming the disease phenotype. However, through co-culturing LHON iPSC-derived NPCs with mesenchymal stem cells (MSCs), we observed a remarkable rescue of mutant mtDNA and a significant improvement in mitochondrial metabolic function in LHON neurons. These findings suggest that co-culturing with MSCs can enhance mitochondrial function in LHON NPCs, even after their differentiation into neurons. This discovery holds promise as a potential therapeutic strategy for LHON patients.
{"title":"MSC-mediated mitochondrial transfer restores mitochondrial DNA and function in neural progenitor cells of Leber's hereditary optic neuropathy.","authors":"Rui Wang, Feixiang Bao, Manjiao Lu, Xiaoyun Jia, Jiahui Xiao, Yi Wu, Qingjiong Zhang, Xingguo Liu","doi":"10.1007/s11427-024-2647-8","DOIUrl":"10.1007/s11427-024-2647-8","url":null,"abstract":"<p><p>Leber's hereditary optic neuropathy (LHON) is a debilitating mitochondrial disease associated with mutations in mitochondrial DNA (mtDNA). Unfortunately, the available treatment options for LHON patients are limited due to challenges in mitochondrial replacement. In our study, we reprogramming LHON urine cells into induced pluripotent stem cells (iPSCs) and differentiating them into neural progenitor cells (NPCs) and neurons for disease modeling. Our research revealed that LHON neurons exhibited significantly higher levels of mtDNA mutations and reduced mitochondrial function, confirming the disease phenotype. However, through co-culturing LHON iPSC-derived NPCs with mesenchymal stem cells (MSCs), we observed a remarkable rescue of mutant mtDNA and a significant improvement in mitochondrial metabolic function in LHON neurons. These findings suggest that co-culturing with MSCs can enhance mitochondrial function in LHON NPCs, even after their differentiation into neurons. This discovery holds promise as a potential therapeutic strategy for LHON patients.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"2511-2519"},"PeriodicalIF":8.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-27DOI: 10.1007/s11427-024-2713-1
Donghong Chen, Dun Si, Jingjing Liu, Jinping Si
{"title":"Huangjing is not only a good medicine but also an affordable healthy diet.","authors":"Donghong Chen, Dun Si, Jingjing Liu, Jinping Si","doi":"10.1007/s11427-024-2713-1","DOIUrl":"10.1007/s11427-024-2713-1","url":null,"abstract":"","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"2520-2522"},"PeriodicalIF":8.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142353121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Understanding the emergence and spread of antibiotic resistance genes (ARGs) in wildlife is critical for the health of humans and animals from a "One Health" perspective. The gut microbiota serve as a reservoir for ARGs; however, it remains poorly understood how environmental and host genetic factors influence ARGs by affecting the gut microbiota. To elucidate this, we analyzed whole-genome resequencing data from 79 individuals of Brandt's vole in two geographic locations with different antibiotics usage, together with metabolomic data and shotgun sequencing data. A high diversity of ARGs (851 subtypes) was observed in vole's gut, with a large variation in ARG composition between individuals from Xilingol and Hulunbuir in China. The diversity and composition of ARGs were strongly correlated with variations in gut microbiota community structure. Genome-wide association studies revealed that 803 loci were significantly associated (P<5.05×10-9) with 31 bacterial species, and bipartite networks identified 906 bacterial species-ARGs associations. Structural equation modeling analysis showed that host genetic factors, air temperature, and presence of pollutants (Bisphenol A) significantly affected gut microbiota community structure, which eventually regulated the diversity of ARGs. The present study advances our understanding of the complex host-environment interactions that underlie the spread of ARGs in the natural environments.
{"title":"Multi-omics analysis reveals the genetic and environmental factors in shaping the gut resistome of a keystone rodent species.","authors":"Guoliang Li, Dong Zhu, Chaoyuan Cheng, Haiyan Chu, Fuwen Wei, Zhibin Zhang","doi":"10.1007/s11427-024-2679-3","DOIUrl":"10.1007/s11427-024-2679-3","url":null,"abstract":"<p><p>Understanding the emergence and spread of antibiotic resistance genes (ARGs) in wildlife is critical for the health of humans and animals from a \"One Health\" perspective. The gut microbiota serve as a reservoir for ARGs; however, it remains poorly understood how environmental and host genetic factors influence ARGs by affecting the gut microbiota. To elucidate this, we analyzed whole-genome resequencing data from 79 individuals of Brandt's vole in two geographic locations with different antibiotics usage, together with metabolomic data and shotgun sequencing data. A high diversity of ARGs (851 subtypes) was observed in vole's gut, with a large variation in ARG composition between individuals from Xilingol and Hulunbuir in China. The diversity and composition of ARGs were strongly correlated with variations in gut microbiota community structure. Genome-wide association studies revealed that 803 loci were significantly associated (P<5.05×10<sup>-9</sup>) with 31 bacterial species, and bipartite networks identified 906 bacterial species-ARGs associations. Structural equation modeling analysis showed that host genetic factors, air temperature, and presence of pollutants (Bisphenol A) significantly affected gut microbiota community structure, which eventually regulated the diversity of ARGs. The present study advances our understanding of the complex host-environment interactions that underlie the spread of ARGs in the natural environments.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"2459-2470"},"PeriodicalIF":8.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}