Pub Date : 2021-12-01DOI: 10.1017/S0960258521000301
N. Emery, Justin C. Collette
Abstract Cadellia pentastylis (Surianaceae) is an Australian endemic threatened rainforest tree. Irregular flowering and fruiting events coupled with high rates of infertility and insect predation has meant that seed testing has not been possible for this species. Seeds were opportunistically collected from a wild population in early 2021, which allowed for the first germination tests to be conducted. In this study, the presence of physical dormancy was examined by performing an imbibition test using scarified and non-scarified seeds. We also investigated whether a 5-min heat shock treatment at temperatures ranging from 60 to 120°C improved germination success. The presence of physiological dormancy was also examined by recording germination success following a gibberellic acid or smoke-water pre-treatment. Both scarified and non-scarified seeds readily imbibed water over a 72-h period, and several seeds had germinated in both treatments after 48 h. Final germination proportion and t50 following a heat shock, gibberellic acid or smoke-water pre-treatment did not significantly differ from the controls. We conclude that C. pentastylis seeds are non-dormant. Although a palisade cell layer has been reported in the endocarp, our results suggest that this layer may not be sufficiently formed to restrict germination. We recommend that seeds are collected from populations following dispersal and propagated shortly after or stored as conservation collections in ex situ Seedbanks.
{"title":"Seeds of the threatened dry rainforest tree Cadellia pentastylis (Surianaceae) are non-dormant","authors":"N. Emery, Justin C. Collette","doi":"10.1017/S0960258521000301","DOIUrl":"https://doi.org/10.1017/S0960258521000301","url":null,"abstract":"Abstract Cadellia pentastylis (Surianaceae) is an Australian endemic threatened rainforest tree. Irregular flowering and fruiting events coupled with high rates of infertility and insect predation has meant that seed testing has not been possible for this species. Seeds were opportunistically collected from a wild population in early 2021, which allowed for the first germination tests to be conducted. In this study, the presence of physical dormancy was examined by performing an imbibition test using scarified and non-scarified seeds. We also investigated whether a 5-min heat shock treatment at temperatures ranging from 60 to 120°C improved germination success. The presence of physiological dormancy was also examined by recording germination success following a gibberellic acid or smoke-water pre-treatment. Both scarified and non-scarified seeds readily imbibed water over a 72-h period, and several seeds had germinated in both treatments after 48 h. Final germination proportion and t50 following a heat shock, gibberellic acid or smoke-water pre-treatment did not significantly differ from the controls. We conclude that C. pentastylis seeds are non-dormant. Although a palisade cell layer has been reported in the endocarp, our results suggest that this layer may not be sufficiently formed to restrict germination. We recommend that seeds are collected from populations following dispersal and propagated shortly after or stored as conservation collections in ex situ Seedbanks.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"31 1","pages":"333 - 337"},"PeriodicalIF":2.1,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49009842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1017/S0960258521000271
Dechang Cao, M. Schöttner, R. Halitschke, Dapeng Li, Gundega Baldwin, Catarina Rocha, I. Baldwin
Abstract Smoke-derived seed germination is an important trait for plants to colonize postfire habitats. The well-characterized smoke-derived chemicals of karrikins germinate seeds of species not known to occur after fires in nature. Hence, the ecologically relevant germination cues in smoke remain to be explored for native postfire plants. With the fire-chaser, Nicotiana attenuata, we revisit a bioassay-driven fractionation of liquid smoke to identify ecologically relevant germination cues. By combining bioassay-guided fractionation and comparative unbiased metabolomics, we developed a robust and efficient method to identify germination cues in smoke. Syringaldehyde (SAL) was re-identified as a germination cue in fractions of liquid smoke that promote seed germination. SAL was found to be produced during wildfires in the plant's native habitat, efficiently adsorbed to N. attenuata seeds from aqueous solutions and not readily leached from soil and accurately predicted the boundaries of natural fire events that reflect the occurrence of native postfire N. attenuata populations. We propose that SAL is an ecologically relevant germination cue in smoke for this species.
{"title":"Syringaldehyde is a novel smoke-derived germination cue for the native fire-chasing tobacco, Nicotiana attenuata","authors":"Dechang Cao, M. Schöttner, R. Halitschke, Dapeng Li, Gundega Baldwin, Catarina Rocha, I. Baldwin","doi":"10.1017/S0960258521000271","DOIUrl":"https://doi.org/10.1017/S0960258521000271","url":null,"abstract":"Abstract Smoke-derived seed germination is an important trait for plants to colonize postfire habitats. The well-characterized smoke-derived chemicals of karrikins germinate seeds of species not known to occur after fires in nature. Hence, the ecologically relevant germination cues in smoke remain to be explored for native postfire plants. With the fire-chaser, Nicotiana attenuata, we revisit a bioassay-driven fractionation of liquid smoke to identify ecologically relevant germination cues. By combining bioassay-guided fractionation and comparative unbiased metabolomics, we developed a robust and efficient method to identify germination cues in smoke. Syringaldehyde (SAL) was re-identified as a germination cue in fractions of liquid smoke that promote seed germination. SAL was found to be produced during wildfires in the plant's native habitat, efficiently adsorbed to N. attenuata seeds from aqueous solutions and not readily leached from soil and accurately predicted the boundaries of natural fire events that reflect the occurrence of native postfire N. attenuata populations. We propose that SAL is an ecologically relevant germination cue in smoke for this species.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"31 1","pages":"292 - 299"},"PeriodicalIF":2.1,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44535966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1017/S0960258521000258
T. B. Michelon, A. C. Belniaki, C. Taconeli, E. S. N. Vieira, Maristela Panobianco
Abstract Determining the germination speed is essential in experiments in the field of seed technology, as it allows the performance evaluation of a seed lot and the creation of predictive models. To this end, the literature addresses several methods and indexes. The objective of this study was to compare the main methods of emergence speed analysis in seeds, namely the non-linear regression models and the Emergence Speed Index (ESI), with the time-to-event models. The research was conducted with peach palm seeds (Bactris gasipaes) that were measured for viability and vigour through daily evaluations for 4 months. Vigour was evaluated by the quantification of the seed emergence speed, which was performed in three ways: ESI, non-linear regression and non-linear regression considering germination as a time-to-event event. From the results obtained, we conclude that the ESI is not a good indicator to evaluate the emergence speed; the non-linear regression model underestimates the errors and, thus, increases the probability of misclassifying treatments; the time-to-event model is more reliable in classifying treatments according to the emergence speed.
{"title":"Emergence speed comparison by non-linear regression and approached by time-to-event models for censored data","authors":"T. B. Michelon, A. C. Belniaki, C. Taconeli, E. S. N. Vieira, Maristela Panobianco","doi":"10.1017/S0960258521000258","DOIUrl":"https://doi.org/10.1017/S0960258521000258","url":null,"abstract":"Abstract Determining the germination speed is essential in experiments in the field of seed technology, as it allows the performance evaluation of a seed lot and the creation of predictive models. To this end, the literature addresses several methods and indexes. The objective of this study was to compare the main methods of emergence speed analysis in seeds, namely the non-linear regression models and the Emergence Speed Index (ESI), with the time-to-event models. The research was conducted with peach palm seeds (Bactris gasipaes) that were measured for viability and vigour through daily evaluations for 4 months. Vigour was evaluated by the quantification of the seed emergence speed, which was performed in three ways: ESI, non-linear regression and non-linear regression considering germination as a time-to-event event. From the results obtained, we conclude that the ESI is not a good indicator to evaluate the emergence speed; the non-linear regression model underestimates the errors and, thus, increases the probability of misclassifying treatments; the time-to-event model is more reliable in classifying treatments according to the emergence speed.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"31 1","pages":"319 - 325"},"PeriodicalIF":2.1,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46475281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1017/S0960258521000283
Duniel Barrios, Sandy Toledo, Joaquín Sánchez, L. R. González-Torres
Abstract Serotiny is a strategy in which the retention of mature seeds in parent structures allows plants to cope with environmental variability like heat, drought or fire. Although this phenomenon might be common in Cactaceae, and particularly in Melocactus, it has generally been scarcely addressed. The main goal of our work is to investigate if there are seeds hidden in the cephalium of Melocactus matanzanus and if there are, determine whether or not these seeds maintain their viability. We also discuss some advantages the cephalium may offer as diaspore after the death of individuals. Cephalia collected from dead individuals were divided into four slices and their seeds counted; we also assessed the viability and photoblastic response of the seeds by using growth chambers at 25/30°C, and by a cut test on the seeds that did not germinate. Our results showed retention of viable seeds of different ages in all slices of the cephalium. Seeds were photoblastic positive with germination between 11–22% and viability above 50% in the portion of the lots that did not germinate.
{"title":"Serotiny in Melocactus matanzanus (Cactaceae) and role of cephalium in dispersal of seeds after the individual's death","authors":"Duniel Barrios, Sandy Toledo, Joaquín Sánchez, L. R. González-Torres","doi":"10.1017/S0960258521000283","DOIUrl":"https://doi.org/10.1017/S0960258521000283","url":null,"abstract":"Abstract Serotiny is a strategy in which the retention of mature seeds in parent structures allows plants to cope with environmental variability like heat, drought or fire. Although this phenomenon might be common in Cactaceae, and particularly in Melocactus, it has generally been scarcely addressed. The main goal of our work is to investigate if there are seeds hidden in the cephalium of Melocactus matanzanus and if there are, determine whether or not these seeds maintain their viability. We also discuss some advantages the cephalium may offer as diaspore after the death of individuals. Cephalia collected from dead individuals were divided into four slices and their seeds counted; we also assessed the viability and photoblastic response of the seeds by using growth chambers at 25/30°C, and by a cut test on the seeds that did not germinate. Our results showed retention of viable seeds of different ages in all slices of the cephalium. Seeds were photoblastic positive with germination between 11–22% and viability above 50% in the portion of the lots that did not germinate.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"31 1","pages":"326 - 332"},"PeriodicalIF":2.1,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45964301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1017/S096025852100026X
J. Baskin, C. Baskin
Abstract This review provides a revised and expanded word-formula system of whole-seed primary dormancy classification that integrates the scheme of Nikolaeva with that of Baskin and Baskin. Notable changes include the following. (1) The number of named tiers (layers) in the classification hierarchy is increased from three to seven. (2) Formulae are provided for the known kinds of dormancy. (3) Seven subclasses of class morphological dormancy are designated: ‘dust seeds’ of mycoheterotrophs, holoparasites and autotrophs; diaspores of palms; and seeds with cryptogeal germination are new to the system. (4) Level non-deep physiological dormancy (PD) has been divided into two sublevels, each containing three types, and Type 6 is new to the system. (5) Subclass epicotyl PD with two levels, each with three types, has been added to class PD. (6) Level deep (regular) PD is divided into two types. (7) The simple and complex levels of class morphophysiological dormancy (MPD) have been expanded to 12 subclasses, 24 levels and 16 types. (8) Level non-deep simple epicotyl MPD with four types is added to the system. (9) Level deep simple regular epicotyl MPD is divided into four types. (10) Level deep simple double MPD is divided into two types. (11) Seeds with a water-impermeable seed coat in which the embryo-haustorium grows after germination (Canna) has been added to the class combinational dormancy. The hierarchical division of primary seed dormancy into many distinct categories highlights its great diversity and complexity at the whole-seed level, which can be expressed most accurately by dormancy formulae.
{"title":"The great diversity in kinds of seed dormancy: a revision of the Nikolaeva–Baskin classification system for primary seed dormancy","authors":"J. Baskin, C. Baskin","doi":"10.1017/S096025852100026X","DOIUrl":"https://doi.org/10.1017/S096025852100026X","url":null,"abstract":"Abstract This review provides a revised and expanded word-formula system of whole-seed primary dormancy classification that integrates the scheme of Nikolaeva with that of Baskin and Baskin. Notable changes include the following. (1) The number of named tiers (layers) in the classification hierarchy is increased from three to seven. (2) Formulae are provided for the known kinds of dormancy. (3) Seven subclasses of class morphological dormancy are designated: ‘dust seeds’ of mycoheterotrophs, holoparasites and autotrophs; diaspores of palms; and seeds with cryptogeal germination are new to the system. (4) Level non-deep physiological dormancy (PD) has been divided into two sublevels, each containing three types, and Type 6 is new to the system. (5) Subclass epicotyl PD with two levels, each with three types, has been added to class PD. (6) Level deep (regular) PD is divided into two types. (7) The simple and complex levels of class morphophysiological dormancy (MPD) have been expanded to 12 subclasses, 24 levels and 16 types. (8) Level non-deep simple epicotyl MPD with four types is added to the system. (9) Level deep simple regular epicotyl MPD is divided into four types. (10) Level deep simple double MPD is divided into two types. (11) Seeds with a water-impermeable seed coat in which the embryo-haustorium grows after germination (Canna) has been added to the class combinational dormancy. The hierarchical division of primary seed dormancy into many distinct categories highlights its great diversity and complexity at the whole-seed level, which can be expressed most accurately by dormancy formulae.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"31 1","pages":"249 - 277"},"PeriodicalIF":2.1,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46444784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1017/S0960258521000246
Seung-Kyung Lee, Woonghi Shin, Sangjin Ahn, Youngeun Kim, Jong-Taek Kim, Eun Ju Lee
Abstract Large herbivores can disperse seeds over long distances through endozoochory. The Korean water deer (Hydropotes inermis argyropus), an internationally vulnerable species but locally considered a vermin, is a potential endozoochorous seed dispersal vector. In this study, feeding experiments were conducted to test the efficiency of seed dispersal through gut ingestion by the Korean water deer, its temporal pattern and the effect of gut passage on seed recovery and germination rate. Eight plant species, including species that formerly germinated from its faeces, were used to feed three Korean water deer. Once the deer had consumed all the provided seeds, their faeces were collected after 24, 48, 72 and 96 h. The collected faeces were air-dried, and the number of seeds retrieved from the faeces was counted every 24 h (0–24, 24–48, 48–72 and 72–96 h). Among the eight plant species, six species were retrieved with intact seeds. Panicum bisulcatum had the highest recovery rate of 33.7%, followed by Amaranthus mangostanus (24.5%) and Chenopodium album (14.4%). Most of the seeds were recovered within the 24–48 h time interval. Germination tests were conducted on the ingested and uningested seeds for the four species which had a sufficient recovery rate. The effects of gut passage on seed germination differed according to plant species. The germination rate substantially decreased after gut passage. The results suggest that the Korean water deer can disperse seeds, potentially over long distances albeit at a high cost of low seed recovery and germination rate.
{"title":"Seed recovery and germination rate after gut passage by Korean water deer (Hydropotes inermis argyropus)","authors":"Seung-Kyung Lee, Woonghi Shin, Sangjin Ahn, Youngeun Kim, Jong-Taek Kim, Eun Ju Lee","doi":"10.1017/S0960258521000246","DOIUrl":"https://doi.org/10.1017/S0960258521000246","url":null,"abstract":"Abstract Large herbivores can disperse seeds over long distances through endozoochory. The Korean water deer (Hydropotes inermis argyropus), an internationally vulnerable species but locally considered a vermin, is a potential endozoochorous seed dispersal vector. In this study, feeding experiments were conducted to test the efficiency of seed dispersal through gut ingestion by the Korean water deer, its temporal pattern and the effect of gut passage on seed recovery and germination rate. Eight plant species, including species that formerly germinated from its faeces, were used to feed three Korean water deer. Once the deer had consumed all the provided seeds, their faeces were collected after 24, 48, 72 and 96 h. The collected faeces were air-dried, and the number of seeds retrieved from the faeces was counted every 24 h (0–24, 24–48, 48–72 and 72–96 h). Among the eight plant species, six species were retrieved with intact seeds. Panicum bisulcatum had the highest recovery rate of 33.7%, followed by Amaranthus mangostanus (24.5%) and Chenopodium album (14.4%). Most of the seeds were recovered within the 24–48 h time interval. Germination tests were conducted on the ingested and uningested seeds for the four species which had a sufficient recovery rate. The effects of gut passage on seed germination differed according to plant species. The germination rate substantially decreased after gut passage. The results suggest that the Korean water deer can disperse seeds, potentially over long distances albeit at a high cost of low seed recovery and germination rate.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"31 1","pages":"311 - 318"},"PeriodicalIF":2.1,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48959246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-09DOI: 10.1017/S0960258521000192
Thien Q. Nguyen, Anna B. Kisiala, Nguyễn Ngọc Hải, S. Narine, R. Emery
Abstract Fatty acid (FA) levels and profiles are vital for soybean oil quality, while cytokinins (CKs) and abscisic acid (ABA) are potent regulators of plant growth and development. Previous research suggested associations between FA biosynthesis and hormonal signalling networks; however, hormonal regulation of FA accumulation during soybean (Glycine max) seed maturation has never been measured. We analysed hormone and FA profiles obtained from HPLC-(ESI)-MS/MS and GC-FID screening during soybean seed maturation. A multilayered data processing approach, involving heat-maps, principal component analysis (PCA), correlation and multiregression models, suggested a strong relationship between hormone metabolism and FA/oil accumulation during seed maturation. Most strikingly, positive correlations were found between the levels of CK ribosides [transZeatin riboside (tZR), N6-isopentenyladenosine (iPR)] at the early stages of SM (R5-R6) and C18:0, C18:2 and oil content at the R8 stage. Moreover, multiple regression models revealed functional linkages between several CK derivatives and FA and oil content in mature seeds. To further test the significance of hormone regulation in FA metabolism, plants of two soybean accessions with contrasting hormone and FA profiles were sprayed with exogenous ABA and transZeatin (tZ) during the seed-filling period (R5-R6). Depending on the hormone type and concentration, these treatments distinctly modified biosynthesis of all tested FAs, except for C18:0. Most remarkably, tZ (50 nM) promoted production of C16:0, C18:1, C18:2, C18:3, and oil accumulation in maturing seeds. Overall, the results indicate impactful roles for ABA and CKs in FA accumulation during SM and represent a further step towards understanding FA biosynthesis, and potential improvements of soybean oil profiles.
{"title":"Phytohormone dynamics impact fatty acid and oil accumulation during soybean seed maturation","authors":"Thien Q. Nguyen, Anna B. Kisiala, Nguyễn Ngọc Hải, S. Narine, R. Emery","doi":"10.1017/S0960258521000192","DOIUrl":"https://doi.org/10.1017/S0960258521000192","url":null,"abstract":"Abstract Fatty acid (FA) levels and profiles are vital for soybean oil quality, while cytokinins (CKs) and abscisic acid (ABA) are potent regulators of plant growth and development. Previous research suggested associations between FA biosynthesis and hormonal signalling networks; however, hormonal regulation of FA accumulation during soybean (Glycine max) seed maturation has never been measured. We analysed hormone and FA profiles obtained from HPLC-(ESI)-MS/MS and GC-FID screening during soybean seed maturation. A multilayered data processing approach, involving heat-maps, principal component analysis (PCA), correlation and multiregression models, suggested a strong relationship between hormone metabolism and FA/oil accumulation during seed maturation. Most strikingly, positive correlations were found between the levels of CK ribosides [transZeatin riboside (tZR), N6-isopentenyladenosine (iPR)] at the early stages of SM (R5-R6) and C18:0, C18:2 and oil content at the R8 stage. Moreover, multiple regression models revealed functional linkages between several CK derivatives and FA and oil content in mature seeds. To further test the significance of hormone regulation in FA metabolism, plants of two soybean accessions with contrasting hormone and FA profiles were sprayed with exogenous ABA and transZeatin (tZ) during the seed-filling period (R5-R6). Depending on the hormone type and concentration, these treatments distinctly modified biosynthesis of all tested FAs, except for C18:0. Most remarkably, tZ (50 nM) promoted production of C16:0, C18:1, C18:2, C18:3, and oil accumulation in maturing seeds. Overall, the results indicate impactful roles for ABA and CKs in FA accumulation during SM and represent a further step towards understanding FA biosynthesis, and potential improvements of soybean oil profiles.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"31 1","pages":"278 - 291"},"PeriodicalIF":2.1,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47617238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-02DOI: 10.1017/S0960258521000234
Leandro C. Ribeiro, E. R. Barbosa, F. Borghetti
Abstract Functional traits related to regeneration responses to the environment are highly determinants of distribution patterns of plant communities. A large body of studies on seed traits suggests that regional climate may act as a strong filter of plant recruitment; however, few studies have evaluated the relative importance of seed traits and environmental filters for seed persistence at the population level. We tested the role of seed mass, water content and desiccation tolerance, as well as the germination time as proxies for seed tolerance to environmental filters (water deficit, heat shock and high temperatures) by comparing the response of tree species co-occurring in savannas located in different regions: Cerrado biome of Central Brazil and the Rio Branco savannas of northern Brazil. Seeds collected in savannas of Rio Branco showed a higher tolerance to environmental filters than those collected in savannas of the Cerrado. While the germination percentages largely varied in response to the treatments, the germination times were virtually unaffected by them, irrespective of seed origin, seed mass and water content. At the population level, the regional environment was a key determinant of seed tolerance to stress, irrespective of seed traits. Germination time was shown to represent a conservative seed trait and more linked to a species-specific germination strategy than to regional characteristics. Our results suggest that recruitment patterns of Cerrado savannas may be more impacted than Rio Branco savannas by the climate scenarios predicted for the future.
{"title":"How regional climate and seed traits interact in shaping stress–tolerance of savanna seeds?","authors":"Leandro C. Ribeiro, E. R. Barbosa, F. Borghetti","doi":"10.1017/S0960258521000234","DOIUrl":"https://doi.org/10.1017/S0960258521000234","url":null,"abstract":"Abstract Functional traits related to regeneration responses to the environment are highly determinants of distribution patterns of plant communities. A large body of studies on seed traits suggests that regional climate may act as a strong filter of plant recruitment; however, few studies have evaluated the relative importance of seed traits and environmental filters for seed persistence at the population level. We tested the role of seed mass, water content and desiccation tolerance, as well as the germination time as proxies for seed tolerance to environmental filters (water deficit, heat shock and high temperatures) by comparing the response of tree species co-occurring in savannas located in different regions: Cerrado biome of Central Brazil and the Rio Branco savannas of northern Brazil. Seeds collected in savannas of Rio Branco showed a higher tolerance to environmental filters than those collected in savannas of the Cerrado. While the germination percentages largely varied in response to the treatments, the germination times were virtually unaffected by them, irrespective of seed origin, seed mass and water content. At the population level, the regional environment was a key determinant of seed tolerance to stress, irrespective of seed traits. Germination time was shown to represent a conservative seed trait and more linked to a species-specific germination strategy than to regional characteristics. Our results suggest that recruitment patterns of Cerrado savannas may be more impacted than Rio Branco savannas by the climate scenarios predicted for the future.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"31 1","pages":"300 - 310"},"PeriodicalIF":2.1,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46508401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.1017/S0960258521000143
S. Gibot-Leclerc, Manon Connault, Rémi Perronne, F. Dessaint
Abstract Phelipanche ramosa is a major weed holoparasite characterized by a broad host range with a suboptimal development on numerous hosts, suggesting inter- or intra-species specificities. Seeds of P. ramosa germinate after exposure to exogenous chemicals exuded by surrounding host roots such as strigolactones, the concentrations of these germination stimulants varying between hosts. In France, P. ramosa is characterized by genetically differentiated populations presenting varying germination rates and a host specificity. The objective of our study was to investigate the sensitivity of seeds of two P. ramosa populations harvested on tobacco and oilseed rape, to a set of GR24 concentrations, a synthetic strigol analogue. The assessment of the germination rate was based on in vitro experiments. Seeds of P. ramosa were placed in Petri dishes with various concentrations of GR24. The cumulative number of germinated seeds of P. ramosa was counted several times after application of the treatment. Cumulative germination curves were analysed using a three-parameter log-logistic model and a time-to-event approach. The results show that the germination rate of P. ramosa seeds depends on the GR24 concentration and the duration of stimulation, but also that the response to these two factors varies greatly according to the origin of the P. ramosa seeds. The difference in germination speed between P. ramosa populations further shows distinct responses at the intraspecific level, thus suggesting that the specialization of P. ramosa probably occurs at least from the first stage of the holoparasite cycle.
{"title":"Differences in seed germination response of two populations of Phelipanche ramosa (L.) Pomel to a set of GR24 concentrations and durations of stimulation","authors":"S. Gibot-Leclerc, Manon Connault, Rémi Perronne, F. Dessaint","doi":"10.1017/S0960258521000143","DOIUrl":"https://doi.org/10.1017/S0960258521000143","url":null,"abstract":"Abstract Phelipanche ramosa is a major weed holoparasite characterized by a broad host range with a suboptimal development on numerous hosts, suggesting inter- or intra-species specificities. Seeds of P. ramosa germinate after exposure to exogenous chemicals exuded by surrounding host roots such as strigolactones, the concentrations of these germination stimulants varying between hosts. In France, P. ramosa is characterized by genetically differentiated populations presenting varying germination rates and a host specificity. The objective of our study was to investigate the sensitivity of seeds of two P. ramosa populations harvested on tobacco and oilseed rape, to a set of GR24 concentrations, a synthetic strigol analogue. The assessment of the germination rate was based on in vitro experiments. Seeds of P. ramosa were placed in Petri dishes with various concentrations of GR24. The cumulative number of germinated seeds of P. ramosa was counted several times after application of the treatment. Cumulative germination curves were analysed using a three-parameter log-logistic model and a time-to-event approach. The results show that the germination rate of P. ramosa seeds depends on the GR24 concentration and the duration of stimulation, but also that the response to these two factors varies greatly according to the origin of the P. ramosa seeds. The difference in germination speed between P. ramosa populations further shows distinct responses at the intraspecific level, thus suggesting that the specialization of P. ramosa probably occurs at least from the first stage of the holoparasite cycle.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"31 1","pages":"243 - 248"},"PeriodicalIF":2.1,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46085964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.1017/s0960258521000222
H. Hilhorst
{"title":"Obituary: Dr. Marc Alan Cohn 1949–2021","authors":"H. Hilhorst","doi":"10.1017/s0960258521000222","DOIUrl":"https://doi.org/10.1017/s0960258521000222","url":null,"abstract":"","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"31 1","pages":"157 - 157"},"PeriodicalIF":2.1,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45230144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}