Pub Date : 2023-05-22DOI: 10.1080/01496395.2023.2216369
Md. Sadman Anjum Joarder, F. Rashid, Makit Ahsan Abir, M. Zakir
ABSTRACT As the industrial revolution progresses, carbon dioxide (CO2) and sulfur dioxide (SO2) are major concerns because they are the main contributors to greenhouse gases. The concentration of these harmful gases in the industry is very high, which is emitted by workers and industrial materials. Therefore, it is required to maintain a safe percentage of CO2, SO2, and other harmful gases in the air of industry and ensure safety from fire accidents. This paper presents a compressor driven system that could capture harmful gases including CO2 and SO2 from the polluted air of different industries and households. The captured and separated CO2 works as a fire extinguishing agent to safeguard fire accidents for large industries and households. Thus, this system ensures a protected working place and a healthy atmosphere for industrial workers. Besides, this system can be applied in place of the exhaust gas recirculation (EGR) system in small industries and for a four-wheeler, internal combustion engine, as this system could capture and separate the harmful carbon dioxide and sulfur dioxide. This paper also presents a developed model of different polymeric membranes to simulate the separation of carbon dioxide after the post-combustion process. Computational Fluid Dynamics (CFD) has been performed by COMSOL 5.5 to observe the carbon dioxide separation by polymeric membranes like polycarbonate (0.07 mol/m3) and polytetrafluoroethylene (0.1 mol/m3) polymeric membranes for specific pore sizes which is comparable to experimental data (0.05 mol/m3).
{"title":"A prospective approach to separate industrial carbon dioxide and flue gases","authors":"Md. Sadman Anjum Joarder, F. Rashid, Makit Ahsan Abir, M. Zakir","doi":"10.1080/01496395.2023.2216369","DOIUrl":"https://doi.org/10.1080/01496395.2023.2216369","url":null,"abstract":"ABSTRACT As the industrial revolution progresses, carbon dioxide (CO2) and sulfur dioxide (SO2) are major concerns because they are the main contributors to greenhouse gases. The concentration of these harmful gases in the industry is very high, which is emitted by workers and industrial materials. Therefore, it is required to maintain a safe percentage of CO2, SO2, and other harmful gases in the air of industry and ensure safety from fire accidents. This paper presents a compressor driven system that could capture harmful gases including CO2 and SO2 from the polluted air of different industries and households. The captured and separated CO2 works as a fire extinguishing agent to safeguard fire accidents for large industries and households. Thus, this system ensures a protected working place and a healthy atmosphere for industrial workers. Besides, this system can be applied in place of the exhaust gas recirculation (EGR) system in small industries and for a four-wheeler, internal combustion engine, as this system could capture and separate the harmful carbon dioxide and sulfur dioxide. This paper also presents a developed model of different polymeric membranes to simulate the separation of carbon dioxide after the post-combustion process. Computational Fluid Dynamics (CFD) has been performed by COMSOL 5.5 to observe the carbon dioxide separation by polymeric membranes like polycarbonate (0.07 mol/m3) and polytetrafluoroethylene (0.1 mol/m3) polymeric membranes for specific pore sizes which is comparable to experimental data (0.05 mol/m3).","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"43 1","pages":"1795 - 1805"},"PeriodicalIF":2.8,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87061155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-22DOI: 10.1080/01496395.2023.2212855
K. Subashree, A. Suresh, N. Sivaraman
{"title":"Investigation of tris(2-methylbutyl) phosphate for U/Th separation from U-Th and U-Th-REE solutions by cross current mode","authors":"K. Subashree, A. Suresh, N. Sivaraman","doi":"10.1080/01496395.2023.2212855","DOIUrl":"https://doi.org/10.1080/01496395.2023.2212855","url":null,"abstract":"","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"33 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87735054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-19DOI: 10.1080/01496395.2023.2212859
Yi-peng Ji, Jiaqing Chen, Xiu-rong Wang, Jian Zhang, G. Ding, Zheng Si, Yi Shi, Hong Du
ABSTRACT Effective pre-dehydration is achieved to stabilize and improve oil production in high water cut oil fields. In order to reduce the pressure loss during the pre-dewatering process, a low-pressure-loss dynamic hydrocyclone (LPDH) was developed. And its swirler vane was designed which can not only drive liquid into circumferential rotational flow but also produce axial pressure. The axial pressure will compensate for the separation process pressure loss. The key parameters that affected the axial pressure were studied, the relative motion between the fluid and the vane was analyzed, and a pre-dehydration LPDH was designed (processing capacity is 1.0 m3/h). The changes in the separation efficiency and axial pressure of the LPDH with the operational and physical parameters were studied by the computational fluid dynamics (CFD) numerical simulation method. The results revealed that the pressure is increased during rotation-starting, and the pressure loss of LPDH was lower than the dynamic and compound hydrocyclones. Notably, low shear stress was generated using the designed vane when the fluid started rotating, and the separation efficiency increased under these conditions. When the speed of rotation of the swirler is 167.5 rad/s, the separation efficiency of the LPDH is greater than 99.8%.
{"title":"Improved swirl-vane designs: Development of low-pressure-drop tubular dynamic hydrocyclones for pre-dehydration","authors":"Yi-peng Ji, Jiaqing Chen, Xiu-rong Wang, Jian Zhang, G. Ding, Zheng Si, Yi Shi, Hong Du","doi":"10.1080/01496395.2023.2212859","DOIUrl":"https://doi.org/10.1080/01496395.2023.2212859","url":null,"abstract":"ABSTRACT Effective pre-dehydration is achieved to stabilize and improve oil production in high water cut oil fields. In order to reduce the pressure loss during the pre-dewatering process, a low-pressure-loss dynamic hydrocyclone (LPDH) was developed. And its swirler vane was designed which can not only drive liquid into circumferential rotational flow but also produce axial pressure. The axial pressure will compensate for the separation process pressure loss. The key parameters that affected the axial pressure were studied, the relative motion between the fluid and the vane was analyzed, and a pre-dehydration LPDH was designed (processing capacity is 1.0 m3/h). The changes in the separation efficiency and axial pressure of the LPDH with the operational and physical parameters were studied by the computational fluid dynamics (CFD) numerical simulation method. The results revealed that the pressure is increased during rotation-starting, and the pressure loss of LPDH was lower than the dynamic and compound hydrocyclones. Notably, low shear stress was generated using the designed vane when the fluid started rotating, and the separation efficiency increased under these conditions. When the speed of rotation of the swirler is 167.5 rad/s, the separation efficiency of the LPDH is greater than 99.8%.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"36 1","pages":"1821 - 1832"},"PeriodicalIF":2.8,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85252589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-17DOI: 10.1080/01496395.2023.2212857
Miriam Appiah-Brempong, H. Essandoh, N. Asiedu, Gabriel Ntoni, F. Momade
ABSTRACT In this study, bone char derived from head bones of cattle was used as an adsorbent in the removal of Chemical Oxygen Demand (COD) and colour from vegetable tannery wastewater. The char was characterized by proximate analysis, pHpzc, FTIR, BET surface area analysis and SEM-EDX spectroscopy. The effects of operational parameters (pH, contact time, adsorbent mass and temperature), the kinetics and isotherms of the adsorption process were investigated. Optimal conditions for maximum adsorption of COD (77.4%) and colour (98.01%) occurred at pH 2 after 60-minute contact time with 50 g of adsorbent at 25°C. The adsorption kinetics were analyzed using Elovich and the pseudo-first and – second-order models. The pseudo-second order model gave the best fit for the kinetic data. Application of the intra-particle diffusion and Boyd models to the kinetic data revealed that COD and colour adsorption onto the bone char were predominantly controlled by film diffusion. The Langmuir, Freundlich, Temkin and Redlich-Peterson isotherm models were applied. The Freundlich model best described the adsorption of COD and colour. The maximum monolayer adsorption capacities for COD and colour were 559.61 mg/g and 2011.76 Pt-Co/g, respectively. These results indicate that bone char can be an effective low-cost adsorbent in wastewater treatment.
{"title":"Removal of Colour and COD from vegetable tannery wastewater onto bone char– Effect of process parameters, adsorption mechanism, kinetics and equilibrium modelling","authors":"Miriam Appiah-Brempong, H. Essandoh, N. Asiedu, Gabriel Ntoni, F. Momade","doi":"10.1080/01496395.2023.2212857","DOIUrl":"https://doi.org/10.1080/01496395.2023.2212857","url":null,"abstract":"ABSTRACT In this study, bone char derived from head bones of cattle was used as an adsorbent in the removal of Chemical Oxygen Demand (COD) and colour from vegetable tannery wastewater. The char was characterized by proximate analysis, pHpzc, FTIR, BET surface area analysis and SEM-EDX spectroscopy. The effects of operational parameters (pH, contact time, adsorbent mass and temperature), the kinetics and isotherms of the adsorption process were investigated. Optimal conditions for maximum adsorption of COD (77.4%) and colour (98.01%) occurred at pH 2 after 60-minute contact time with 50 g of adsorbent at 25°C. The adsorption kinetics were analyzed using Elovich and the pseudo-first and – second-order models. The pseudo-second order model gave the best fit for the kinetic data. Application of the intra-particle diffusion and Boyd models to the kinetic data revealed that COD and colour adsorption onto the bone char were predominantly controlled by film diffusion. The Langmuir, Freundlich, Temkin and Redlich-Peterson isotherm models were applied. The Freundlich model best described the adsorption of COD and colour. The maximum monolayer adsorption capacities for COD and colour were 559.61 mg/g and 2011.76 Pt-Co/g, respectively. These results indicate that bone char can be an effective low-cost adsorbent in wastewater treatment.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"259 1","pages":"1863 - 1882"},"PeriodicalIF":2.8,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77087221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-16DOI: 10.1080/01496395.2023.2213818
X. Gong, Jin Yao, Bin Yang, Zhanglei Zhu, Jun Guo, W. Yin, Ya-feng Fu, Yulian Wang
ABSTRACT Brucite is a type of mineral resource containing structural water and high contents of Mg, and is popular in refractory and flame-retardant materials. Dolomite is a common mineral associated with brucite, and its presence reduces the purity of brucite and utilization efficiency of resources. Therefore, in the flotation system of sodium dodecyl sulfonate, the selective inhibition characteristic and inhibition mechanism of environment-friendly and highly effective inhibitor sodium alginate (SA) on dolomite in the flotation separation of brucite and dolomite were investigated. The flotation test shows that an SA dosage of 8 mg/L can achieve 77.92% difference in floatability between brucite and dolomite, and the flotation effect was verified using the selectivity index. The measurement of contact angle shows the stability of the SA effect, thereby demonstrating significant SA effect on dolomite and a small effect on brucite. Zeta potential detection and infrared spectrum analysis show that the adsorption capacity between SA and dolomite is considerably stronger than that between SA and brucite, which is another critical reason for the inhibition of SA on dolomite flotation. In addition, the interaction of SA with the two minerals and the reasons for its selective interaction with dolomite were analyzed using X-ray photoelectron spectroscopic detection. SA shows strong interaction with Ca sites and the O in the carboxyl group of the SA structure can chelate Ca.
{"title":"An environment-friendly and highly effective inhibitor for flotation separation of brucite and dolomite in SDS system","authors":"X. Gong, Jin Yao, Bin Yang, Zhanglei Zhu, Jun Guo, W. Yin, Ya-feng Fu, Yulian Wang","doi":"10.1080/01496395.2023.2213818","DOIUrl":"https://doi.org/10.1080/01496395.2023.2213818","url":null,"abstract":"ABSTRACT Brucite is a type of mineral resource containing structural water and high contents of Mg, and is popular in refractory and flame-retardant materials. Dolomite is a common mineral associated with brucite, and its presence reduces the purity of brucite and utilization efficiency of resources. Therefore, in the flotation system of sodium dodecyl sulfonate, the selective inhibition characteristic and inhibition mechanism of environment-friendly and highly effective inhibitor sodium alginate (SA) on dolomite in the flotation separation of brucite and dolomite were investigated. The flotation test shows that an SA dosage of 8 mg/L can achieve 77.92% difference in floatability between brucite and dolomite, and the flotation effect was verified using the selectivity index. The measurement of contact angle shows the stability of the SA effect, thereby demonstrating significant SA effect on dolomite and a small effect on brucite. Zeta potential detection and infrared spectrum analysis show that the adsorption capacity between SA and dolomite is considerably stronger than that between SA and brucite, which is another critical reason for the inhibition of SA on dolomite flotation. In addition, the interaction of SA with the two minerals and the reasons for its selective interaction with dolomite were analyzed using X-ray photoelectron spectroscopic detection. SA shows strong interaction with Ca sites and the O in the carboxyl group of the SA structure can chelate Ca.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"28 12 1","pages":"1784 - 1794"},"PeriodicalIF":2.8,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73251381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-14DOI: 10.1080/01496395.2023.2212858
Chun‐mei Xiao, M. Ma, Xi‐lin Xiao, Li‐fu Liao, Chang‐ming Nie
ABSTRACT Chiral fungicides R/S-metalaxyls(R/S-MTLs) and R/S-benalaxyls(R/S-BNLs) have different biotoxicity. It is very important to unravel molecular recognition and enantiomeric separation of R/S-MTLs or R/S-BNLs. In this paper, we designed a novel asymmetric ligand: 5-methoxy-2-(4-methoxy-6”-(quinazolin-2-yl)-[2,2”−bipyridin]-6-yl)quinazoline(MMQBQ), further constructed a new asymmetric receptor Uranyl-MMQBQ by coordination of MMQBQ with uranyl. The complexation and separation of receptor Uranyl-MMQBQ with guests R/S-MTLs or R/S-BNLs were systematically studied using density functional theory (DFT) method. The respects of ESP, MBO, RFC, LOL, EDDM, EST-NOCV, QTAIM, FMOs, IGMH, and Gibbs free energy changes were calculated and analyzed. The results indicated that the MMQBQ could form a stable receptor Uranyl-MMQBQ with uranyl, which could selectively recognize and separate chiral R/S-MTLs or R/S-BNLs by receptor’s U coordinating to carbonyl oxygens of guests. For R/S-MTLs, separation factors(SF S/R) of Uranyl-MMQBQ were more than 16 in water, chlorobenzene, toluene, carbon tetrachloride and cyclohexane, enantioselectivity coefficients(ESCs) ranged of 99.92%-94.24% in the above four solvents. While for R/S-BNLs, ESCs of Uranyl-MMQBQ were over 99% and SF S/R values were a range of 533.97–2839.36 in the above organic solvents. The findings provide valuable information for design of novel uranyl ligand and its complexes, meanwhile supply useful guidance for experiments on separation of other chiral fungicides in environmental protection.
手性杀菌剂R/ s - metaxyl (R/S-MTLs)和R/ s -benalaxyl (R/S-BNLs)具有不同的生物毒性。研究R/S-MTLs和R/S-BNLs的分子识别和对映体分离具有重要意义。本文设计了一种新的不对称配体:5-甲氧基-2-(4-甲氧基-6”-(喹唑啉-2-基)-[2,2”-联吡啶]-6-基)喹唑啉(MMQBQ),并通过与铀酰配位构建了新的不对称受体铀酰-MMQBQ。采用密度泛函理论(DFT)方法系统研究了受体铀酰- mmqbq与客体R/S-MTLs或R/S-BNLs的络合分离。计算并分析了ESP、MBO、RFC、LOL、EDDM、EST-NOCV、QTAIM、FMOs、IGMH和Gibbs自由能变化方面。结果表明,MMQBQ可以与铀酰形成稳定的受体铀酰-MMQBQ,通过受体U与客体羰基氧的配位,可以选择性地识别和分离手性R/S-MTLs或R/S-BNLs。对于R/S- mtls,铀酰- mmqbq在水、氯苯、甲苯、四氯化碳和环己烷中的分离因子(SF S/R)均大于16,对映选择性系数(ESCs)为99.92% ~ 94.24%。而对于R/S- bnls, Uranyl-MMQBQ在上述有机溶剂中的ESCs > 99%, SF S/R值在533.97 ~ 2839.36之间。研究结果为新型铀酰配体及其配合物的设计提供了有价值的信息,同时也为其它环保手性杀菌剂的分离实验提供了有益的指导。
{"title":"Unraveling complexation and separation of novel asymmetric uranyl-5-methoxy-2-(4-methoxy-6’-(quinazolin-2-yl)-[2,2’-bipyridin]-6-yl) quinazoline to chiral fungicides R/S-metalaxyls and R/S-benalaxyls","authors":"Chun‐mei Xiao, M. Ma, Xi‐lin Xiao, Li‐fu Liao, Chang‐ming Nie","doi":"10.1080/01496395.2023.2212858","DOIUrl":"https://doi.org/10.1080/01496395.2023.2212858","url":null,"abstract":"ABSTRACT Chiral fungicides R/S-metalaxyls(R/S-MTLs) and R/S-benalaxyls(R/S-BNLs) have different biotoxicity. It is very important to unravel molecular recognition and enantiomeric separation of R/S-MTLs or R/S-BNLs. In this paper, we designed a novel asymmetric ligand: 5-methoxy-2-(4-methoxy-6”-(quinazolin-2-yl)-[2,2”−bipyridin]-6-yl)quinazoline(MMQBQ), further constructed a new asymmetric receptor Uranyl-MMQBQ by coordination of MMQBQ with uranyl. The complexation and separation of receptor Uranyl-MMQBQ with guests R/S-MTLs or R/S-BNLs were systematically studied using density functional theory (DFT) method. The respects of ESP, MBO, RFC, LOL, EDDM, EST-NOCV, QTAIM, FMOs, IGMH, and Gibbs free energy changes were calculated and analyzed. The results indicated that the MMQBQ could form a stable receptor Uranyl-MMQBQ with uranyl, which could selectively recognize and separate chiral R/S-MTLs or R/S-BNLs by receptor’s U coordinating to carbonyl oxygens of guests. For R/S-MTLs, separation factors(SF S/R) of Uranyl-MMQBQ were more than 16 in water, chlorobenzene, toluene, carbon tetrachloride and cyclohexane, enantioselectivity coefficients(ESCs) ranged of 99.92%-94.24% in the above four solvents. While for R/S-BNLs, ESCs of Uranyl-MMQBQ were over 99% and SF S/R values were a range of 533.97–2839.36 in the above organic solvents. The findings provide valuable information for design of novel uranyl ligand and its complexes, meanwhile supply useful guidance for experiments on separation of other chiral fungicides in environmental protection.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"9 1","pages":"1833 - 1850"},"PeriodicalIF":2.8,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89849975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-05DOI: 10.1080/01496395.2023.2208282
J. Ali, Tanja Tane, Dihara Hossain, Jasmine Wang, S. Groveman, J. Samson, Fatima Kabalan, S. Huclier-Markai, A. Kawamura, S. Alexandratos, A. Younes
ABSTRACT Due to both natural and anthropogenic causes, waterways have a history of contamination with different heavy metals and radiometals. Among these, thorium (Th,) uranium (U,) arsenic (As,) and strontium (Sr) are noteworthy threats to humans due to chemical and radiological toxicity. Previous research has focused on inorganic materials to remove these metals. However, the use of recyclable and biodegradable waste materials to remove toxic metals has risen. This study seeks to use pistachio shells as a model for heavy metal selectivity and affinity for organic biomasses. The influence of kinetics and pH on selectivity/affinity of the shell for the metals was investigated. The individual metal affinity seen was Th > U > As > Sr. Selectivity for Th and U over As and Sr was seen at pH < 6, beginning to equalize at pH > 6. The maximum uptake for all metals tested occurs at pH 5 and t ≥2 h. Uptake of these metals follows pseudo-second order, intraparticle kinetics, and Freundlich isotherm. Finally, the selectivity of the shells for heavy metals was investigated using drinking water and seawater samples, with concurrent pronounced uptake of actinides and Sr being observed.
由于自然和人为原因,水道具有不同重金属和放射性金属污染的历史。其中,钍(Th),铀(U),砷(As,)和锶(Sr)由于化学和放射性毒性对人类构成了值得注意的威胁。以前的研究主要集中在无机材料上,以去除这些金属。然而,利用可回收和可生物降解的废物来去除有毒金属的情况有所增加。本研究试图使用开心果壳作为重金属选择性和有机生物质亲和力的模型。考察了动力学和pH对壳对金属的选择性/亲和力的影响。单个金属亲合力为Th > U > As > Sr。pH为6时,Th和U对As和Sr有选择性。所有测试金属的最大吸收发生在pH 5和t≥2 h。这些金属的吸收遵循伪二级、颗粒内动力学和Freundlich等温线。最后,在饮用水和海水样品中研究了壳对重金属的选择性,同时观察到锕系元素和锶的显著吸收。
{"title":"Selectivity and affinity of heavy metals and radiometals for organic biomass: Implications for water remediation","authors":"J. Ali, Tanja Tane, Dihara Hossain, Jasmine Wang, S. Groveman, J. Samson, Fatima Kabalan, S. Huclier-Markai, A. Kawamura, S. Alexandratos, A. Younes","doi":"10.1080/01496395.2023.2208282","DOIUrl":"https://doi.org/10.1080/01496395.2023.2208282","url":null,"abstract":"ABSTRACT Due to both natural and anthropogenic causes, waterways have a history of contamination with different heavy metals and radiometals. Among these, thorium (Th,) uranium (U,) arsenic (As,) and strontium (Sr) are noteworthy threats to humans due to chemical and radiological toxicity. Previous research has focused on inorganic materials to remove these metals. However, the use of recyclable and biodegradable waste materials to remove toxic metals has risen. This study seeks to use pistachio shells as a model for heavy metal selectivity and affinity for organic biomasses. The influence of kinetics and pH on selectivity/affinity of the shell for the metals was investigated. The individual metal affinity seen was Th > U > As > Sr. Selectivity for Th and U over As and Sr was seen at pH < 6, beginning to equalize at pH > 6. The maximum uptake for all metals tested occurs at pH 5 and t ≥2 h. Uptake of these metals follows pseudo-second order, intraparticle kinetics, and Freundlich isotherm. Finally, the selectivity of the shells for heavy metals was investigated using drinking water and seawater samples, with concurrent pronounced uptake of actinides and Sr being observed.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"40 1","pages":"1703 - 1717"},"PeriodicalIF":2.8,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83466214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-02DOI: 10.1080/01496395.2023.2208283
A. Aras, Miray Fatma Kıral
ABSTRACT The recovery of valuable metals from waste batteries gains more importance over time due to the decrease in natural resources and the possible harms of these to the environment. Economic benefits can also be obtained by recycling waste batteries. The recovery of valuable metals such as manganese (Mn) and zinc (Zn) in waste zinc-carbon (Zn-C) batteries has attracted the attention of many researchers. Hydrometallurgical methods are used as an effective method for the recovery of metals from waste Zn-C batteries. In this paper, kinetics of Mn and Zn dissolution from waste Zn-C batteries in sulfuric acid (H2SO4) solution was studied. The maximum Mn and Zn dissolution recoveries in 60 min leaching time were achieved using 400 rpm stirring speed, 0.25 M H2SO4 concentration, 70°C temperature and −53 µm particle size. In these conditions, Mn and Zn dissolution recoveries were obtained as 62.56% and 100%, respectively. To determine the dissolution kinetics of Mn and Zn, a new equation of shrinking core model was used and determined that Mn and Zn were dissolved in H2SO4 solution by interfacial mass transfer and diffusion across the product layer.
{"title":"Kinetic study of Mn and Zn dissolution from waste Zn-C batteries by shrinking core model","authors":"A. Aras, Miray Fatma Kıral","doi":"10.1080/01496395.2023.2208283","DOIUrl":"https://doi.org/10.1080/01496395.2023.2208283","url":null,"abstract":"ABSTRACT The recovery of valuable metals from waste batteries gains more importance over time due to the decrease in natural resources and the possible harms of these to the environment. Economic benefits can also be obtained by recycling waste batteries. The recovery of valuable metals such as manganese (Mn) and zinc (Zn) in waste zinc-carbon (Zn-C) batteries has attracted the attention of many researchers. Hydrometallurgical methods are used as an effective method for the recovery of metals from waste Zn-C batteries. In this paper, kinetics of Mn and Zn dissolution from waste Zn-C batteries in sulfuric acid (H2SO4) solution was studied. The maximum Mn and Zn dissolution recoveries in 60 min leaching time were achieved using 400 rpm stirring speed, 0.25 M H2SO4 concentration, 70°C temperature and −53 µm particle size. In these conditions, Mn and Zn dissolution recoveries were obtained as 62.56% and 100%, respectively. To determine the dissolution kinetics of Mn and Zn, a new equation of shrinking core model was used and determined that Mn and Zn were dissolved in H2SO4 solution by interfacial mass transfer and diffusion across the product layer.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"720 1","pages":"1883 - 1892"},"PeriodicalIF":2.8,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89847785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-20DOI: 10.1080/01496395.2023.2203326
Wenguang Li, Yuhuan Sun, Haihan Sun, Shuwu Zhang, Fayuan Wang
ABSTRACT Printing and dyeing sludge (PADS) and magnetic clay (MC, clay loaded with Fe3O4) were utilized as raw materials to prepare a novel ceramsite for Cu(II) removal from wastewater. The optimal preparation conditions were calcination temperature = 600°C, magnetic attapulgite (MA) : magnetic bentonite (MB) = 3:1, PADS = 40%, and iron content = 20%. The ceramsite prepared under these conditions (i.e. A600-3-20) had the best removal capacity for aqueous Cu(II). N2 adsorption and desorption isotherm confirmed that A600-3-20 was a porous material, with an average pore size of 14.78 nm and a surface area of 49.943 m2/g. Fe3O4 particles were successfully loaded onto the surface of the ceramsite, with a magnetic saturation intensity of 26.83 emu/g. The removal rate of Cu(II) from 40 mg/L solution by A600-3-20 reached 90%-98% under the optimal adsorption conditions. Adsorption kinetics fitted the pseudo-second-order dynamic model. Adsorption isotherm followed the Langmuir isotherm model, with the maximum adsorption capacity (qm) was 2.40 mg/g. The adsorption mechanisms were mainly dominated by chemisorption, including ion exchange and surface complexation. The magnetic ceramsite had no heavy metal leaching risk and displayed an excellent reusability, indicating its potential as an environment-friendly and low-cost adsorbent for aqueous Cu(II) removal.
{"title":"A novel clay/sludge-based magnetic ceramsite: Preparation and adsorption removal for aqueous Cu(II)","authors":"Wenguang Li, Yuhuan Sun, Haihan Sun, Shuwu Zhang, Fayuan Wang","doi":"10.1080/01496395.2023.2203326","DOIUrl":"https://doi.org/10.1080/01496395.2023.2203326","url":null,"abstract":"ABSTRACT Printing and dyeing sludge (PADS) and magnetic clay (MC, clay loaded with Fe3O4) were utilized as raw materials to prepare a novel ceramsite for Cu(II) removal from wastewater. The optimal preparation conditions were calcination temperature = 600°C, magnetic attapulgite (MA) : magnetic bentonite (MB) = 3:1, PADS = 40%, and iron content = 20%. The ceramsite prepared under these conditions (i.e. A600-3-20) had the best removal capacity for aqueous Cu(II). N2 adsorption and desorption isotherm confirmed that A600-3-20 was a porous material, with an average pore size of 14.78 nm and a surface area of 49.943 m2/g. Fe3O4 particles were successfully loaded onto the surface of the ceramsite, with a magnetic saturation intensity of 26.83 emu/g. The removal rate of Cu(II) from 40 mg/L solution by A600-3-20 reached 90%-98% under the optimal adsorption conditions. Adsorption kinetics fitted the pseudo-second-order dynamic model. Adsorption isotherm followed the Langmuir isotherm model, with the maximum adsorption capacity (qm) was 2.40 mg/g. The adsorption mechanisms were mainly dominated by chemisorption, including ion exchange and surface complexation. The magnetic ceramsite had no heavy metal leaching risk and displayed an excellent reusability, indicating its potential as an environment-friendly and low-cost adsorbent for aqueous Cu(II) removal.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"1 1","pages":"1565 - 1582"},"PeriodicalIF":2.8,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89203595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-18DOI: 10.1080/01496395.2023.2201392
Babji Palakeeti, Namburi L A Amara Babu, J. Chinta
ABSTRACT A highly accurate and precise HPLC-UV method was developed for identification and quantification of gemcitabine anti-cancer drug in rat plasma. A new magnetic graphene oxide-based calixarene composite was developed and used as a solid phase for extraction of gemcitabine from rat plasma. Extraction efficiency has been studied by varying different experimental variables (eluent type, sorbent amount, extraction time and eluent volume etc.) and these were evaluated and optimized. Magnetic solid phase extraction (MSPE) conditions such as amount of solid phase, extraction solvents and their amounts, and adsorption and desorption times were optimized for getting better recoveries. Under the optimized conditions, linearity was evaluated with good correlation coefficient value R2 (0.9993). Limit of detection (2.0 ng/mL) and limit of quantification (13.0 ng/mL) was assessed using signal-to-noise ratio method. Intraday precision RSD values of gemcitabine (GEM) were found to be less than 4.6% and interday precision values are less than 6.8%. The results obtained during the robustness study were RSD values between 1.2 and 4.6%; these results indicate that the method has effective performance and reliability. The recovery percentages of gemcitabine at three QC level concentrations were obtained in the range from 97.6 to 100.2%.
{"title":"Development of a magnetic solid phase extraction method for gemcitabine from rat plasma by using magnetic graphene oxide calix[6]arene composite and its application to pharmacokinetics","authors":"Babji Palakeeti, Namburi L A Amara Babu, J. Chinta","doi":"10.1080/01496395.2023.2201392","DOIUrl":"https://doi.org/10.1080/01496395.2023.2201392","url":null,"abstract":"ABSTRACT A highly accurate and precise HPLC-UV method was developed for identification and quantification of gemcitabine anti-cancer drug in rat plasma. A new magnetic graphene oxide-based calixarene composite was developed and used as a solid phase for extraction of gemcitabine from rat plasma. Extraction efficiency has been studied by varying different experimental variables (eluent type, sorbent amount, extraction time and eluent volume etc.) and these were evaluated and optimized. Magnetic solid phase extraction (MSPE) conditions such as amount of solid phase, extraction solvents and their amounts, and adsorption and desorption times were optimized for getting better recoveries. Under the optimized conditions, linearity was evaluated with good correlation coefficient value R2 (0.9993). Limit of detection (2.0 ng/mL) and limit of quantification (13.0 ng/mL) was assessed using signal-to-noise ratio method. Intraday precision RSD values of gemcitabine (GEM) were found to be less than 4.6% and interday precision values are less than 6.8%. The results obtained during the robustness study were RSD values between 1.2 and 4.6%; these results indicate that the method has effective performance and reliability. The recovery percentages of gemcitabine at three QC level concentrations were obtained in the range from 97.6 to 100.2%.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"15 1","pages":"1596 - 1606"},"PeriodicalIF":2.8,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87770584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}