Pub Date : 2023-06-12DOI: 10.1080/01496395.2023.2221819
Peishan Chen, Zi‐qiu Li, X. Long
ABSTRACT The discharge of diethylenetriamine (DETA) into aqueous environment poses a threat to public health and environment. Therefore, it is imperative to take effective measures to remove DETA from water. The elimination of DETA from water may be realized via the way of adsorption with activated carbon. In this paper, the adsorption of DETA from water by activated carbon originated from coconut shell has been explored in batchwise operation. The effects of stirring speed, temperature, pH, DETA concentration, carbon dosage and particle size on DETA adsorption have been determined by experiment. The adsorption results exhibit that the DETA adsorption rate increases with its concentration in the aqueous solution and temperature. However, the amount of DETA adsorbed on the carbon at equilibrium decreases slightly with temperature. The DETA adsorbed increases with pH changing from 8 to 11 and remains constant if pH rising over 11. The kinetic study shows that DETA adsorption on the activated carbon is in good agreement with the pseudo-second-order kinetic model with a correlation coefficient of 0.999. The DETA removal from the solution increases with the carbon dosage. The Langmuir equilibrium isotherm model has been found to provide a better fitting of the adsorption data than the Freundlich equilibrium isotherm model with a maximum adsorption of 90.50 mg g−1. The thermodynamic parameters evaluated from the experiments are ΔS 14.49 J∙mol−1∙K−1, ΔH −11.32 kJ mol−1 and ΔG changing from −15.71 from −16.15 kJ mol−1with the temperature rising from 30°C to 60°C. The thermodynamic study suggests the exothermic and spontaneous natures of DETA sorption on activated carbon.
{"title":"Adsorption of Diethylenetriamine from Water by Activated Carbon: Kinetics, Isotherms and Thermodynamics","authors":"Peishan Chen, Zi‐qiu Li, X. Long","doi":"10.1080/01496395.2023.2221819","DOIUrl":"https://doi.org/10.1080/01496395.2023.2221819","url":null,"abstract":"ABSTRACT The discharge of diethylenetriamine (DETA) into aqueous environment poses a threat to public health and environment. Therefore, it is imperative to take effective measures to remove DETA from water. The elimination of DETA from water may be realized via the way of adsorption with activated carbon. In this paper, the adsorption of DETA from water by activated carbon originated from coconut shell has been explored in batchwise operation. The effects of stirring speed, temperature, pH, DETA concentration, carbon dosage and particle size on DETA adsorption have been determined by experiment. The adsorption results exhibit that the DETA adsorption rate increases with its concentration in the aqueous solution and temperature. However, the amount of DETA adsorbed on the carbon at equilibrium decreases slightly with temperature. The DETA adsorbed increases with pH changing from 8 to 11 and remains constant if pH rising over 11. The kinetic study shows that DETA adsorption on the activated carbon is in good agreement with the pseudo-second-order kinetic model with a correlation coefficient of 0.999. The DETA removal from the solution increases with the carbon dosage. The Langmuir equilibrium isotherm model has been found to provide a better fitting of the adsorption data than the Freundlich equilibrium isotherm model with a maximum adsorption of 90.50 mg g−1. The thermodynamic parameters evaluated from the experiments are ΔS 14.49 J∙mol−1∙K−1, ΔH −11.32 kJ mol−1 and ΔG changing from −15.71 from −16.15 kJ mol−1with the temperature rising from 30°C to 60°C. The thermodynamic study suggests the exothermic and spontaneous natures of DETA sorption on activated carbon.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"35 1","pages":"1939 - 1958"},"PeriodicalIF":2.8,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74788108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-07DOI: 10.1080/01496395.2023.2221815
S. Jabeen, Sarfaraz Alam, L. Shah, M. Ullah
ABSTRACT Polymeric hydrogel with pH-sensitive surface was prepared in this study. The surface morphologies of the synthesized materials were examined using scanning electron microscopy. Surface area and pore sizes of the hydrogels were determined using Brunauer–Emmett–Teller. Fourier transform infra-red spectroscopy was used for the identification of various functional groups on the surface of these adsorbents. These hydrogels were extremely efficient in removing toxic toluidine dye from contaminated water. Kinetics and isothermal models were used for the calculations of adsorption parameters of the synthesized materials. The adsorption data were impeccably explained with pseudo‐second order and the Langmuir model as compared to other models. The spontaneity of the reaction was confirmed by thermodynamic study. In this study the value of enthalpy (∆H°) was 7322.6 kJ/mol. The values of Gibbs energy (∆G°) were −453.9, −984.4 and −1515.2 kJ/mol, at 293K, 313K and 333K, respectively, for toluidine dye, which showed that the process is endothermic and spontaneous in nature. Moreover, the value for entropy (∆S°) was calculated as 26.54 Jmol/K for toluidine dye. The interactions of various functional groups on the surface of adsorbent and toluidine dye molecules were studied with density functional theory simulations. The large binding energies (−5.73 to −25/74 kcal/mol) of different complexes showed that the hydrogels had strong affinity for the adsorption of toluidine dye molecules while the negative values revealed that the process is spontaneous and endothermic. These results were consistent with the experimental results. This study revealed that the synthesized hydrogel is efficient adsorbent material for toluidine dye removal from contaminated water. The adsorption capacity of the prepared hydrogel was 526 mg/g for toluidine dye.
{"title":"Successful preparation of tercopolymer hydrogel for the removal of toluidine dye from contaminated water: Experimental and DFT study","authors":"S. Jabeen, Sarfaraz Alam, L. Shah, M. Ullah","doi":"10.1080/01496395.2023.2221815","DOIUrl":"https://doi.org/10.1080/01496395.2023.2221815","url":null,"abstract":"ABSTRACT Polymeric hydrogel with pH-sensitive surface was prepared in this study. The surface morphologies of the synthesized materials were examined using scanning electron microscopy. Surface area and pore sizes of the hydrogels were determined using Brunauer–Emmett–Teller. Fourier transform infra-red spectroscopy was used for the identification of various functional groups on the surface of these adsorbents. These hydrogels were extremely efficient in removing toxic toluidine dye from contaminated water. Kinetics and isothermal models were used for the calculations of adsorption parameters of the synthesized materials. The adsorption data were impeccably explained with pseudo‐second order and the Langmuir model as compared to other models. The spontaneity of the reaction was confirmed by thermodynamic study. In this study the value of enthalpy (∆H°) was 7322.6 kJ/mol. The values of Gibbs energy (∆G°) were −453.9, −984.4 and −1515.2 kJ/mol, at 293K, 313K and 333K, respectively, for toluidine dye, which showed that the process is endothermic and spontaneous in nature. Moreover, the value for entropy (∆S°) was calculated as 26.54 Jmol/K for toluidine dye. The interactions of various functional groups on the surface of adsorbent and toluidine dye molecules were studied with density functional theory simulations. The large binding energies (−5.73 to −25/74 kcal/mol) of different complexes showed that the hydrogels had strong affinity for the adsorption of toluidine dye molecules while the negative values revealed that the process is spontaneous and endothermic. These results were consistent with the experimental results. This study revealed that the synthesized hydrogel is efficient adsorbent material for toluidine dye removal from contaminated water. The adsorption capacity of the prepared hydrogel was 526 mg/g for toluidine dye.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"45 1","pages":"1923 - 1938"},"PeriodicalIF":2.8,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84499962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-27DOI: 10.1080/01496395.2023.2216370
C. Cheah, Y. Cheow, A. Ting
ABSTRACT This study developed a hybrid biosorbent consisting of exopolymeric substances (EPS) from Bacillus cereus immobilized in the gelling agent Ca-alginate. Metal removal tests revealed that the hybrid EPS beads showed significantly higher metal removal compared to plain alginate beads. This higher removal efficacy in hybrid biosorbents was attributed to the increased number of functional groups detected via FTIR analysis. Hybrid EPS beads bind metals via the formation of strong covalent bonds (chemisorption), rather than through weak van der Waals forces (physisorption), complying with the pseudo-second order model. This was consistent in both single and multi-metal systems. For adsorption isotherm, metal removal (pH 5, 25ºC, 120 rpm) by hybrid biosorbents in single metal systems fits the Langmuir isotherm (monolayer adsorption). In multi-metal systems, however, the removal of Zn and Cd demonstrated a better fit to the Freundlich isotherm (multilayer adsorption) compared to the typical Langmuir isotherm (for Cu, Pb and Cr). The isotherm models indicated that the maximum biosorption capacity for Cu, Pb, Zn, Cd and Cr was at 34.97, 156.24, 19.19, 11.66 and 38.61 mg g−1, respectively. The hybrid EPS beads are superior for the biosorption of Cu, Pb and Cr compared to existing biosorbents.
{"title":"Hybrid biosorbents from exopolymeric substances immobilized in Ca-alginate and their biosorption mechanisms in single and multi-metal systems","authors":"C. Cheah, Y. Cheow, A. Ting","doi":"10.1080/01496395.2023.2216370","DOIUrl":"https://doi.org/10.1080/01496395.2023.2216370","url":null,"abstract":"ABSTRACT This study developed a hybrid biosorbent consisting of exopolymeric substances (EPS) from Bacillus cereus immobilized in the gelling agent Ca-alginate. Metal removal tests revealed that the hybrid EPS beads showed significantly higher metal removal compared to plain alginate beads. This higher removal efficacy in hybrid biosorbents was attributed to the increased number of functional groups detected via FTIR analysis. Hybrid EPS beads bind metals via the formation of strong covalent bonds (chemisorption), rather than through weak van der Waals forces (physisorption), complying with the pseudo-second order model. This was consistent in both single and multi-metal systems. For adsorption isotherm, metal removal (pH 5, 25ºC, 120 rpm) by hybrid biosorbents in single metal systems fits the Langmuir isotherm (monolayer adsorption). In multi-metal systems, however, the removal of Zn and Cd demonstrated a better fit to the Freundlich isotherm (multilayer adsorption) compared to the typical Langmuir isotherm (for Cu, Pb and Cr). The isotherm models indicated that the maximum biosorption capacity for Cu, Pb, Zn, Cd and Cr was at 34.97, 156.24, 19.19, 11.66 and 38.61 mg g−1, respectively. The hybrid EPS beads are superior for the biosorption of Cu, Pb and Cr compared to existing biosorbents.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"12 1","pages":"1893 - 1907"},"PeriodicalIF":2.8,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82889596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-26DOI: 10.1080/01496395.2023.2213822
Mahboobe Behroozi, Samira Gerami, María del Mar Olaya
ABSTRACT This study provides the complete liquid–liquid equilibrium (LLE) data including the solubility curves and tie-lines for heptane + thiophene + tetraethylene glycol and cyclohexane + thiophene + tetraethylene glycol ternary mixtures at 298.15–313.15 K under a pressure of 83.4 ± 1 kPa. The experimental data were obtained by the cloud point method. Type 1 phase behavior is observed for the systems. The observed behavior was interpreted based on the type and nature of the interactions between the components. The capability of tetraethylene glycol in extractive desulfurization of thiophene from liquid fuel is evaluated by determining the solute distribution coefficient and selectivity. The high values of the selectivity show that tetraethylene glycol is a good candidate for this purpose. The investigation of the effect of temperature on the area of the biphasic region and distribution ratios shows that the extraction process can be performed at room temperature. The experimental data were successfully correlated with the NRTL model. The reliability of the correlation results was checked by using a Graphical User Interface (GUI) for the representation of Gibbs energy of mixing (GM). The root mean square deviation (RMSD), a measure of the precision of the correlations, ranges from 0.0022 to 0.0040.
{"title":"Extractive desulfurization of thiophene by tetraethylene glycol at T = 298.15 to 313.15 K and liquid–liquid phase equilibrium study","authors":"Mahboobe Behroozi, Samira Gerami, María del Mar Olaya","doi":"10.1080/01496395.2023.2213822","DOIUrl":"https://doi.org/10.1080/01496395.2023.2213822","url":null,"abstract":"ABSTRACT This study provides the complete liquid–liquid equilibrium (LLE) data including the solubility curves and tie-lines for heptane + thiophene + tetraethylene glycol and cyclohexane + thiophene + tetraethylene glycol ternary mixtures at 298.15–313.15 K under a pressure of 83.4 ± 1 kPa. The experimental data were obtained by the cloud point method. Type 1 phase behavior is observed for the systems. The observed behavior was interpreted based on the type and nature of the interactions between the components. The capability of tetraethylene glycol in extractive desulfurization of thiophene from liquid fuel is evaluated by determining the solute distribution coefficient and selectivity. The high values of the selectivity show that tetraethylene glycol is a good candidate for this purpose. The investigation of the effect of temperature on the area of the biphasic region and distribution ratios shows that the extraction process can be performed at room temperature. The experimental data were successfully correlated with the NRTL model. The reliability of the correlation results was checked by using a Graphical User Interface (GUI) for the representation of Gibbs energy of mixing (GM). The root mean square deviation (RMSD), a measure of the precision of the correlations, ranges from 0.0022 to 0.0040.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"7 1","pages":"1748 - 1760"},"PeriodicalIF":2.8,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86478418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-25DOI: 10.1080/01496395.2023.2212853
Daniel S. Parsons, A. Ingram, J. Hriljac
ABSTRACT A method for synthesizing microspheres of the zeolite gmelinite (GME) with mean diameter 8 µm, and narrow dispersion, has been developed and establishes the key role of aging the gel prior to heating to produce a narrow size distribution. Fluoride adsorption from acidic media has been evaluated for GME microspheres following post-synthetic modifications by calcium ion exchange, iron(III) surface modification, and dealumination. In each instance, the post-synthetic modification leads to appreciable equilibrium fluoride loadings, with the highest loadings observed for dealuminated GME microspheres, capable of 97.4% fluoride removal from acidified 22 ppm fluoride solutions at equilibrium. Accordingly, dealuminated GME microspheres show promise as a potential adsorbent for reducing the aqueous fluoride content in dangerously high natural sources (up to 30 ppm) to safe drinking levels (≤1.5 ppm) in one treatment.
{"title":"The synthesis of gmelinite microspheres and their post-synthetic modification for improved defluoridation","authors":"Daniel S. Parsons, A. Ingram, J. Hriljac","doi":"10.1080/01496395.2023.2212853","DOIUrl":"https://doi.org/10.1080/01496395.2023.2212853","url":null,"abstract":"ABSTRACT A method for synthesizing microspheres of the zeolite gmelinite (GME) with mean diameter 8 µm, and narrow dispersion, has been developed and establishes the key role of aging the gel prior to heating to produce a narrow size distribution. Fluoride adsorption from acidic media has been evaluated for GME microspheres following post-synthetic modifications by calcium ion exchange, iron(III) surface modification, and dealumination. In each instance, the post-synthetic modification leads to appreciable equilibrium fluoride loadings, with the highest loadings observed for dealuminated GME microspheres, capable of 97.4% fluoride removal from acidified 22 ppm fluoride solutions at equilibrium. Accordingly, dealuminated GME microspheres show promise as a potential adsorbent for reducing the aqueous fluoride content in dangerously high natural sources (up to 30 ppm) to safe drinking levels (≤1.5 ppm) in one treatment.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"16 1","pages":"1851 - 1862"},"PeriodicalIF":2.8,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89012589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-24DOI: 10.1080/01496395.2023.2217339
Guoqiang Zhou, Yan Zhang, Jianming Xia, Zhirong Zheng, Shangjun Wang
ABSTRACT Fe3O4 magnetic nanoparticles have been employed as a cost-effective adsorbent for removing Sb from aqueous solutions. However, the widespread application is limited by its finite adsorption capacity and aggregation nature. In this study, Al-doped Fe3O4 nanoparticles were prepared via a facile solvothermal method to break through the current obstacle. Al-doped Fe3O4 nanoparticles were fully characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron microscopy (SEM), and infrared spectroscopy (FTIR). The results confirmed that Al atoms had been successfully doped into Fe3O4 crystal unit cells, resulting in smaller particle size, larger surface area, and higher isoelectric point. These changes led to the formation of more hydroxyl groups on the surface of Al-doped Fe3O4 nanoparticles. Compared to pristine Fe3O4, the maximum adsorption capacity toward Sb(III) and Sb(V) increased from 111.695 to 197.034 mg/g and from 34.479 to 187.459 mg/g at neutral pH, respectively. The doping of Al also had some negative impact on the original magnetic strength but still maintained a sufficient magnetic separation potential. These results indicated that Al-doped Fe3O4 nanoparticles could be employed as a promising adsorbent for removing Sb(III) and Sb(V) from wastewater.
{"title":"Efficient removal of antimony from aqueous solution using Al-doped Fe3O4 nanoparticles: adsorption behavior and kinetics study","authors":"Guoqiang Zhou, Yan Zhang, Jianming Xia, Zhirong Zheng, Shangjun Wang","doi":"10.1080/01496395.2023.2217339","DOIUrl":"https://doi.org/10.1080/01496395.2023.2217339","url":null,"abstract":"ABSTRACT Fe3O4 magnetic nanoparticles have been employed as a cost-effective adsorbent for removing Sb from aqueous solutions. However, the widespread application is limited by its finite adsorption capacity and aggregation nature. In this study, Al-doped Fe3O4 nanoparticles were prepared via a facile solvothermal method to break through the current obstacle. Al-doped Fe3O4 nanoparticles were fully characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron microscopy (SEM), and infrared spectroscopy (FTIR). The results confirmed that Al atoms had been successfully doped into Fe3O4 crystal unit cells, resulting in smaller particle size, larger surface area, and higher isoelectric point. These changes led to the formation of more hydroxyl groups on the surface of Al-doped Fe3O4 nanoparticles. Compared to pristine Fe3O4, the maximum adsorption capacity toward Sb(III) and Sb(V) increased from 111.695 to 197.034 mg/g and from 34.479 to 187.459 mg/g at neutral pH, respectively. The doping of Al also had some negative impact on the original magnetic strength but still maintained a sufficient magnetic separation potential. These results indicated that Al-doped Fe3O4 nanoparticles could be employed as a promising adsorbent for removing Sb(III) and Sb(V) from wastewater.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"57 1","pages":"1908 - 1922"},"PeriodicalIF":2.8,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90548726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-24DOI: 10.1080/01496395.2023.2214308
Tianwei Peng, Yanfei Wang
ABSTRACT In this study, amino modified mesoporous silica (HMS-TEEPA-TEA) was used for the first time to remove uranium (VI) from aqueous solution. The synthesized HMS-TEEPA-TEA was characterized by SEM, EDS, FTIR, BET and XPS techniques. The present work attempted to optimize and compare the adsorption process parameters like pH, adsorbate concentration, and adsorbent dose using Box-Behnken designs of response surface methodology. The adsorption amount and removal rate reached 337.26 mg/g and 99.57%, respectively. Model P> F < 0.0001 in this experiment (generally P > F < 0.05 is considered significant), indicating that the model is extremely significant and can be considered as highly referable for its predicted response values. The fit of the data to the Langmuir isotherm and the proposed secondary kinetics indicates that the adsorption process is monolayer and chemical in nature. The effect of copper on HMS-TEEPA-TEA adsorption is more complex than other background ions. The removal of uranium (VI) by HMS-TEEPA-TEA remained above 80% for four consecutive experiments with repeated adsorbent use. The results indicate that HMS-TEEPA-TEA is an effective adsorbent for the removal of uranium (VI) from aqueous solutions with the advantages of low cost, high availability and easy production.
摘要本研究首次采用氨基修饰介孔二氧化硅(hms - tepa - tea)去除水溶液中的铀(VI)。采用SEM、EDS、FTIR、BET和XPS等技术对合成的hms - tepa - tea进行了表征。本研究尝试利用响应面法的Box-Behnken设计对pH、吸附质浓度、吸附剂剂量等吸附过程参数进行优化比较。吸附量和去除率分别达到337.26 mg/g和99.57%。认为模型P> F F < 0.05显著),说明该模型极显著,可认为其预测的响应值具有较高的参考价值。Langmuir等温线和二级动力学的拟合表明,吸附过程是单层的,是化学性质的。铜对hms - tepa - tea吸附的影响比其他背景离子更为复杂。在重复使用吸附剂的情况下,HMS-TEEPA-TEA对铀(VI)的去除率连续4次保持在80%以上。结果表明,HMS-TEEPA-TEA具有成本低、可得性高、易于生产等优点,是一种去除水中铀(VI)的有效吸附剂。
{"title":"Adsorption of uranium by amination mesoporous molecular sieve HMS, using response surface methodology","authors":"Tianwei Peng, Yanfei Wang","doi":"10.1080/01496395.2023.2214308","DOIUrl":"https://doi.org/10.1080/01496395.2023.2214308","url":null,"abstract":"ABSTRACT In this study, amino modified mesoporous silica (HMS-TEEPA-TEA) was used for the first time to remove uranium (VI) from aqueous solution. The synthesized HMS-TEEPA-TEA was characterized by SEM, EDS, FTIR, BET and XPS techniques. The present work attempted to optimize and compare the adsorption process parameters like pH, adsorbate concentration, and adsorbent dose using Box-Behnken designs of response surface methodology. The adsorption amount and removal rate reached 337.26 mg/g and 99.57%, respectively. Model P> F < 0.0001 in this experiment (generally P > F < 0.05 is considered significant), indicating that the model is extremely significant and can be considered as highly referable for its predicted response values. The fit of the data to the Langmuir isotherm and the proposed secondary kinetics indicates that the adsorption process is monolayer and chemical in nature. The effect of copper on HMS-TEEPA-TEA adsorption is more complex than other background ions. The removal of uranium (VI) by HMS-TEEPA-TEA remained above 80% for four consecutive experiments with repeated adsorbent use. The results indicate that HMS-TEEPA-TEA is an effective adsorbent for the removal of uranium (VI) from aqueous solutions with the advantages of low cost, high availability and easy production.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"9 1","pages":"1731 - 1747"},"PeriodicalIF":2.8,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88896096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-24DOI: 10.1080/01496395.2023.2213395
Cherifi Mouna, Belkacem Merzouk, Hazourli Sabir, D. Laefer, Atba Wafa
ABSTRACT Municipal and industrial wastewater treatment plants produce large amounts of sludge containing high levels of organic, chemical, and microbial pollutants. Unless stabilized completely and discharged safely, they may become potential pollution sources threatening soil and water bodies. This study investigated H2O2 oxidation and electrocoagulation as pretreatments to improve stabilization of an urban sludge. The H2O2 oxidation was optimized with respect to H2O2 dosage and initial sludge pH-H2O2. Batch electrocoagulation experiments were conducted using aluminum, iron, and zinc electrodes to investigate the effect of treatment period, current density, and pH. The effectiveness was compared in terms of solubilization of sludge, disintegration degree, and reduction of total solids. Sludge settling velocity after disintegration by both H2O2 oxidation and electrocoagulation were measured with respect to the operating conditions. The obtained results indicated that the high rate of sludge disintegration (63.3%) was obtained with aluminum electrodes, which has lower operating costs than iron and zinc electrodes. The H2O2 oxidation reached a maximum disintegration degree of 50%. Additionally, with aluminum and iron electrodes, sludge settleability was enhanced with both H2O2 oxidation and electrocoagulation.
{"title":"A comparative study of hydrogen peroxide oxidation and electrocoagulation using aluminum, iron, and zinc electrodes for urban sludge disintegration","authors":"Cherifi Mouna, Belkacem Merzouk, Hazourli Sabir, D. Laefer, Atba Wafa","doi":"10.1080/01496395.2023.2213395","DOIUrl":"https://doi.org/10.1080/01496395.2023.2213395","url":null,"abstract":"ABSTRACT Municipal and industrial wastewater treatment plants produce large amounts of sludge containing high levels of organic, chemical, and microbial pollutants. Unless stabilized completely and discharged safely, they may become potential pollution sources threatening soil and water bodies. This study investigated H2O2 oxidation and electrocoagulation as pretreatments to improve stabilization of an urban sludge. The H2O2 oxidation was optimized with respect to H2O2 dosage and initial sludge pH-H2O2. Batch electrocoagulation experiments were conducted using aluminum, iron, and zinc electrodes to investigate the effect of treatment period, current density, and pH. The effectiveness was compared in terms of solubilization of sludge, disintegration degree, and reduction of total solids. Sludge settling velocity after disintegration by both H2O2 oxidation and electrocoagulation were measured with respect to the operating conditions. The obtained results indicated that the high rate of sludge disintegration (63.3%) was obtained with aluminum electrodes, which has lower operating costs than iron and zinc electrodes. The H2O2 oxidation reached a maximum disintegration degree of 50%. Additionally, with aluminum and iron electrodes, sludge settleability was enhanced with both H2O2 oxidation and electrocoagulation.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"238 1","pages":"1806 - 1820"},"PeriodicalIF":2.8,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77671089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-23DOI: 10.1080/01496395.2023.2215401
Xin Liu, Rui Wang, Chan Wang, Wancheng Li, Yun Huang, Yao Li, Huchuan Wang, Chengjun Peng, Haixia Hu, Bo Wu, Chuanrun Li
ABSTRACT A coupled ultrasonic extraction process of curcumin from Curcuma longa L enhanced by the graphene-oxide-assisted solvent was developed. The yield was investigated in relation to extraction temperature, extraction time, ethanol volume fraction, and graphene oxide concentration. Response surface methodology was used to develop a quadratic model of the yield and extraction process. The optimum extraction parameters with the highest yield were obtained and the economic value was then assessed. Results showed that the coupling process could reduce the extraction time, extraction temperature, and ethanol volume fraction while improving the extraction yield. The optimal process parameters were 50.0°C extraction temperature, 1.5 h extraction time, 60.0% ethanol volume fraction, and 1.0 mg/g graphene oxide concentration. The highest extraction yield was 64.9 mg/g, which was better than that have been reported. It can save an estimated $1507 in production expenses for every ton of turmeric under the optimal extraction process. Moreover, the reduction in extraction temperature and ethanol volume fraction also means a safer and cleaner production environment, which highlights the greater potential application prospect of the extraction process developed in this paper.
{"title":"Graphene oxide assisted solvent for enhancing the coupled ultrasonic extraction process of curcumin from Curcuma longa L","authors":"Xin Liu, Rui Wang, Chan Wang, Wancheng Li, Yun Huang, Yao Li, Huchuan Wang, Chengjun Peng, Haixia Hu, Bo Wu, Chuanrun Li","doi":"10.1080/01496395.2023.2215401","DOIUrl":"https://doi.org/10.1080/01496395.2023.2215401","url":null,"abstract":"ABSTRACT A coupled ultrasonic extraction process of curcumin from Curcuma longa L enhanced by the graphene-oxide-assisted solvent was developed. The yield was investigated in relation to extraction temperature, extraction time, ethanol volume fraction, and graphene oxide concentration. Response surface methodology was used to develop a quadratic model of the yield and extraction process. The optimum extraction parameters with the highest yield were obtained and the economic value was then assessed. Results showed that the coupling process could reduce the extraction time, extraction temperature, and ethanol volume fraction while improving the extraction yield. The optimal process parameters were 50.0°C extraction temperature, 1.5 h extraction time, 60.0% ethanol volume fraction, and 1.0 mg/g graphene oxide concentration. The highest extraction yield was 64.9 mg/g, which was better than that have been reported. It can save an estimated $1507 in production expenses for every ton of turmeric under the optimal extraction process. Moreover, the reduction in extraction temperature and ethanol volume fraction also means a safer and cleaner production environment, which highlights the greater potential application prospect of the extraction process developed in this paper.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"33 1","pages":"1761 - 1772"},"PeriodicalIF":2.8,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88322302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-22DOI: 10.1080/01496395.2023.2215400
Jianlong Hu, Lifeng Zhang, Yang Yu, Cunzhen Liang, Y. Sang
ABSTRACT Heavy metals (HMs) in sewage sludge (SS) are major obstacles that limit the land application of SS. Although the removal of HMs with acid leaching and cation exchange resins (CER) adsorption has been investigated, neither process alone could meet the simultaneous demand for efficient HMs removal and good preservation of nutrients. In this report, sulfuric acid (H2SO4) and acetic acid (AC) were used to dissolve HMs from the SS, and subsequent CER adsorption was conducted to selectively extract the HMs from acid leachate. With the addition of 5 mmol/L H2SO4, the maximum leaching efficiency of Ni, Cu, Zn and Fe were 64.0%±2.7%, 29.0%±3.7%, 98.4%±4.1% and 16.4%±0.3%, respectively. No significant inhibition effect of Fe in the leachate on the HMs adsorption with CER has been observed. The CER with sulfonate groups (R-SO3H) showed higher Ni, Cu and Zn adsorption efficiency than the CER with thioureido groups (R-SH) and carboxylic groups (R-COOH) in the acid leachate. The optimal operation condition with a combined usage of H2SO4 and R-SO3H is characterized by the advantages of high HM removal efficiency, affordable cost, and low energy consumption through the evaluation with the triangulation model.
{"title":"Selective extraction of heavy metals from sewage sludge via combined process of acid leaching and ion exchange resins adsorption: Optimization and performance evaluation","authors":"Jianlong Hu, Lifeng Zhang, Yang Yu, Cunzhen Liang, Y. Sang","doi":"10.1080/01496395.2023.2215400","DOIUrl":"https://doi.org/10.1080/01496395.2023.2215400","url":null,"abstract":"ABSTRACT Heavy metals (HMs) in sewage sludge (SS) are major obstacles that limit the land application of SS. Although the removal of HMs with acid leaching and cation exchange resins (CER) adsorption has been investigated, neither process alone could meet the simultaneous demand for efficient HMs removal and good preservation of nutrients. In this report, sulfuric acid (H2SO4) and acetic acid (AC) were used to dissolve HMs from the SS, and subsequent CER adsorption was conducted to selectively extract the HMs from acid leachate. With the addition of 5 mmol/L H2SO4, the maximum leaching efficiency of Ni, Cu, Zn and Fe were 64.0%±2.7%, 29.0%±3.7%, 98.4%±4.1% and 16.4%±0.3%, respectively. No significant inhibition effect of Fe in the leachate on the HMs adsorption with CER has been observed. The CER with sulfonate groups (R-SO3H) showed higher Ni, Cu and Zn adsorption efficiency than the CER with thioureido groups (R-SH) and carboxylic groups (R-COOH) in the acid leachate. The optimal operation condition with a combined usage of H2SO4 and R-SO3H is characterized by the advantages of high HM removal efficiency, affordable cost, and low energy consumption through the evaluation with the triangulation model.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"58 1","pages":"1773 - 1783"},"PeriodicalIF":2.8,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81405837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}