首页 > 最新文献

Seminars in cell & developmental biology最新文献

英文 中文
PSRs: Selfish chromosomes that manipulate reproductive development PSRs:操纵生殖发育的自私染色体
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-02-22 DOI: 10.1016/j.semcdb.2024.01.008
Xinmi Zhang, Patrick M. Ferree

B chromosomes are intriguing “selfish” genetic elements, many of which exhibit higher-than-Mendelian transmission. This perspective highlights a group of B chromosomes known as Paternal Sex Ratio chromosomes (PSRs), which are found in several insects with haplo-diploid reproduction. PSRs harshly alter the organism’s reproduction to facilitate their own inheritance. A manifestation of this effect is the conversion of female destined individuals into males. Key to this conversion is the mysterious ability of PSRs to cause elimination of the sperm-inherited half of the genome during zygote formation. Here we discuss how PSRs were discovered, what is known about how they alter paternal chromatin dynamics to cause sex conversion, and how PSR-induced genome elimination is different from other forms of programmed genome elimination in different insects. PSRs also stand out because their DNA sequence compositions differ in remarkable ways from their insect’s essential chromosomes, a characteristic suggestive of interspecies origins. Broadly, we also highlight poorly understood aspects of PSR dynamics that need to be investigated.

B 染色体是引人入胜的 "自私 "遗传因子,其中许多表现出高于孟德尔遗传的传递性。这一观点强调了一组被称为父性比染色体(PSRs)的 B 染色体,它们存在于几种单倍体二倍体繁殖的昆虫中。PSRs严格地改变了生物的繁殖方式,以促进自身的遗传。这种效应的一种表现形式就是将雌性个体转化为雄性个体。这种转化的关键在于 PSRs 的神秘能力,即在子代形成过程中消除精子遗传的一半基因组。在这里,我们将讨论 PSRs 是如何被发现的,人们对它们如何改变父系染色质动力学以导致性别转换的了解,以及 PSR 诱导的基因组消除与不同昆虫中其他形式的程序性基因组消除有何不同。PSR的突出之处还在于它们的DNA序列组成与昆虫的基本染色体有显著不同,这一特征表明它们是种间起源的。从广义上讲,我们还强调了 PSR 动力学中需要研究的尚未被充分理解的方面。
{"title":"PSRs: Selfish chromosomes that manipulate reproductive development","authors":"Xinmi Zhang,&nbsp;Patrick M. Ferree","doi":"10.1016/j.semcdb.2024.01.008","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.01.008","url":null,"abstract":"<div><p>B chromosomes are intriguing “selfish” genetic elements, many of which exhibit higher-than-Mendelian transmission. This perspective highlights a group of B chromosomes known as Paternal Sex Ratio chromosomes (PSRs), which are found in several insects with haplo-diploid reproduction. PSRs harshly alter the organism’s reproduction to facilitate their own inheritance. A manifestation of this effect is the conversion of female destined individuals into males. Key to this conversion is the mysterious ability of PSRs to cause elimination of the sperm-inherited half of the genome during zygote formation. Here we discuss how PSRs were discovered, what is known about how they alter paternal chromatin dynamics to cause sex conversion, and how PSR-induced genome elimination is different from other forms of programmed genome elimination in different insects. PSRs also stand out because their DNA sequence compositions differ in remarkable ways from their insect’s essential chromosomes, a characteristic suggestive of interspecies origins. Broadly, we also highlight poorly understood aspects of PSR dynamics that need to be investigated.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"159 ","pages":"Pages 66-73"},"PeriodicalIF":7.3,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139935405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maintenance of satellite DNA stability 保持卫星 DNA 的稳定性
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-02-15 DOI: 10.1016/j.semcdb.2024.01.009
Simona Giunta
{"title":"Maintenance of satellite DNA stability","authors":"Simona Giunta","doi":"10.1016/j.semcdb.2024.01.009","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.01.009","url":null,"abstract":"","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"159 ","pages":"Pages 64-65"},"PeriodicalIF":7.3,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139738921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of mitochondrial dynamics in oocyte and early embryo development 线粒体动力学在卵母细胞和早期胚胎发育中的作用。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-02-08 DOI: 10.1016/j.semcdb.2024.01.007
Raziye Melike Yildirim, Emre Seli

Mitochondrial dysfunction is widely implicated in various human diseases, through mechanisms that go beyond mitochondria’s well-established role in energy generation. These dynamic organelles exert vital control over numerous cellular processes, including calcium regulation, phospholipid synthesis, innate immunity, and apoptosis. While mitochondria's importance is acknowledged in all cell types, research has revealed the exceptionally dynamic nature of the mitochondrial network in oocytes and embryos, finely tuned to meet unique needs during gamete and pre-implantation embryo development. Within oocytes, both the quantity and morphology of mitochondria can significantly change during maturation and post-fertilization. These changes are orchestrated by fusion and fission processes (collectively known as mitochondrial dynamics), crucial for energy production, content exchange, and quality control as mitochondria adjust to the shifting energy demands of oocytes and embryos. The roles of proteins that regulate mitochondrial dynamics in reproductive processes have been primarily elucidated through targeted deletion studies in animal models. Notably, impaired mitochondrial dynamics have been linked to female reproductive health, affecting oocyte quality, fertilization, and embryo development. Dysfunctional mitochondria can lead to fertility problems and can have an impact on the success of pregnancy, particularly in older reproductive age women.

线粒体功能障碍与各种人类疾病有着广泛的联系,其机理超出了线粒体在能量生成方面的既定作用。这些充满活力的细胞器对许多细胞过程具有重要的控制作用,包括钙调节、磷脂合成、先天免疫和细胞凋亡。线粒体在所有细胞类型中的重要性已得到公认,但研究揭示了线粒体网络在卵母细胞和胚胎中异常活跃的性质,这些线粒体网络经过微调以满足配子和植入前胚胎发育过程中的独特需求。在卵母细胞内,线粒体的数量和形态在成熟和受精后会发生显著变化。这些变化是由融合和裂变过程(统称为线粒体动力学)协调的,线粒体在适应卵母细胞和胚胎不断变化的能量需求时,对能量生产、含量交换和质量控制至关重要。调节线粒体动力学的蛋白质在生殖过程中的作用主要是通过在动物模型中进行定向缺失研究来阐明的。值得注意的是,线粒体动力学受损与女性生殖健康有关,会影响卵母细胞质量、受精和胚胎发育。线粒体功能失调会导致生育问题,并影响怀孕的成功率,尤其是高龄育龄妇女。
{"title":"The role of mitochondrial dynamics in oocyte and early embryo development","authors":"Raziye Melike Yildirim,&nbsp;Emre Seli","doi":"10.1016/j.semcdb.2024.01.007","DOIUrl":"10.1016/j.semcdb.2024.01.007","url":null,"abstract":"<div><p>Mitochondrial dysfunction is widely implicated in various human diseases, through mechanisms that go beyond mitochondria’s well-established role in energy generation. These dynamic organelles exert vital control over numerous cellular processes, including calcium regulation, phospholipid synthesis, innate immunity, and apoptosis. While mitochondria's importance is acknowledged in all cell types, research has revealed the exceptionally dynamic nature of the mitochondrial network in oocytes and embryos, finely tuned to meet unique needs during gamete and pre-implantation embryo development. Within oocytes, both the quantity and morphology of mitochondria can significantly change during maturation and post-fertilization. These changes are orchestrated by fusion and fission processes (collectively known as mitochondrial dynamics), crucial for energy production, content exchange, and quality control as mitochondria adjust to the shifting energy demands of oocytes and embryos. The roles of proteins that regulate mitochondrial dynamics in reproductive processes have been primarily elucidated through targeted deletion studies in animal models. Notably, impaired mitochondrial dynamics have been linked to female reproductive health, affecting oocyte quality, fertilization, and embryo development. Dysfunctional mitochondria can lead to fertility problems and can have an impact on the success of pregnancy, particularly in older reproductive age women.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"159 ","pages":"Pages 52-61"},"PeriodicalIF":7.3,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139707791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The wonderful wanderer 奇妙的流浪者
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-02-08 DOI: 10.1016/j.semcdb.2024.01.001
Sara Prescott
{"title":"The wonderful wanderer","authors":"Sara Prescott","doi":"10.1016/j.semcdb.2024.01.001","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.01.001","url":null,"abstract":"","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"159 ","pages":"Pages 62-63"},"PeriodicalIF":7.3,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139709470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Super-resolution microscopies, technological breakthrough to decipher mitochondrial structure and dynamic. 超分辨率显微镜,破译线粒体结构和动态的技术突破。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-02-03 DOI: 10.1016/j.semcdb.2024.01.006
Pauline Teixeira , Rémi Galland , Arnaud Chevrollier

Mitochondria are complex organelles with an outer membrane enveloping a second inner membrane that creates a vast matrix space partitioned by pockets or cristae that join the peripheral inner membrane with several thin junctions. Several micrometres long, mitochondria are generally close to 300 nm in diameter, with membrane layers separated by a few tens of nanometres. Ultrastructural data from electron microscopy revealed the structure of these mitochondria, while conventional optical microscopy revealed their extraordinary dynamics through fusion, fission, and migration processes but its limited resolution power restricted the possibility to go further. By overcoming the limits of light diffraction, Super-Resolution Microscopy (SRM) now offers the potential to establish the links between the ultrastructure and remodelling of mitochondrial membranes, leading to major advances in our understanding of mitochondria’s structure-function. Here we review the contributions of SRM imaging to our understanding of the relationship between mitochondrial structure and function. What are the hopes for these new imaging approaches which are particularly important for mitochondrial pathologies?

线粒体是一种复杂的细胞器,外膜包裹着第二层内膜,第二层内膜形成一个巨大的基质空间,基质空间被口袋或嵴隔开,嵴与外围内膜之间有几个薄薄的连接点。线粒体有几微米长,直径一般接近 300 纳米,膜层之间相隔几十纳米。电子显微镜的超微结构数据揭示了这些线粒体的结构,而传统的光学显微镜则通过融合、裂变和迁移过程揭示了线粒体的非凡动态,但其有限的分辨率限制了进一步研究的可能性。通过克服光衍射的限制,超分辨显微镜(SRM)现在有可能建立线粒体膜超微结构和重塑之间的联系,从而使我们对线粒体结构-功能的理解取得重大进展。在此,我们回顾了 SRM 成像对我们理解线粒体结构与功能之间关系的贡献。这些新的成像方法对线粒体病理学尤为重要,它们的前景如何?
{"title":"Super-resolution microscopies, technological breakthrough to decipher mitochondrial structure and dynamic.","authors":"Pauline Teixeira ,&nbsp;Rémi Galland ,&nbsp;Arnaud Chevrollier","doi":"10.1016/j.semcdb.2024.01.006","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.01.006","url":null,"abstract":"<div><p>Mitochondria are complex organelles with an outer membrane enveloping a second inner membrane that creates a vast matrix space partitioned by pockets or cristae that join the peripheral inner membrane with several thin junctions. Several micrometres long, mitochondria are generally close to 300 nm in diameter, with membrane layers separated by a few tens of nanometres. Ultrastructural data from electron microscopy revealed the structure of these mitochondria, while conventional optical microscopy revealed their extraordinary dynamics through fusion, fission, and migration processes but its limited resolution power restricted the possibility to go further. By overcoming the limits of light diffraction, Super-Resolution Microscopy (SRM) now offers the potential to establish the links between the ultrastructure and remodelling of mitochondrial membranes, leading to major advances in our understanding of mitochondria’s structure-function. Here we review the contributions of SRM imaging to our understanding of the relationship between mitochondrial structure and function. What are the hopes for these new imaging approaches which are particularly important for mitochondrial pathologies?</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"159 ","pages":"Pages 38-51"},"PeriodicalIF":7.3,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084952124000181/pdfft?md5=abc72f81d96fafeb1e41e1121f53aec7&pid=1-s2.0-S1084952124000181-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139674746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sexual conflict drive in the rapid evolution of new gametogenesis genes 新配子发生基因快速进化过程中的性冲突驱动力
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-02-02 DOI: 10.1016/j.semcdb.2024.01.005
Nicholas W. VanKuren, Jianhai Chen, Manyuan Long

The evolutionary forces underlying the rapid evolution in sequences and functions of new genes remain a mystery. Adaptation by natural selection explains the evolution of some new genes. However, many new genes perform sex-biased functions that have rapidly evolved over short evolutionary time scales, suggesting that new gene evolution may often be driven by conflicting selective pressures on males and females. It is well established that such sexual conflict (SC) plays a central role in maintaining phenotypic and genetic variation within populations, but the role of SC in driving new gene evolution remains essentially unknown. This review explores the connections between SC and new gene evolution through discussions of the concept of SC, the phenotypic and genetic signatures of SC in evolving populations, and the molecular mechanisms by which SC could drive the evolution of new genes. We synthesize recent work in this area with a discussion of the case of Apollo and Artemis, two extremely young genes (<200,000 years) in Drosophila melanogaster, which offered the first empirical insights into the evolutionary process by which SC could drive the evolution of new genes. These new duplicate genes exhibit the hallmarks of sexually antagonistic selection: rapid DNA and protein sequence evolution, essential sex-specific functions in gametogenesis, and complementary sex-biased expression patterns. Importantly, Apollo is essential for male fitness but detrimental to female fitness, while Artemis is essential for female fitness but detrimental to male fitness. These sexually antagonistic fitness effects and complementary changes to expression, sequence, and function suggest that these duplicates were selected for mitigating SC, but that SC has not been fully resolved. Finally, we propose Sexual Conflict Drive as a self-driven model to interpret the rapid evolution of new genes, explain the potential for SC and sexually antagonistic selection to contribute to long-term evolution, and suggest its utility for understanding the rapid evolution of new genes in gametogenesis.

新基因在序列和功能上的快速进化所依赖的进化力量仍然是一个谜。自然选择的适应性解释了一些新基因的进化。然而,许多新基因在短进化时间尺度内迅速进化出具有性别偏见的功能,这表明新基因的进化可能往往是由雌雄基因相互冲突的选择压力所驱动的。众所周知,这种性冲突(SC)在维持种群表型和遗传变异方面发挥着核心作用,但SC在推动新基因进化方面的作用基本上还是未知数。本综述通过讨论性冲突的概念、性冲突在进化种群中的表型和遗传特征以及性冲突推动新基因进化的分子机制,探讨性冲突与新基因进化之间的联系。黑腹果蝇的阿波罗和阿耳忒弥斯是两个极其年轻的基因(20 万年),我们通过对这两个基因的讨论综合了这一领域的最新研究成果。这些新的重复基因表现出了性对抗选择的特征:快速的DNA和蛋白质序列进化、配子发生中重要的性别特异性功能以及互补的性别偏向表达模式。重要的是,阿波罗(Apollo)对雄性的适应性至关重要,但对雌性的适应性不利;而阿尔忒弥斯(Artemis)对雌性的适应性至关重要,但对雄性的适应性不利。这些性对立的适应性效应以及表达、序列和功能的互补性变化表明,这些重复基因是为了减轻性冲突而被选择的,但性冲突尚未完全解决。最后,我们提出 "性冲突驱动"(Sexual Conflict Drive)这一自我驱动模型来解释新基因的快速进化,解释 SC 和性拮抗选择促进长期进化的潜力,并建议将其用于理解配子发生中新基因的快速进化。
{"title":"Sexual conflict drive in the rapid evolution of new gametogenesis genes","authors":"Nicholas W. VanKuren,&nbsp;Jianhai Chen,&nbsp;Manyuan Long","doi":"10.1016/j.semcdb.2024.01.005","DOIUrl":"10.1016/j.semcdb.2024.01.005","url":null,"abstract":"<div><p><span>The evolutionary forces underlying the rapid evolution in sequences and functions of new genes remain a mystery. Adaptation by natural selection explains the evolution of some new genes. However, many new genes perform sex-biased functions that have rapidly evolved over short evolutionary time scales, suggesting that new gene evolution may often be driven by conflicting selective pressures on males and females. It is well established that such sexual conflict (SC) plays a central role in maintaining phenotypic and genetic variation within populations, but the role of SC in driving new gene evolution remains essentially unknown. This review explores the connections between SC and new gene evolution through discussions of the concept of SC, the phenotypic and genetic signatures of SC in evolving populations, and the molecular mechanisms by which SC could drive the evolution of new genes. We synthesize recent work in this area with a discussion of the case of </span><em>Apollo</em> and <em>Artemis</em>, two extremely young genes (&lt;200,000 years) in <span><em>Drosophila melanogaster</em></span><span><span>, which offered the first empirical insights into the evolutionary process by which SC could drive the evolution of new genes. These new duplicate genes exhibit the hallmarks of sexually antagonistic selection: rapid DNA and </span>protein sequence<span> evolution, essential sex-specific functions in gametogenesis, and complementary sex-biased expression patterns. Importantly, </span></span><em>Apollo</em> is essential for male fitness but detrimental to female fitness, while <em>Artemis</em> is essential for female fitness but detrimental to male fitness. These sexually antagonistic fitness effects and complementary changes to expression, sequence, and function suggest that these duplicates were selected for mitigating SC, but that SC has not been fully resolved. Finally, we propose Sexual Conflict Drive as a self-driven model to interpret the rapid evolution of new genes, explain the potential for SC and sexually antagonistic selection to contribute to long-term evolution, and suggest its utility for understanding the rapid evolution of new genes in gametogenesis.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"159 ","pages":"Pages 27-37"},"PeriodicalIF":7.3,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139665411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress granule and P-body clearance: Seeking coherence in acts of disappearance 应激颗粒和P体清除:在消失行为中寻求一致性
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-01-25 DOI: 10.1016/j.semcdb.2024.01.002
J. Ross Buchan

Stress granules and P-bodies are conserved cytoplasmic biomolecular condensates whose assembly and composition are well documented, but whose clearance mechanisms remain controversial or poorly described. Such understanding could provide new insight into how cells regulate biomolecular condensate formation and function, and identify therapeutic strategies in disease states where aberrant persistence of stress granules in particular is implicated. Here, I review and compare the contributions of chaperones, the cytoskeleton, post-translational modifications, RNA helicases, granulophagy and the proteasome to stress granule and P-body clearance. Additionally, I highlight the potentially vital role of RNA regulation, cellular energy, and changes in the interaction networks of stress granules and P-bodies as means of eliciting clearance. Finally, I discuss evidence for interplay of distinct clearance mechanisms, suggest future experimental directions, and suggest a simple working model of stress granule clearance.

应激颗粒和P-体是一种保守的细胞质生物分子凝聚体,其组装和组成已被充分记录,但其清除机制仍存在争议或描述不清。对它们的了解可以让我们对细胞如何调控生物分子凝聚体的形成和功能有新的认识,并在涉及应激颗粒异常持续存在的疾病状态中确定治疗策略。在这里,我回顾并比较了伴侣、细胞骨架、翻译后修饰、RNA螺旋酶、吞噬颗粒和蛋白酶体对应激颗粒和P体清除的贡献。此外,我还强调了 RNA 调节、细胞能量以及应激颗粒和 P 型体相互作用网络中的变化作为诱导清除手段的潜在重要作用。最后,我讨论了不同清除机制相互作用的证据,提出了未来的实验方向,并提出了一个简单的应激颗粒清除工作模型。
{"title":"Stress granule and P-body clearance: Seeking coherence in acts of disappearance","authors":"J. Ross Buchan","doi":"10.1016/j.semcdb.2024.01.002","DOIUrl":"10.1016/j.semcdb.2024.01.002","url":null,"abstract":"<div><p><span>Stress granules<span> and P-bodies are conserved cytoplasmic biomolecular condensates whose assembly and composition are well documented, but whose clearance mechanisms remain controversial or poorly described. Such understanding could provide new insight into how cells regulate biomolecular condensate formation and function, and identify therapeutic strategies in disease states where aberrant persistence of stress granules in particular is implicated. Here, I review and compare the contributions of chaperones, the cytoskeleton, post-translational modifications, </span></span>RNA<span> helicases, granulophagy and the proteasome to stress granule and P-body clearance. Additionally, I highlight the potentially vital role of RNA regulation, cellular energy, and changes in the interaction networks of stress granules and P-bodies as means of eliciting clearance. Finally, I discuss evidence for interplay of distinct clearance mechanisms, suggest future experimental directions, and suggest a simple working model of stress granule clearance.</span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"159 ","pages":"Pages 10-26"},"PeriodicalIF":7.3,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139554186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
rDNA transcription, replication and stability in Saccharomyces cerevisiae 酿酒酵母中 rDNA 的转录、复制和稳定性
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-01-19 DOI: 10.1016/j.semcdb.2024.01.004
Anna D’Alfonso , Gioacchino Micheli , Giorgio Camilloni

The ribosomal DNA locus (rDNA) is central for the functioning of cells because it encodes ribosomal RNAs, key components of ribosomes, and also because of its links to fundamental metabolic processes, with significant impact on genome integrity and aging. The repetitive nature of the rDNA gene units forces the locus to maintain sequence homogeneity through recombination processes that are closely related to genomic stability. The co-presence of basic DNA transactions, such as replication, transcription by major RNA polymerases, and recombination, in a defined and restricted area of the genome is of particular relevance as it affects the stability of the rDNA locus by both direct and indirect mechanisms. This condition is well exemplified by the rDNA of Saccharomyces cerevisiae. In this review we summarize essential knowledge on how the complexity and overlap of different processes contribute to the control of rDNA and genomic stability in this model organism.

核糖体 DNA 基因座(rDNA)是细胞功能的核心,因为它编码核糖体的关键成分核糖体 RNA,还因为它与基本代谢过程有关,对基因组的完整性和衰老有重大影响。rDNA 基因单位的重复性迫使基因座通过与基因组稳定性密切相关的重组过程来保持序列的同质性。在基因组的一个确定和受限的区域内同时存在基本的 DNA 事务,如复制、主要 RNA 聚合酶的转录和重组,这一点特别重要,因为它会通过直接和间接的机制影响 rDNA 基因座的稳定性。酿酒酵母(Saccharomyces cerevisiae)的 rDNA 就很好地说明了这种情况。在这篇综述中,我们总结了关于不同过程的复杂性和重叠性如何有助于控制这种模式生物的 rDNA 和基因组稳定性的基本知识。
{"title":"rDNA transcription, replication and stability in Saccharomyces cerevisiae","authors":"Anna D’Alfonso ,&nbsp;Gioacchino Micheli ,&nbsp;Giorgio Camilloni","doi":"10.1016/j.semcdb.2024.01.004","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.01.004","url":null,"abstract":"<div><p>The ribosomal DNA locus (rDNA) is central for the functioning of cells because it encodes ribosomal RNAs, key components of ribosomes, and also because of its links to fundamental metabolic processes, with significant impact on genome integrity and aging. The repetitive nature of the rDNA gene units forces the locus to maintain sequence homogeneity through recombination processes that are closely related to genomic stability. The co-presence of basic DNA transactions, such as replication, transcription by major RNA polymerases, and recombination, in a defined and restricted area of the genome is of particular relevance as it affects the stability of the rDNA locus by both direct and indirect mechanisms. This condition is well exemplified by the rDNA of <em>Saccharomyces cerevisiae</em>. In this review we summarize essential knowledge on how the complexity and overlap of different processes contribute to the control of rDNA and genomic stability in this model organism.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"159 ","pages":"Pages 1-9"},"PeriodicalIF":7.3,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084952124000107/pdfft?md5=10a0dc2a8a2a11b2e20fad7a74e89e0f&pid=1-s2.0-S1084952124000107-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139494099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress granules and P-bodies – New ideas and experimental models worth exploring 应力颗粒和 P-体--值得探索的新观点和实验模型
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-01-16 DOI: 10.1016/j.semcdb.2024.01.003
J. Ross Buchan
{"title":"Stress granules and P-bodies – New ideas and experimental models worth exploring","authors":"J. Ross Buchan","doi":"10.1016/j.semcdb.2024.01.003","DOIUrl":"10.1016/j.semcdb.2024.01.003","url":null,"abstract":"","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"158 ","pages":"Pages 1-2"},"PeriodicalIF":7.3,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139474978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Telomere-specific regulation of TERRA and its impact on telomere stability 端粒特异性调控 TERRA 及其对端粒稳定性的影响
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-12-11 DOI: 10.1016/j.semcdb.2023.11.001
Julieta Rivosecchi , Katarina Jurikova , Emilio Cusanelli

TERRA is a class of telomeric repeat-containing RNAs that are expressed from telomeres in multiple organisms. TERRA transcripts play key roles in telomere maintenance and their physiological levels are essential to maintain the integrity of telomeric DNA. Indeed, deregulated TERRA expression or its altered localization can impact telomere stability by multiple mechanisms including fueling transcription-replication conflicts, promoting resection of chromosome ends, altering the telomeric chromatin, and supporting homologous recombination. Therefore, a fine-tuned control of TERRA is important to maintain the integrity of the genome. Several studies have reported that different cell lines express substantially different levels of TERRA. Most importantly, TERRA levels markedly vary among telomeres of a given cell type, indicating the existence of telomere-specific regulatory mechanisms which may help coordinate TERRA functions. TERRA molecules contain distinct subtelomeric sequences, depending on their telomere of origin, which may instruct specific post-transcriptional modifications or mediate distinct functions. In addition, all TERRA transcripts share a repetitive G-rich sequence at their 3′ end which can form DNA:RNA hybrids and fold into G-quadruplex structures. Both structures are involved in TERRA functions and can critically affect telomere stability. In this review, we examine the mechanisms controlling TERRA levels and the impact of their telomere-specific regulation on telomere stability. We compare evidence obtained in different model organisms, discussing recent advances as well as controversies in the field. Furthermore, we discuss the importance of DNA:RNA hybrids and G-quadruplex structures in the context of TERRA biology and telomere maintenance.

TERRA是一类含有端粒重复序列的RNA,在多种生物体内的端粒中都有表达。TERRA转录本在端粒维持过程中起着关键作用,其生理水平对维持端粒DNA的完整性至关重要。事实上,TERRA表达失调或定位改变会通过多种机制影响端粒的稳定性,包括加剧转录-复制冲突、促进染色体末端切除、改变端粒染色质以及支持同源重组。因此,微调 TERRA 对保持基因组的完整性非常重要。一些研究报告指出,不同细胞系表达的 TERRA 水平大不相同。最重要的是,TERRA的水平在特定细胞类型的端粒之间存在明显差异,这表明端粒特异性调控机制的存在可能有助于协调TERRA的功能。根据端粒来源的不同,TERRA分子含有不同的亚端粒序列,这些序列可能指示特定的转录后修饰或介导不同的功能。此外,所有 TERRA 转录本的 3′端都有一个富含 G 的重复序列,该序列可以形成 DNA:RNA 杂交,并折叠成 G 型四联结构。这两种结构都参与了 TERRA 的功能,并对端粒的稳定性产生重要影响。在这篇综述中,我们研究了控制TERRA水平的机制以及端粒特异性调控对端粒稳定性的影响。我们比较了在不同模式生物中获得的证据,讨论了该领域的最新进展和争议。此外,我们还讨论了DNA:RNA杂交和G-四叠体结构在TERRA生物学和端粒维持方面的重要性。
{"title":"Telomere-specific regulation of TERRA and its impact on telomere stability","authors":"Julieta Rivosecchi ,&nbsp;Katarina Jurikova ,&nbsp;Emilio Cusanelli","doi":"10.1016/j.semcdb.2023.11.001","DOIUrl":"10.1016/j.semcdb.2023.11.001","url":null,"abstract":"<div><p>TERRA is a class of telomeric repeat-containing RNAs that are expressed from telomeres in multiple organisms. TERRA transcripts play key roles in telomere maintenance and their physiological levels are essential to maintain the integrity of telomeric DNA. Indeed, deregulated TERRA expression or its altered localization can impact telomere stability by multiple mechanisms including fueling transcription-replication conflicts, promoting resection of chromosome ends, altering the telomeric chromatin, and supporting homologous recombination. Therefore, a fine-tuned control of TERRA is important to maintain the integrity of the genome. Several studies have reported that different cell lines express substantially different levels of TERRA. Most importantly, TERRA levels markedly vary among telomeres of a given cell type, indicating the existence of telomere-specific regulatory mechanisms which may help coordinate TERRA functions. TERRA molecules contain distinct subtelomeric sequences, depending on their telomere of origin, which may instruct specific post-transcriptional modifications or mediate distinct functions. In addition, all TERRA transcripts share a repetitive G-rich sequence at their 3′ end which can form DNA:RNA hybrids and fold into G-quadruplex structures. Both structures are involved in TERRA functions and can critically affect telomere stability. In this review, we examine the mechanisms controlling TERRA levels and the impact of their telomere-specific regulation on telomere stability. We compare evidence obtained in different model organisms, discussing recent advances as well as controversies in the field. Furthermore, we discuss the importance of DNA:RNA hybrids and G-quadruplex structures in the context of TERRA biology and telomere maintenance.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"157 ","pages":"Pages 3-23"},"PeriodicalIF":7.3,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084952123002276/pdfft?md5=ab5cb2395f7633fd0c68eca559d8986f&pid=1-s2.0-S1084952123002276-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138568354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Seminars in cell & developmental biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1