首页 > 最新文献

Seismological Research Letters最新文献

英文 中文
Expert Judgment in the 2022 Aotearoa New Zealand National Seismic Hazard Model 2022年新西兰国家地震灾害模型的专家判断
3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-10-19 DOI: 10.1785/0220230250
Annemarie Christophersen, Matthew C. Gerstenberger
Abstract The 2022 revision of the New Zealand National Seismic Hazard Model—Te Tauira Matapae Pūmate Rū i Aotearoa (NZ NSHM 2022) is, like other regional and national seismic hazard models, a collection of many component models that are combined via logic trees to calculate various parameters of seismic hazard. Developing, selecting, and combining component models for the NZ NSHM 2022 requires expert judgment. Informal and unstructured use of expert judgment can lead to biases. Drawing on a broad body of literature on potential biases in expert judgment and how to mitigate them, we used three approaches to incorporate expert judgment with the aim to minimize biases and understand uncertainty in seismic hazard results. The first approach applied two closely aligned group structures—the Science Team Working Groups and the Technical Advisory Group (TAG). The groups between them defined the project and made the scientific decisions necessary to produce the final model. Second, the TAG provided the function of a participatory review panel, in which the reviewers of the NSHM were actively engaged throughout the project. The third approach was performance-based weighting of expert assessments, which was applied to the weighting of the logic trees. It involved asking experts so-called calibration questions with known answers, which were relevant to the questions of interest, that is, the logic-tree weights. Each expert provided their best estimates with uncertainty, from which calibration and information scores were calculated. The scores were used to weight the experts’ assessments. The combined approach to incorporating expert judgment was intended to provide a robust and well-reviewed application of seismic hazard analysis for Aotearoa, New Zealand. Robust expert judgment processes are critical to any large science project, and our approach may provide learnings and insights for others.
新西兰国家地震灾害模型(NZ NSHM 2022)的2022修订版与其他区域和国家地震灾害模型一样,是通过逻辑树组合的许多组件模型的集合,用于计算地震灾害的各种参数。为NZ NSHM 2022开发、选择和组合组件模型需要专家的判断。非正式和非结构化地使用专家判断可能导致偏见。利用大量关于专家判断中潜在偏差以及如何减轻偏差的文献,我们使用了三种方法将专家判断与最小化偏差和理解地震危害结果的不确定性结合起来。第一种方法采用了两个紧密结合的小组结构——科学小组工作组和技术咨询小组(TAG)。他们之间的小组定义了项目,并做出了产生最终模型所必需的科学决策。第二,评审小组提供了参与性评审小组的功能,其中NSHM的评审人员在整个项目中都积极参与。第三种方法是基于性能的专家评估加权,将其应用于逻辑树的加权。它涉及向专家询问所谓的校准问题,并给出已知答案,这些问题与感兴趣的问题有关,即逻辑树权重。每位专家都提供了不确定性的最佳估计,并据此计算校准和信息分数。这些分数被用来衡量专家的评估。结合专家判断的综合方法旨在为新西兰Aotearoa的地震危害分析提供可靠且经过良好审查的应用。可靠的专家判断过程对于任何大型科学项目都是至关重要的,我们的方法可以为其他人提供学习和见解。
{"title":"Expert Judgment in the 2022 Aotearoa New Zealand National Seismic Hazard Model","authors":"Annemarie Christophersen, Matthew C. Gerstenberger","doi":"10.1785/0220230250","DOIUrl":"https://doi.org/10.1785/0220230250","url":null,"abstract":"Abstract The 2022 revision of the New Zealand National Seismic Hazard Model—Te Tauira Matapae Pūmate Rū i Aotearoa (NZ NSHM 2022) is, like other regional and national seismic hazard models, a collection of many component models that are combined via logic trees to calculate various parameters of seismic hazard. Developing, selecting, and combining component models for the NZ NSHM 2022 requires expert judgment. Informal and unstructured use of expert judgment can lead to biases. Drawing on a broad body of literature on potential biases in expert judgment and how to mitigate them, we used three approaches to incorporate expert judgment with the aim to minimize biases and understand uncertainty in seismic hazard results. The first approach applied two closely aligned group structures—the Science Team Working Groups and the Technical Advisory Group (TAG). The groups between them defined the project and made the scientific decisions necessary to produce the final model. Second, the TAG provided the function of a participatory review panel, in which the reviewers of the NSHM were actively engaged throughout the project. The third approach was performance-based weighting of expert assessments, which was applied to the weighting of the logic trees. It involved asking experts so-called calibration questions with known answers, which were relevant to the questions of interest, that is, the logic-tree weights. Each expert provided their best estimates with uncertainty, from which calibration and information scores were calculated. The scores were used to weight the experts’ assessments. The combined approach to incorporating expert judgment was intended to provide a robust and well-reviewed application of seismic hazard analysis for Aotearoa, New Zealand. Robust expert judgment processes are critical to any large science project, and our approach may provide learnings and insights for others.","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135778326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Statistical Perspective on Båth’s Law 巴巴斯定律的统计新视角
3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-10-18 DOI: 10.1785/0220230147
Christian Grimm, Sebastian Hainzl, Martin Käser, Helmut Küchenhoff
Abstract The empirical Båth’s law states that the average magnitude difference (ΔM) between a mainshock and its strongest aftershock is ∼1.2, independent of the size of the mainshock. Although this observation can generally be explained by a scaling of aftershock productivity with mainshock magnitude in combination with a Gutenberg–Richter frequency–magnitude distribution, estimates of ΔM may be preferable because they are directly related to the most interesting information, namely the magnitudes of the main events, without relying on assumptions. However, a major challenge in calculating this value is the bias introduced by missing data points when the strongest aftershock is below the observed cut-off magnitude. Ignoring missing values leads to a systematic error because the data points removed are those with particularly large magnitude differences ΔM. The error can be minimized by restricting the statistics to mainshocks that are at least 2 magnitude units above the cutoff, but then the sample size is strongly reduced. This work provides an innovative approach for modeling ΔM by adapting methods for time-to-event data, which often suffer from incomplete observations (censoring). In doing so, we adequately account for unobserved values and estimate a fully parametric distribution of the magnitude differences ΔM for mainshocks in a global earthquake catalog. Our results suggest that magnitude differences are best modeled by the Gompertz distribution and that larger ΔM are expected at increasing depths and higher heat flows.
经验巴斯定律指出,主震与其最强余震之间的平均震级差(ΔM)为~ 1.2,与主震的大小无关。虽然这一观察结果通常可以用余震强度与主震震级结合古登堡-里希特频率-震级分布的比例来解释,但ΔM的估计可能更可取,因为它们与最有趣的信息直接相关,即主要事件的震级,而不依赖于假设。然而,计算该值的一个主要挑战是,当最强余震低于观测到的截止震级时,由于缺少数据点而引起的偏差。忽略缺失值会导致系统错误,因为被删除的数据点是那些具有特别大的幅度差异ΔM。误差可以通过将统计数据限制在截止点以上至少2个震级单位的主震来最小化,但这样就大大减少了样本量。这项工作提供了一种创新的方法,通过适应时间到事件数据的方法来建模ΔM,这些数据经常受到不完整观察(审查)的影响。在这样做的过程中,我们充分考虑了未观测到的值,并估计了全球地震目录中主震震级差异ΔM的完全参数分布。我们的结果表明,震级差异最好用Gompertz分布来模拟,并且随着深度的增加和热流的增加,预计会有更大的ΔM。
{"title":"A New Statistical Perspective on Båth’s Law","authors":"Christian Grimm, Sebastian Hainzl, Martin Käser, Helmut Küchenhoff","doi":"10.1785/0220230147","DOIUrl":"https://doi.org/10.1785/0220230147","url":null,"abstract":"Abstract The empirical Båth’s law states that the average magnitude difference (ΔM) between a mainshock and its strongest aftershock is ∼1.2, independent of the size of the mainshock. Although this observation can generally be explained by a scaling of aftershock productivity with mainshock magnitude in combination with a Gutenberg–Richter frequency–magnitude distribution, estimates of ΔM may be preferable because they are directly related to the most interesting information, namely the magnitudes of the main events, without relying on assumptions. However, a major challenge in calculating this value is the bias introduced by missing data points when the strongest aftershock is below the observed cut-off magnitude. Ignoring missing values leads to a systematic error because the data points removed are those with particularly large magnitude differences ΔM. The error can be minimized by restricting the statistics to mainshocks that are at least 2 magnitude units above the cutoff, but then the sample size is strongly reduced. This work provides an innovative approach for modeling ΔM by adapting methods for time-to-event data, which often suffer from incomplete observations (censoring). In doing so, we adequately account for unobserved values and estimate a fully parametric distribution of the magnitude differences ΔM for mainshocks in a global earthquake catalog. Our results suggest that magnitude differences are best modeled by the Gompertz distribution and that larger ΔM are expected at increasing depths and higher heat flows.","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135883713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning the Deep and the Shallow: Deep-Learning-Based Depth Phase Picking and Earthquake Depth Estimation 深度学习与浅层学习:基于深度学习的深度相位提取与地震深度估计
3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-10-17 DOI: 10.1785/0220230187
Jannes Münchmeyer, Joachim Saul, Frederik Tilmann
Abstract Automated teleseismic earthquake monitoring is an essential part of global seismicity analysis. Although constraining epicenters in an automated fashion is an established technique, constraining event depths is substantially more difficult. One solution to this challenge is teleseismic depth phases, but these can currently not be identified precisely by automatic detection methods. Here, we propose two deep-learning models, DepthPhaseTEAM and DepthPhaseNet, to detect and pick depth phases. For training the models, we create a dataset based on the ISC-EHB bulletin—a high-quality catalog with detailed phase annotations. We show how backprojecting the predicted phase arrival probability curves onto the depth axis yields accurate estimates of earthquake depth. Furthermore, we show how a multistation model, DepthPhaseTEAM, leads to better and more consistent predictions than the single-station model, DepthPhaseNet. To allow direct application of our models, we integrate them within the SeisBench library.
远震自动监测是全球地震活动性分析的重要组成部分。尽管以自动化的方式约束震中是一种成熟的技术,但约束事件深度实际上更加困难。解决这一挑战的一种方法是远震深度相位,但目前还不能通过自动检测方法精确识别。在这里,我们提出了两个深度学习模型,DepthPhaseTEAM和DepthPhaseNet,来检测和选择深度阶段。为了训练模型,我们基于ISC-EHB公告创建了一个数据集——一个带有详细阶段注释的高质量目录。我们展示了如何将预测的相位到达概率曲线反向投影到深度轴上,从而得到地震深度的准确估计。此外,我们展示了多站模型DepthPhaseTEAM如何比单站模型DepthPhaseNet产生更好和更一致的预测。为了允许直接应用我们的模型,我们将它们集成到SeisBench库中。
{"title":"Learning the Deep and the Shallow: Deep-Learning-Based Depth Phase Picking and Earthquake Depth Estimation","authors":"Jannes Münchmeyer, Joachim Saul, Frederik Tilmann","doi":"10.1785/0220230187","DOIUrl":"https://doi.org/10.1785/0220230187","url":null,"abstract":"Abstract Automated teleseismic earthquake monitoring is an essential part of global seismicity analysis. Although constraining epicenters in an automated fashion is an established technique, constraining event depths is substantially more difficult. One solution to this challenge is teleseismic depth phases, but these can currently not be identified precisely by automatic detection methods. Here, we propose two deep-learning models, DepthPhaseTEAM and DepthPhaseNet, to detect and pick depth phases. For training the models, we create a dataset based on the ISC-EHB bulletin—a high-quality catalog with detailed phase annotations. We show how backprojecting the predicted phase arrival probability curves onto the depth axis yields accurate estimates of earthquake depth. Furthermore, we show how a multistation model, DepthPhaseTEAM, leads to better and more consistent predictions than the single-station model, DepthPhaseNet. To allow direct application of our models, we integrate them within the SeisBench library.","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136033641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Applying Feature Transformation-Based Domain Confusion to Neural Network for the Denoising of Dispersion Spectrograms 基于特征变换的域混淆在色散谱图去噪中的应用
3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-10-17 DOI: 10.1785/0220230103
Weibin Song, Shichuan Yuan, Ming Cheng, Guanchao Wang, Yilong Li, Xiaofei Chen
Abstract Ambient noise tomography has been widely used to estimate the shear-wave velocity structure of the Earth. A key step in this method is to pick dispersions from dispersion spectrograms. Using the frequency–Bessel (F-J) transform, the generated spectrograms can provide more dispersion information by including higher modes in addition to the fundamental mode. With the increasing availability of these spectrograms, manually picking dispersion curves is highly time and energy consuming. Consequently, neural networks have been used for automatically picking dispersions. Dispersion curves are picked based on deep learning mainly for denoising these spectrograms. In several studies, the neural network was solely trained, and its performance was verified for the denoising. However, they all learn single-source data in the training of neural network. It will lead the regionality of trained neural network. Even if we can use domain adaptation to improve its performance and achieve some success, there are still some spectrograms that cannot be solved effectively. Therefore, multisources training is useful and could reduce the regionality in training stage. Normally, dispersion spectrograms from multisources have feature differences of dispersion curves, especially for higher modes in F-J spectrograms. Thus, we propose a training strategy based on domain confusion through which the neural network effectively learns spectrograms from multisources. After domain confusion, the trained neural network can effectively process large number of test data and help us easily obtain more dispersion curves automatically. The proposed study can provide a deep insight into the denoising of dispersion spectrograms by neural network and facilitate ambient noise tomography.
环境噪声层析成像已被广泛用于估计地球横波速度结构。该方法的关键步骤是从色散谱图中选取色散。利用频率-贝塞尔(F-J)变换,生成的谱图除了基模外,还包含了更高的模,从而提供了更多的色散信息。随着这些谱图的可用性越来越高,手动挑选色散曲线是非常耗时和耗能的。因此,神经网络已被用于自动选择色散。基于深度学习提取色散曲线主要用于对这些谱图进行去噪。在一些研究中,对神经网络进行了单独的训练,并验证了其去噪的性能。然而,它们在神经网络的训练中都是学习单源数据。它将导致训练神经网络的区域性。即使我们可以利用域自适应来提高其性能并取得一定的成功,但仍然存在一些无法有效求解的谱图。因此,多源训练是有用的,可以减少训练阶段的地域性。通常情况下,多源色散谱图的色散曲线存在特征差异,特别是F-J谱图中的高模色散曲线。因此,我们提出了一种基于域混淆的训练策略,通过该策略,神经网络可以有效地从多源学习频谱图。经过域混淆后,训练后的神经网络可以有效地处理大量的测试数据,并帮助我们轻松地自动获得更多的色散曲线。本研究为色散谱图的神经网络去噪提供了深入的见解,并为环境噪声层析成像提供了便利。
{"title":"Applying Feature Transformation-Based Domain Confusion to Neural Network for the Denoising of Dispersion Spectrograms","authors":"Weibin Song, Shichuan Yuan, Ming Cheng, Guanchao Wang, Yilong Li, Xiaofei Chen","doi":"10.1785/0220230103","DOIUrl":"https://doi.org/10.1785/0220230103","url":null,"abstract":"Abstract Ambient noise tomography has been widely used to estimate the shear-wave velocity structure of the Earth. A key step in this method is to pick dispersions from dispersion spectrograms. Using the frequency–Bessel (F-J) transform, the generated spectrograms can provide more dispersion information by including higher modes in addition to the fundamental mode. With the increasing availability of these spectrograms, manually picking dispersion curves is highly time and energy consuming. Consequently, neural networks have been used for automatically picking dispersions. Dispersion curves are picked based on deep learning mainly for denoising these spectrograms. In several studies, the neural network was solely trained, and its performance was verified for the denoising. However, they all learn single-source data in the training of neural network. It will lead the regionality of trained neural network. Even if we can use domain adaptation to improve its performance and achieve some success, there are still some spectrograms that cannot be solved effectively. Therefore, multisources training is useful and could reduce the regionality in training stage. Normally, dispersion spectrograms from multisources have feature differences of dispersion curves, especially for higher modes in F-J spectrograms. Thus, we propose a training strategy based on domain confusion through which the neural network effectively learns spectrograms from multisources. After domain confusion, the trained neural network can effectively process large number of test data and help us easily obtain more dispersion curves automatically. The proposed study can provide a deep insight into the denoising of dispersion spectrograms by neural network and facilitate ambient noise tomography.","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135992808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SSA News and Notes SSA新闻和笔记
3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-10-13 DOI: 10.1785/0220230316
{"title":"SSA News and Notes","authors":"","doi":"10.1785/0220230316","DOIUrl":"https://doi.org/10.1785/0220230316","url":null,"abstract":"","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"88 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Seismic Imaging of the Crustal Structure beneath the Eastern Sichuan and Wuling Mountains, South China: Insights into the Formation of Fold-and-Thrust Belts 川东武陵山地壳结构的新地震成像:对褶皱冲断带形成的认识
3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-10-13 DOI: 10.1785/0220230105
Wenwen Zhang, Yongqian Zhang, Qingtian Lü, Yutao Shi, Yao Xu, Jiayong Yan
Abstract Intracontinental deformation is out of the theory of conventional plate tectonics. It is widely recognized with deformation within the continental interior instead of the plate margin, yet its formation mechanism has long been controversial. The eastern Sichuan–Wuling mountains (ESWM) area is located ∼1300 km away from the subduction plate boundary and had developed intracontinental deformations, including crustal shortening and fold-and-thrust (FAT) tectonics, making it an ideal place to understand the mechanism of intracontinental deformation. In this study, we obtain a new seismic image of the 3D crustal structure of the ESWM area using the continuous ambient noise data of 67 broadband seismic stations. We invert the Rayleigh-wave dispersions of 5–30 s derived from cross-correlating the Z-component of all station pairs and obtain the fine crustal VS model. Our new seismic image reveals distinct velocity characteristics between the thin-skinned chevron anticline FAT tectonics in the eastern Sichuan basin and the thick-skinned chevron syncline FAT tectonics in the Wuling mountains area. Specifically, a low-VS layer observed beneath the Wuling mountains area, together with the crystalline basement beneath the eastern Sichuan basin, marks the ductile décollements confining the folding and thrusting deformation. Based on our new VS model and some previous studies, we propose a geodynamic model, which is associated with the far-field effect of the westward paleo-Pacific subduction during the late Mesozoic. Our model meets all the structural investigations at surface and geophysical observations at depth, and is reliable and valuable for further studies on similar intracontinental deformation in other regions.
陆内变形是传统板块构造理论之外的现象。它被广泛认为是大陆内部的变形而不是板块边缘的变形,但其形成机制长期以来一直存在争议。川东武陵山(ESWM)地区距离俯冲板块边界约1300 km,大陆内变形发育,包括地壳缩短构造和褶皱逆冲构造,是研究大陆内变形机制的理想场所。本文利用67个宽带地震台站的连续环境噪声数据,获得了ESWM地区三维地壳结构的新地震图像。通过对各台站对的z分量进行交叉相关,反演了5 ~ 30 s的瑞利波频散,得到了精细的地壳VS模型。新的地震图像揭示了川东薄皮chevron背斜FAT构造与武陵山区厚皮chevron向斜FAT构造之间明显的速度特征。武陵山下的低vs层与川东盆地下的结晶基底共同标志着限制褶皱和逆冲变形的韧性质结元。在此基础上,我们提出了一个与晚中生代西向古太平洋俯冲远场效应有关的地球动力学模型。我们的模型满足所有地表构造调查和深部地球物理观测,对其他地区类似陆内变形的进一步研究具有可靠和价值。
{"title":"New Seismic Imaging of the Crustal Structure beneath the Eastern Sichuan and Wuling Mountains, South China: Insights into the Formation of Fold-and-Thrust Belts","authors":"Wenwen Zhang, Yongqian Zhang, Qingtian Lü, Yutao Shi, Yao Xu, Jiayong Yan","doi":"10.1785/0220230105","DOIUrl":"https://doi.org/10.1785/0220230105","url":null,"abstract":"Abstract Intracontinental deformation is out of the theory of conventional plate tectonics. It is widely recognized with deformation within the continental interior instead of the plate margin, yet its formation mechanism has long been controversial. The eastern Sichuan–Wuling mountains (ESWM) area is located ∼1300 km away from the subduction plate boundary and had developed intracontinental deformations, including crustal shortening and fold-and-thrust (FAT) tectonics, making it an ideal place to understand the mechanism of intracontinental deformation. In this study, we obtain a new seismic image of the 3D crustal structure of the ESWM area using the continuous ambient noise data of 67 broadband seismic stations. We invert the Rayleigh-wave dispersions of 5–30 s derived from cross-correlating the Z-component of all station pairs and obtain the fine crustal VS model. Our new seismic image reveals distinct velocity characteristics between the thin-skinned chevron anticline FAT tectonics in the eastern Sichuan basin and the thick-skinned chevron syncline FAT tectonics in the Wuling mountains area. Specifically, a low-VS layer observed beneath the Wuling mountains area, together with the crystalline basement beneath the eastern Sichuan basin, marks the ductile décollements confining the folding and thrusting deformation. Based on our new VS model and some previous studies, we propose a geodynamic model, which is associated with the far-field effect of the westward paleo-Pacific subduction during the late Mesozoic. Our model meets all the structural investigations at surface and geophysical observations at depth, and is reliable and valuable for further studies on similar intracontinental deformation in other regions.","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135859127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing Theoretical Seismograms from a Point Source in a Spherical Multilayered Medium 计算球形多层介质中点震源的理论地震记录
3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-10-13 DOI: 10.1785/0220230173
Shaoqian Hu, Lupei Zhu
Computing theoretical seismograms from a point source in a given Earth model is essential for modeling and inversion of observed seismic waveforms for Earth’s structure and earthquake source parameters. Here, we derived the propagator matrices and source terms for a spherical multilayered Earth model using the exact earth flattening transformation. We found that their differences from their counterparts in horizontal layered media are inversely proportional to the nondimensional horizontal wavenumber and its higher order. In addition, all the source terms in a spherical layered model have a source-depth dependent scaling factor that differs from in a horizontal layered model by up to 6% for deep earthquakes. The surface displacement produced by a point source can be obtained in a similar form as in horizontal layered media. Computation of theoretical seismograms was implemented using the generalized reflection and transmission coefficients method. Numerical tests show that our formulae and implementation are correct and efficient for computing full-wave seismograms, including the permanent displacements, at teleseismic distances up to 100°. Individual seismic phases can be isolated and analyzed semianalytically because the generalized reflection and transmission method is used. Furthermore, our analytic expression of displacement in terms of the propagator matrices and source terms can be used to derive analytic derivatives of seismograms for full-wave waveform inversion.
在给定的地球模型中计算一个点源的理论地震记录对于模拟和反演地球结构和震源参数的观测地震波是必不可少的。在这里,我们利用精确的地球平坦化变换,导出了球形多层地球模型的传播子矩阵和源项。我们发现它们与水平层状介质中对应波的差异与无量纲水平波数及其高阶成反比。此外,对于深地震,球形层状模型中的所有震源项都具有与震源深度相关的比例因子,与水平层状模型中的比例因子相差高达6%。点源产生的地表位移可以用与水平层状介质类似的形式得到。采用广义反射和透射系数法对理论地震记录进行了计算。数值试验表明,我们的公式和实现对于计算100°远震距离下包括永久位移在内的全波地震记录是正确和有效的。由于采用了广义反射透射法,可以对地震相进行半解析分离和分析。此外,我们用传播矩阵和震源项表示的位移解析表达式可用于推导全波波形反演的地震记录解析导数。
{"title":"Computing Theoretical Seismograms from a Point Source in a Spherical Multilayered Medium","authors":"Shaoqian Hu, Lupei Zhu","doi":"10.1785/0220230173","DOIUrl":"https://doi.org/10.1785/0220230173","url":null,"abstract":"Computing theoretical seismograms from a point source in a given Earth model is essential for modeling and inversion of observed seismic waveforms for Earth’s structure and earthquake source parameters. Here, we derived the propagator matrices and source terms for a spherical multilayered Earth model using the exact earth flattening transformation. We found that their differences from their counterparts in horizontal layered media are inversely proportional to the nondimensional horizontal wavenumber and its higher order. In addition, all the source terms in a spherical layered model have a source-depth dependent scaling factor that differs from in a horizontal layered model by up to 6% for deep earthquakes. The surface displacement produced by a point source can be obtained in a similar form as in horizontal layered media. Computation of theoretical seismograms was implemented using the generalized reflection and transmission coefficients method. Numerical tests show that our formulae and implementation are correct and efficient for computing full-wave seismograms, including the permanent displacements, at teleseismic distances up to 100°. Individual seismic phases can be isolated and analyzed semianalytically because the generalized reflection and transmission method is used. Furthermore, our analytic expression of displacement in terms of the propagator matrices and source terms can be used to derive analytic derivatives of seismograms for full-wave waveform inversion.","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reproducibility of Remote Mapping of the 2019 Ridgecrest Earthquake Surface Ruptures 2019年山脊地震地表破裂的远程测绘再现性
3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-10-13 DOI: 10.1785/0220230095
Elaine K. Young, Michael E. Oskin, Alba M. Rodriguez Padilla
Abstract We use multiple, independently produced surface-rupture maps of the 2019 Ridgecrest earthquake sequence to test the reproducibility of surface-rupture map interpretation and completeness. The 4 July Mw 6.4 and 5 July Mw 7.1 earthquakes produced surface-rupture zones approximately 20 and 50 km in length, respectively. Three independent mappers with various backgrounds in active tectonics mapped the surface rupture from the postearthquake lidar data without knowledge from postearthquake field or geodetic observations. Visual comparisons of the three remote rupture maps show good agreement for scarps >50 cm in height. For features with less topographic expression, interpretations of the data vary more widely between mappers. Quantitative map comparisons range from 18% to 54% consistency between mapped lines with 1 m buffers. The percent overlap increases with buffer width, reflecting variance in line placement as well as differences in fault-zone interpretation. Overall, map similarity is higher in areas where the surface rupture was simpler and had more vertical offset than in areas with complex rupture patterns or little vertical offset. Fault-zone interpretation accounts for the most difference between maps, while line placement accounts for differences at the meter scale. In comparison to field observations, our remotely produced maps capture the principal rupture well but miss small features and geometric complexity. In general, lidar excels for the detection and measurement of vertical offsets in the landscape, and it is deficient for detecting lateral offset with little or no vertical motion.
我们使用2019年山脊地震序列的多个独立制作的地表破裂图来测试地表破裂图解释的可重复性和完整性。7月4日的6.4兆瓦和7月5日的7.1兆瓦地震分别产生了大约20公里和50公里长的地表破裂带。三位具有不同活动构造背景的独立制图者在没有震后场或大地测量观测知识的情况下,利用地震后激光雷达数据绘制了地表破裂图。三幅远距离断裂图的目视比较显示高度为50厘米的断崖高度一致。对于地形表达较少的特征,不同制图者对数据的解释差异更大。定量地图比较在具有1m缓冲区的映射线之间的一致性范围为18%到54%。重叠的百分比随着缓冲区宽度的增加而增加,这反映了线放置的差异以及断层带解释的差异。总体而言,地表破裂较为简单且垂直偏移较多的地区的地图相似性高于破裂模式复杂或垂直偏移较少的地区。断层带解释解释了地图之间的最大差异,而线的放置解释了米尺度上的差异。与现场观察结果相比,我们的远程制作的地图可以很好地捕捉到主要破裂,但遗漏了小特征和几何复杂性。总的来说,激光雷达擅长于探测和测量景观中的垂直偏移量,而在探测很少或没有垂直运动的横向偏移量方面存在不足。
{"title":"Reproducibility of Remote Mapping of the 2019 Ridgecrest Earthquake Surface Ruptures","authors":"Elaine K. Young, Michael E. Oskin, Alba M. Rodriguez Padilla","doi":"10.1785/0220230095","DOIUrl":"https://doi.org/10.1785/0220230095","url":null,"abstract":"Abstract We use multiple, independently produced surface-rupture maps of the 2019 Ridgecrest earthquake sequence to test the reproducibility of surface-rupture map interpretation and completeness. The 4 July Mw 6.4 and 5 July Mw 7.1 earthquakes produced surface-rupture zones approximately 20 and 50 km in length, respectively. Three independent mappers with various backgrounds in active tectonics mapped the surface rupture from the postearthquake lidar data without knowledge from postearthquake field or geodetic observations. Visual comparisons of the three remote rupture maps show good agreement for scarps >50 cm in height. For features with less topographic expression, interpretations of the data vary more widely between mappers. Quantitative map comparisons range from 18% to 54% consistency between mapped lines with 1 m buffers. The percent overlap increases with buffer width, reflecting variance in line placement as well as differences in fault-zone interpretation. Overall, map similarity is higher in areas where the surface rupture was simpler and had more vertical offset than in areas with complex rupture patterns or little vertical offset. Fault-zone interpretation accounts for the most difference between maps, while line placement accounts for differences at the meter scale. In comparison to field observations, our remotely produced maps capture the principal rupture well but miss small features and geometric complexity. In general, lidar excels for the detection and measurement of vertical offsets in the landscape, and it is deficient for detecting lateral offset with little or no vertical motion.","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paleoseismic Earthquake Recurrence Interval Derivation for the 2022 Revision of the New Zealand National Seismic Hazard Model 新西兰国家地震危险性模型2022年修订版的古地震地震重现区间推导
3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-10-12 DOI: 10.1785/0220230197
Genevieve L. Coffey, Chris Rollins, Russ J. Van Dissen, David A. Rhoades, Matthew C. Gerstenberger, Nicola J. Litchfield, Kiran K. S. Thingbaijam
Abstract Recurrence intervals of ground-surface rupturing earthquakes are one of numerous datasets used to constrain the rates of fault ruptures in the 2022 revision of the New Zealand National Seismic Hazard Model (NZ NSHM 2022). Paleoearthquake timing and single-event displacement (SED) data in the New Zealand Paleoseismic Site Database version 1.0 alongside geologic and geodetic slip rates from the New Zealand Community Fault Model version 1.0 and NZ NSHM 2022 Geodetic Deformation Model were used to estimate recurrence intervals on faults across New Zealand for inclusion in the NZ NSHM 2022. Past earthquake timings were fit with lognormal, exponential, and Brownian Passage Time recurrence models to derive probability density functions (PDFs) of mean recurrence interval (MRI) in a Bayesian framework. At some sites, SED and slip-rate (SR) data were used to estimate PDFs of MRI; and at sites where timings, slip rate, and displacement data are available, the timings-based and slip-based PDFs were combined to develop tighter constraints on MRI. Using these approaches, we produce a database of maximum-likelihood MRIs and their uncertainties for 80 sites across New Zealand. The resulting recurrence interval dataset is publicly available and is the largest such dataset in New Zealand to date. It provides a valuable resource for future seismic hazard modeling and highlights areas that would benefit from future study.
在2022年修订的新西兰国家地震灾害模型(NZ NSHM 2022)中,地表破裂地震的复发间隔是用于约束断层破裂率的众多数据集之一。利用新西兰古地震现场数据库1.0版中的古地震时间和单事件位移(SED)数据,以及新西兰社区断层模型1.0版和NZ NSHM 2022大地形变模型中的地质和大地滑动率,估计了新西兰各地断层的复发间隔,以便纳入NZ NSHM 2022。用对数正态、指数和布朗时间递归模型拟合过去的地震时间,在贝叶斯框架下推导平均递归区间(MRI)的概率密度函数。在一些部位,使用SED和滑移率(SR)数据来估计MRI的pdf;在可获得时间、滑移率和位移数据的地点,将基于时间和基于滑移的pdf相结合,以制定更严格的MRI约束。使用这些方法,我们为新西兰的80个地点制作了一个最大可能性核磁共振成像及其不确定性的数据库。由此产生的复发间隔数据集是公开可用的,是迄今为止新西兰最大的此类数据集。它为未来的地震灾害建模提供了宝贵的资源,并强调了将从未来的研究中受益的领域。
{"title":"Paleoseismic Earthquake Recurrence Interval Derivation for the 2022 Revision of the New Zealand National Seismic Hazard Model","authors":"Genevieve L. Coffey, Chris Rollins, Russ J. Van Dissen, David A. Rhoades, Matthew C. Gerstenberger, Nicola J. Litchfield, Kiran K. S. Thingbaijam","doi":"10.1785/0220230197","DOIUrl":"https://doi.org/10.1785/0220230197","url":null,"abstract":"Abstract Recurrence intervals of ground-surface rupturing earthquakes are one of numerous datasets used to constrain the rates of fault ruptures in the 2022 revision of the New Zealand National Seismic Hazard Model (NZ NSHM 2022). Paleoearthquake timing and single-event displacement (SED) data in the New Zealand Paleoseismic Site Database version 1.0 alongside geologic and geodetic slip rates from the New Zealand Community Fault Model version 1.0 and NZ NSHM 2022 Geodetic Deformation Model were used to estimate recurrence intervals on faults across New Zealand for inclusion in the NZ NSHM 2022. Past earthquake timings were fit with lognormal, exponential, and Brownian Passage Time recurrence models to derive probability density functions (PDFs) of mean recurrence interval (MRI) in a Bayesian framework. At some sites, SED and slip-rate (SR) data were used to estimate PDFs of MRI; and at sites where timings, slip rate, and displacement data are available, the timings-based and slip-based PDFs were combined to develop tighter constraints on MRI. Using these approaches, we produce a database of maximum-likelihood MRIs and their uncertainties for 80 sites across New Zealand. The resulting recurrence interval dataset is publicly available and is the largest such dataset in New Zealand to date. It provides a valuable resource for future seismic hazard modeling and highlights areas that would benefit from future study.","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135923259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Coseismic and Early Postseismic Slip of the 2021 Mw 7.2 Nippes, Haiti, Earthquake: Transpressional Rupture of a Nonplanar Dipping Fault System 海地地震2021 Mw 7.2 Nippes的同震和早期震后滑动:非平面倾斜断层系统的跨震破裂
3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-10-12 DOI: 10.1785/0220230160
Zhen Li, Teng Wang
Abstract On 14 August 2021, an Mw 7.2 earthquake struck Nippes, Haiti, 11 yr after the devastating 2010 Mw 7.0 Port-au-Prince earthquake. This earthquake occurred in a remote region where the structure at the depth of the main boundary Enriquillo Plantain Garden fault (EPGF) is less known. Using Synthetic Aperture Radar imagery, we retrieve the coseismic and early postseismic deformation of the 2021 Haiti earthquake to constrain its fault geometry and slip distribution. Our modeling results show that the 2021 earthquake ruptured the high-angle Ravine du Sud fault and a bend fault ∼64° dipping to the north at depth. Although not only conclusive, the combination of coseismic and postseismic deformation, along with geomorphic features, and relocated aftershocks, suggest a nonplanar fault structure with significant variations in dip angles along both the depth and track of the EPGF in this region. East of the epicenter, we document a 25 km section along the EPGF that crept for ∼15 days. This distribution of aseismic slip utilizing stacked deformation indicates that only a small fraction of the accumulated strain near the surface was released during the earthquake, suggesting a high potential for seismic hazard in the region along the EPGF from the ruptured segment to the east, before reaching the 2010 rupture.
2021年8月14日,在2010年太子港7.0级地震11年后,海地尼普斯发生7.2级地震。这次地震发生在一个偏远的地区,在那里,人们对主要边界Enriquillo芭蕉园断层(EPGF)的深度结构知之甚少。利用合成孔径雷达(Synthetic Aperture Radar)图像反演2021年海地地震的同震和震后早期形变,以约束其断层几何形状和滑动分布。我们的模拟结果显示,2021年的地震破裂了高角度的南美峡谷断层和一个向北倾斜64°的弯曲断层。虽然这不是唯一的结论,但结合同震和震后形变、地貌特征和重新定位的余震,表明该地区在EPGF的深度和路径上都存在明显的倾角变化的非平面断裂结构。在震中以东,我们记录了沿EPGF行进了约15天的25公里路段。这种利用叠加变形的地震滑动分布表明,在地震期间,地表附近的累积应变只有一小部分得到释放,这表明在2010年破裂之前,沿EPGF从破裂段向东的区域具有很高的地震危险性。
{"title":"Coseismic and Early Postseismic Slip of the 2021 Mw 7.2 Nippes, Haiti, Earthquake: Transpressional Rupture of a Nonplanar Dipping Fault System","authors":"Zhen Li, Teng Wang","doi":"10.1785/0220230160","DOIUrl":"https://doi.org/10.1785/0220230160","url":null,"abstract":"Abstract On 14 August 2021, an Mw 7.2 earthquake struck Nippes, Haiti, 11 yr after the devastating 2010 Mw 7.0 Port-au-Prince earthquake. This earthquake occurred in a remote region where the structure at the depth of the main boundary Enriquillo Plantain Garden fault (EPGF) is less known. Using Synthetic Aperture Radar imagery, we retrieve the coseismic and early postseismic deformation of the 2021 Haiti earthquake to constrain its fault geometry and slip distribution. Our modeling results show that the 2021 earthquake ruptured the high-angle Ravine du Sud fault and a bend fault ∼64° dipping to the north at depth. Although not only conclusive, the combination of coseismic and postseismic deformation, along with geomorphic features, and relocated aftershocks, suggest a nonplanar fault structure with significant variations in dip angles along both the depth and track of the EPGF in this region. East of the epicenter, we document a 25 km section along the EPGF that crept for ∼15 days. This distribution of aseismic slip utilizing stacked deformation indicates that only a small fraction of the accumulated strain near the surface was released during the earthquake, suggesting a high potential for seismic hazard in the region along the EPGF from the ruptured segment to the east, before reaching the 2010 rupture.","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136013334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Seismological Research Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1