首页 > 最新文献

Seminars in cell & developmental biology最新文献

英文 中文
Persister cell plasticity in tumour drug resistance 肿瘤耐药中的持久性细胞可塑性。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-11-16 DOI: 10.1016/j.semcdb.2023.11.003
Paul C. McDonald , Shoukat Dedhar

The emergence of therapeutic resistance remains a formidable barrier to durable responses by cancer patients and is a major cause of cancer-related deaths. It is increasingly recognized that non-genetic mechanisms of acquired resistance are important in many cancers. These mechanisms of resistance rely on inherent cellular plasticity where cancer cells can switch between multiple phenotypic states without genetic alterations, providing a dynamic, reversible resistance landscape. Such mechanisms underlie the generation of drug-tolerant persister (DTP) cells, a subpopulation of tumour cells that contributes to heterogeneity within tumours and that supports therapeutic resistance. In this review, we provide an overview of the major features of DTP cells, focusing on phenotypic and metabolic plasticity as two key drivers of tolerance and persistence. We discuss the link between DTP cell plasticity and the potential vulnerability of these cells to ferroptosis. We also discuss the relationship between DTP cells and cells that survive the induction of apoptosis, a process termed anastasis, and discuss the properties of such cells in the context of increased metastatic potential and sensitivity to cell death mechanisms such as ferroptosis.

治疗耐药性的出现仍然是癌症患者持久反应的巨大障碍,也是癌症相关死亡的主要原因。人们越来越认识到,获得性耐药的非遗传机制在许多癌症中都很重要。这些耐药机制依赖于固有的细胞可塑性,癌细胞可以在没有遗传改变的情况下在多种表型状态之间切换,提供了一个动态的、可逆的耐药景观。这种机制是产生耐药持久性(DTP)细胞的基础,这是肿瘤细胞的一个亚群,有助于肿瘤内的异质性,并支持治疗耐药性。在这篇综述中,我们概述了DTP细胞的主要特征,重点介绍了表型和代谢可塑性作为耐受性和持久性的两个关键驱动因素。我们讨论了DTP细胞可塑性和这些细胞对铁下垂的潜在脆弱性之间的联系。我们还讨论了DTP细胞与细胞在诱导凋亡后存活的细胞之间的关系,这一过程被称为转移,并讨论了这种细胞在转移潜力增加和对细胞死亡机制(如铁下垂)敏感的背景下的特性。
{"title":"Persister cell plasticity in tumour drug resistance","authors":"Paul C. McDonald ,&nbsp;Shoukat Dedhar","doi":"10.1016/j.semcdb.2023.11.003","DOIUrl":"10.1016/j.semcdb.2023.11.003","url":null,"abstract":"<div><p><span>The emergence of therapeutic resistance remains a formidable barrier to durable responses by cancer patients and is a major cause of cancer-related deaths. It is increasingly recognized that non-genetic mechanisms of acquired resistance are important in many cancers. These mechanisms of resistance rely on inherent cellular plasticity where cancer cells can switch between multiple phenotypic states without </span>genetic alterations<span>, providing a dynamic, reversible resistance landscape. Such mechanisms underlie the generation of drug-tolerant persister (DTP) cells, a subpopulation of tumour cells that contributes to heterogeneity within tumours and that supports therapeutic resistance. In this review, we provide an overview of the major features of DTP cells, focusing on phenotypic and metabolic plasticity as two key drivers of tolerance and persistence. We discuss the link between DTP cell plasticity and the potential vulnerability of these cells to ferroptosis. We also discuss the relationship between DTP cells and cells that survive the induction of apoptosis, a process termed anastasis, and discuss the properties of such cells in the context of increased metastatic potential and sensitivity to cell death mechanisms such as ferroptosis.</span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"156 ","pages":"Pages 1-10"},"PeriodicalIF":7.3,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136399102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dynamic interplay between human alpha-satellite DNA structure and centromere functions 人类α卫星DNA结构和着丝粒功能之间的动态相互作用。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-11-04 DOI: 10.1016/j.semcdb.2023.10.002
Elena Di Tommaso , Simona Giunta

Maintenance of genome stability relies on functional centromeres for correct chromosome segregation and faithful inheritance of the genetic information. The human centromere is the primary constriction within mitotic chromosomes made up of repetitive alpha-satellite DNA hierarchically organized in megabase-long arrays of near-identical higher order repeats (HORs). Centromeres are epigenetically specified by the presence of the centromere-specific histone H3 variant, CENP-A, which enables the assembly of the kinetochore for microtubule attachment. Notably, centromeric DNA is faithfully inherited as intact haplotypes from the parents to the offspring without intervening recombination, yet, outside of meiosis, centromeres are akin to common fragile sites (CFSs), manifesting crossing-overs and ongoing sequence instability. Consequences of DNA changes within the centromere are just starting to emerge, with unclear effects on intra- and inter-generational inheritance driven by centromere’s essential role in kinetochore assembly. Here, we review evidence of meiotic selection operating to mitigate centromere drive, as well as recent reports on centromere damage, recombination and repair during the mitotic cell division. We propose an antagonistic pleiotropy interpretation to reconcile centromere DNA instability as both driver of aneuploidy that underlies degenerative diseases, while also potentially necessary for the maintenance of homogenized HORs for centromere function. We attempt to provide a framework for this conceptual leap taking into consideration the structural interface of centromere-kinetochore interaction and present case scenarios for its malfunctioning. Finally, we offer an integrated working model to connect DNA instability, chromatin, and structural changes with functional consequences on chromosome integrity.

基因组稳定性的维持依赖于功能性着丝粒的正确染色体分离和遗传信息的忠实遗传。人类着丝粒是有丝分裂染色体内的主要收缩点,由重复的α卫星DNA组成,以近乎相同的高阶重复序列(HOR)的兆碱基长阵列分层组织。着丝粒是由着丝粒特异性组蛋白H3变体CENP-A的存在在表观遗传学上指定的,CENP-A能够组装动粒用于微管附着。值得注意的是,着丝粒DNA作为完整的单倍型从父母忠实地遗传给后代,而无需干预重组,然而,在减数分裂之外,着丝点类似于常见的脆弱位点(CFS),表现出交叉和持续的序列不稳定。着丝粒内DNA变化的后果才刚刚开始显现,由于着丝粒在动粒组装中的重要作用,对代内和代间遗传的影响尚不清楚。在这里,我们回顾了减数分裂选择减轻着丝粒驱动的证据,以及最近关于有丝分裂细胞分裂过程中着丝粒损伤、重组和修复的报道。我们提出了一种拮抗性多效性解释,以调和着丝粒DNA的不稳定性,这既是退行性疾病的非整倍体的驱动因素,也是维持着丝粒功能的同质化HOR的潜在必要因素。我们试图为这一概念飞跃提供一个框架,考虑到着丝粒-动粒相互作用的结构界面及其故障的当前情况。最后,我们提供了一个集成的工作模型,将DNA的不稳定性、染色质和结构变化与染色体完整性的功能后果联系起来。
{"title":"Dynamic interplay between human alpha-satellite DNA structure and centromere functions","authors":"Elena Di Tommaso ,&nbsp;Simona Giunta","doi":"10.1016/j.semcdb.2023.10.002","DOIUrl":"10.1016/j.semcdb.2023.10.002","url":null,"abstract":"<div><p><span>Maintenance of genome stability relies on functional </span>centromeres<span><span><span><span><span> for correct chromosome segregation and faithful inheritance of the </span>genetic information. The human centromere is the primary constriction within mitotic chromosomes made up of repetitive alpha-satellite </span>DNA hierarchically organized in megabase-long arrays of near-identical higher order repeats (HORs). Centromeres are epigenetically specified by the presence of the centromere-specific </span>histone H3 variant, CENP-A, which enables the assembly of the </span>kinetochore<span> for microtubule attachment. Notably, centromeric DNA is faithfully inherited as intact haplotypes from the parents to the offspring without intervening recombination, yet, outside of meiosis, centromeres are akin to common fragile sites (CFSs), manifesting crossing-overs and ongoing sequence instability. Consequences of DNA changes within the centromere are just starting to emerge, with unclear effects on intra- and inter-generational inheritance driven by centromere’s essential role in kinetochore assembly. Here, we review evidence of meiotic selection operating to mitigate centromere drive, as well as recent reports on centromere damage, recombination and repair during the mitotic cell division. We propose an antagonistic pleiotropy<span> interpretation to reconcile centromere DNA instability as both driver of aneuploidy that underlies degenerative diseases, while also potentially necessary for the maintenance of homogenized HORs for centromere function. We attempt to provide a framework for this conceptual leap taking into consideration the structural interface of centromere-kinetochore interaction and present case scenarios for its malfunctioning. Finally, we offer an integrated working model to connect DNA instability, chromatin, and structural changes with functional consequences on chromosome integrity.</span></span></span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"156 ","pages":"Pages 130-140"},"PeriodicalIF":7.3,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71485752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mechanisms and roles of mitochondrial dynamics in C. elegans 秀丽隐杆线虫线粒体动力学的机制和作用。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-31 DOI: 10.1016/j.semcdb.2023.10.006
Daniel Campbell, Steven Zuryn

If mitochondria are the powerhouses of the cell, then mitochondrial dynamics are the power grid that regulates how that energy output is directed and maintained in response to unique physiological demands. Fission and fusion dynamics are highly regulated processes that fine-tune the mitochondrial networks of cells to enable appropriate responses to intrinsic and extrinsic stimuli, thereby maintaining cellular and organismal homeostasis. These dynamics shape many aspects of an organism’s healthspan including development, longevity, stress resistance, immunity, and response to disease. In this review, we discuss the latest findings regarding the mechanisms and roles of mitochondrial dynamics by focussing on the nematode Caenorhabditis elegans. Whole live-animal studies in C. elegans have enabled a true organismal-level understanding of the impact that mitochondrial dynamics play in homeostasis over a lifetime.

如果线粒体是细胞的动力库,那么线粒体动力学就是调节能量输出如何被引导和维持以响应独特生理需求的电网。裂变和融合动力学是高度调节的过程,可以微调细胞的线粒体网络,从而对内在和外在刺激做出适当的反应,从而维持细胞和生物体的稳态。这些动态影响了生物体健康寿命的许多方面,包括发育、寿命、抗压能力、免疫力和对疾病的反应。在这篇综述中,我们通过关注线虫秀丽隐杆线虫来讨论线粒体动力学的机制和作用的最新发现。对秀丽隐杆线虫的活体动物研究使我们能够真正从生物体层面了解线粒体动力学在一生中对体内平衡的影响。
{"title":"The mechanisms and roles of mitochondrial dynamics in C. elegans","authors":"Daniel Campbell,&nbsp;Steven Zuryn","doi":"10.1016/j.semcdb.2023.10.006","DOIUrl":"10.1016/j.semcdb.2023.10.006","url":null,"abstract":"<div><p>If mitochondria are the powerhouses of the cell, then mitochondrial dynamics are the power grid that regulates how that energy output is directed and maintained in response to unique physiological demands. Fission and fusion dynamics are highly regulated processes that fine-tune the mitochondrial networks of cells to enable appropriate responses to intrinsic and extrinsic stimuli, thereby maintaining cellular and organismal homeostasis. These dynamics shape many aspects of an organism’s healthspan including development, longevity, stress resistance, immunity, and response to disease. In this review, we discuss the latest findings regarding the mechanisms and roles of mitochondrial dynamics by focussing on the nematode <em>Caenorhabditis elegans</em>. Whole live-animal studies in <em>C. elegans</em> have enabled a true organismal-level understanding of the impact that mitochondrial dynamics play in homeostasis over a lifetime.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"156 ","pages":"Pages 266-275"},"PeriodicalIF":7.3,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084952123002033/pdfft?md5=a0d52e7e69a0bc2a8b74d3f6825556d7&pid=1-s2.0-S1084952123002033-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71426635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA strand breaks at centromeres: Friend or foe? DNA链在着丝粒处断裂:朋友还是敌人?
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-21 DOI: 10.1016/j.semcdb.2023.10.004
Emily Graham, Fumiko Esashi

Centromeres are large structural regions in the genomic DNA, which are essential for accurately transmitting a complete set of chromosomes to daughter cells during cell division. In humans, centromeres consist of highly repetitive α-satellite DNA sequences and unique epigenetic components, forming large proteinaceous structures required for chromosome segregation. Despite their biological importance, there is a growing body of evidence for centromere breakage across the cell cycle, including periods of quiescence. In this review, we provide an up-to-date examination of the distinct centromere environments at different stages of the cell cycle, highlighting their plausible contribution to centromere breakage. Additionally, we explore the implications of these breaks on centromere function, both in terms of negative consequences and potential positive effects.

着丝粒是基因组DNA中的大结构区域,对于在细胞分裂过程中将一整套染色体准确传递给子细胞至关重要。在人类中,着丝粒由高度重复的α-卫星DNA序列和独特的表观遗传成分组成,形成染色体分离所需的大型蛋白质结构。尽管它们在生物学上很重要,但越来越多的证据表明,在整个细胞周期中,包括静止期,着丝粒断裂。在这篇综述中,我们对细胞周期不同阶段的不同着丝粒环境进行了最新的检查,强调了它们对着丝粒断裂的可能贡献。此外,我们还探讨了这些断裂对着丝粒功能的影响,包括负面影响和潜在的积极影响。
{"title":"DNA strand breaks at centromeres: Friend or foe?","authors":"Emily Graham,&nbsp;Fumiko Esashi","doi":"10.1016/j.semcdb.2023.10.004","DOIUrl":"10.1016/j.semcdb.2023.10.004","url":null,"abstract":"<div><p>Centromeres are large structural regions in the genomic DNA, which are essential for accurately transmitting a complete set of chromosomes to daughter cells during cell division. In humans, centromeres consist of highly repetitive α-satellite DNA sequences and unique epigenetic components, forming large proteinaceous structures required for chromosome segregation. Despite their biological importance, there is a growing body of evidence for centromere breakage across the cell cycle, including periods of quiescence. In this review, we provide an up-to-date examination of the distinct centromere environments at different stages of the cell cycle, highlighting their plausible contribution to centromere breakage. Additionally, we explore the implications of these breaks on centromere function, both in terms of negative consequences and potential positive effects.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"156 ","pages":"Pages 141-151"},"PeriodicalIF":7.3,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084952123001738/pdfft?md5=f7c17a7115d2df972c619584c6dc0d4d&pid=1-s2.0-S1084952123001738-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49692285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The implications of satellite DNA instability on cellular function and evolution 卫星DNA不稳定性对细胞功能和进化的影响。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-17 DOI: 10.1016/j.semcdb.2023.10.005
Jullien M. Flynn , Yukiko M. Yamashita

Abundant tandemly repeated satellite DNA is present in most eukaryotic genomes. Previous limitations including a pervasive view that it was uninteresting junk DNA, combined with challenges in studying it, are starting to dissolve - and recent studies have found important functions for satellite DNAs. The observed rapid evolution and implied instability of satellite DNA now has important significance for their functions and maintenance within the genome. In this review, we discuss the processes that lead to satellite DNA copy number instability, and the importance of mechanisms to manage the potential negative effects of instability. Satellite DNA is vulnerable to challenges during replication and repair, since it forms difficult-to-process secondary structures and its homology within tandem arrays can result in various types of recombination. Satellite DNA instability may be managed by DNA or chromatin-binding proteins ensuring proper nuclear localization and repair, or by proteins that process aberrant structures that satellite DNAs tend to form. We also discuss the pattern of satellite DNA mutations from recent mutation accumulation (MA) studies that have tracked changes in satellite DNA for up to 1000 generations with minimal selection. Finally, we highlight examples of satellite evolution from studies that have characterized satellites across millions of years of Drosophila fruit fly evolution, and discuss possible ways that selection might act on the satellite DNA composition.

大量的串联重复卫星DNA存在于大多数真核生物基因组中。以前的局限性,包括普遍认为它是不感兴趣的垃圾DNA,再加上研究它的挑战,正在开始消失——最近的研究发现了卫星DNA的重要功能。观察到的卫星DNA的快速进化和隐含的不稳定性现在对其在基因组中的功能和维护具有重要意义。在这篇综述中,我们讨论了导致卫星DNA拷贝数不稳定的过程,以及管理不稳定潜在负面影响的机制的重要性。卫星DNA在复制和修复过程中容易受到挑战,因为它很难形成二级结构,并且它在串联阵列中的同源性可能导致各种类型的重组。卫星DNA的不稳定性可以通过确保适当的核定位和修复的DNA或染色质结合蛋白来控制,或者通过处理卫星DNA倾向于形成的异常结构的蛋白质来控制。我们还讨论了最近的突变积累(MA)研究中卫星DNA突变的模式,这些研究以最小的选择跟踪了卫星DNA长达1000代的变化。最后,我们重点介绍了卫星进化的例子,这些研究对数百万年来果蝇进化过程中的卫星进行了表征,并讨论了选择可能影响卫星DNA组成的可能方式。
{"title":"The implications of satellite DNA instability on cellular function and evolution","authors":"Jullien M. Flynn ,&nbsp;Yukiko M. Yamashita","doi":"10.1016/j.semcdb.2023.10.005","DOIUrl":"10.1016/j.semcdb.2023.10.005","url":null,"abstract":"<div><p>Abundant tandemly repeated satellite DNA<span><span> is present in most eukaryotic genomes. Previous limitations including a pervasive view that it was uninteresting junk DNA, combined with challenges in studying it, are starting to dissolve - and recent studies have found important functions for satellite DNAs. The observed rapid evolution and implied instability of satellite DNA now has important significance for their functions and maintenance within the genome. In this review, we discuss the processes that lead to satellite DNA copy number instability, and the importance of mechanisms to manage the potential negative effects of instability. Satellite DNA is vulnerable to challenges during replication and repair, since it forms difficult-to-process secondary structures and its homology within tandem arrays can result in various types of recombination. Satellite DNA instability may be managed by DNA or chromatin-binding proteins ensuring proper nuclear localization and repair, or by proteins that process aberrant structures that satellite DNAs tend to form. We also discuss the pattern of satellite </span>DNA mutations<span> from recent mutation accumulation (MA) studies that have tracked changes in satellite DNA for up to 1000 generations with minimal selection. Finally, we highlight examples of satellite evolution from studies that have characterized satellites across millions of years of Drosophila fruit fly evolution, and discuss possible ways that selection might act on the satellite DNA composition.</span></span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"156 ","pages":"Pages 152-159"},"PeriodicalIF":7.3,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49682104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Emerging roles of DNA repair factors in the stability of centromeres DNA修复因子在着丝粒稳定性中的新作用。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-16 DOI: 10.1016/j.semcdb.2023.10.001
Francesca Marcon , Simona Giunta , Margherita Bignami

Satellite DNA sequences are an integral part of centromeres, regions critical for faithful segregation of chromosomes during cell division. Because of their complex repetitive structure, satellite DNA may act as a barrier to DNA replication and other DNA based transactions ultimately resulting in chromosome breakage. Over the past two decades, several DNA repair proteins have been shown to bind and function at centromeres. While the importance of these repair factors is highlighted by various structural and numerical chromosome aberrations resulting from their inactivation, their roles in helping to maintain genome stability by solving the intrinsic difficulties of satellite DNA replication or promoting their repair are just starting to emerge. In this review, we summarize the current knowledge on the role of DNA repair and DNA damage response proteins in maintaining the structure and function of centromeres in different contexts. We also report the recent connection between the roles of specific DNA repair factors at these genomic loci with age-related increase of chromosomal instability under physiological and pathological conditions.

卫星DNA序列是着丝粒的组成部分,着丝粒是细胞分裂过程中染色体忠实分离的关键区域。由于其复杂的重复结构,卫星DNA可能成为DNA复制和其他基于DNA的交易的障碍,最终导致染色体断裂。在过去的二十年里,几种DNA修复蛋白已被证明在着丝粒处结合并发挥作用。虽然这些修复因子的重要性因其失活导致的各种结构和数量染色体畸变而突显,但它们通过解决卫星DNA复制的内在困难或促进其修复来帮助维持基因组稳定性的作用才刚刚开始显现。在这篇综述中,我们总结了目前关于DNA修复和DNA损伤反应蛋白在不同情况下维持着丝粒结构和功能的作用的知识。我们还报道了这些基因组基因座上特定DNA修复因子的作用与生理和病理条件下染色体不稳定性的年龄相关性增加之间的最新联系。
{"title":"Emerging roles of DNA repair factors in the stability of centromeres","authors":"Francesca Marcon ,&nbsp;Simona Giunta ,&nbsp;Margherita Bignami","doi":"10.1016/j.semcdb.2023.10.001","DOIUrl":"10.1016/j.semcdb.2023.10.001","url":null,"abstract":"<div><p><span>Satellite DNA sequences are an integral part of </span>centromeres<span><span>, regions critical for faithful segregation of chromosomes during cell division. Because of their complex repetitive structure, satellite DNA<span><span> may act as a barrier to DNA replication and other DNA based transactions ultimately resulting in chromosome breakage. Over the past two decades, several </span>DNA repair proteins have been shown to bind and function at centromeres. While the importance of these repair factors is highlighted by various structural and numerical chromosome aberrations resulting from their inactivation, their roles in helping to maintain </span></span>genome stability<span><span> by solving the intrinsic difficulties of satellite DNA replication or promoting their repair are just starting to emerge. In this review, we summarize the current knowledge on the role of DNA repair and DNA damage response proteins in maintaining the structure and function of centromeres in different contexts. We also report the recent connection between the roles of specific DNA repair factors at these genomic loci with age-related increase of </span>chromosomal instability under physiological and pathological conditions.</span></span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"156 ","pages":"Pages 121-129"},"PeriodicalIF":7.3,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49682103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fatal attraction: How Phytophthora zoospores find their host 致命的吸引力:疫霉菌游动孢子如何找到它们的宿主
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-01 DOI: 10.1016/j.semcdb.2023.01.014
Michiel Kasteel , Tijs Ketelaar , Francine Govers

Oomycete plant pathogens, such as Phytophthora and Pythium species produce motile dispersal agents called zoospores that actively target host plants. Zoospores are exceptional in their ability to display taxis to chemical, electrical and physical cues to navigate the phyllosphere and reach stomata, wound sites and roots. Many components of root exudates have been shown attractive or repulsive to zoospores. Although some components possess very strong attractiveness, it seems that especially the mix of components exuded by the primary host is most attractive to zoospores. Zoospores actively approach attractants with swimming behaviour reminiscent of other microswimmers. To achieve a unified description of zoospore behaviour when sensing an attractant, we propose the following terms for the successive stages of the homing response: reorientation, approaching, retention and settling. How zoospores sense and process attractants is poorly understood but likely involves signal perception via cell surface receptors. Since zoospores are important for infection, undermining their activity by luring attractants or blocking receptors seem promising strategies for disease control.

卵菌属植物病原体,如疫霉菌和腐霉菌,会产生称为游动孢子的能动传播剂,主动靶向宿主植物。动物孢子表现出对化学、电学和物理线索的趋同性,从而在叶层中导航并到达气孔、伤口部位和根部。根系分泌物的许多成分已被证明对游动孢子具有吸引力或排斥性。尽管某些成分具有很强的吸引力,但似乎尤其是初级宿主渗出的成分混合物对游动孢子最具吸引力。动孢子主动接近引诱物,其游动行为让人想起其他微型游动动物。为了在感知引诱剂时实现对游动孢子行为的统一描述,我们为归巢反应的连续阶段提出了以下术语:重新定向、接近、滞留和沉降。游动孢子如何感知和处理引诱剂尚不清楚,但可能涉及通过细胞表面受体的信号感知。由于游动孢子对感染很重要,通过引诱引诱剂或阻断受体来破坏它们的活性似乎是控制疾病的有前途的策略。
{"title":"Fatal attraction: How Phytophthora zoospores find their host","authors":"Michiel Kasteel ,&nbsp;Tijs Ketelaar ,&nbsp;Francine Govers","doi":"10.1016/j.semcdb.2023.01.014","DOIUrl":"10.1016/j.semcdb.2023.01.014","url":null,"abstract":"<div><p>Oomycete plant pathogens, such as <em>Phytophthora</em> and <em>Pythium</em> species produce motile dispersal agents called zoospores that actively target host plants. Zoospores are exceptional in their ability to display taxis to chemical, electrical and physical cues to navigate the phyllosphere and reach stomata, wound sites and roots. Many components of root exudates have been shown attractive or repulsive to zoospores. Although some components possess very strong attractiveness, it seems that especially the mix of components exuded by the primary host is most attractive to zoospores. Zoospores actively approach attractants with swimming behaviour reminiscent of other microswimmers. To achieve a unified description of zoospore behaviour when sensing an attractant, we propose the following terms for the successive stages of the homing response: reorientation, approaching, retention and settling. How zoospores sense and process attractants is poorly understood but likely involves signal perception via cell surface receptors. Since zoospores are important for infection, undermining their activity by luring attractants or blocking receptors seem promising strategies for disease control.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"148 ","pages":"Pages 13-21"},"PeriodicalIF":7.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9604191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Recent developments in plant-downy mildew interactions 植物与霜霉相互作用的最新进展
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-01 DOI: 10.1016/j.semcdb.2023.01.010
Mahmut Tör , Tom Wood , Anne Webb , Deniz Göl , John M. McDowell

Downy mildews are obligate oomycete pathogens that attack a wide range of plants and can cause significant economic impacts on commercial crops and ornamental plants. Traditionally, downy mildew disease control relied on an integrated strategies, that incorporate cultural practices, deployment of resistant cultivars, crop rotation, application of contact and systemic pesticides, and biopesticides. Recent advances in genomics provided data that significantly advanced understanding of downy mildew evolution, taxonomy and classification. In addition, downy mildew genomics also revealed that these obligate oomycetes have reduced numbers of virulence factor genes in comparison to hemibiotrophic and necrotrophic oomycetes. However, downy mildews do deploy significant arrays of virulence proteins, including so-called RXLR proteins that promote virulence or are recognized as avirulence factors. Pathogenomics are being applied to downy mildew population studies to determine the genetic diversity within the downy mildew populations and manage disease by selection of appropriate varieties and management strategies. Genome editing technologies have been used to manipulate host disease susceptibility genes in different plants including grapevine and sweet basil and thereby provide new soucres of resistance genes against downy mildews. Previously, it has proved difficult to transform and manipulate downy mildews because of their obligate lifestyle. However, recent exploitation of RNA interference machinery through Host-Induced Gene Silencing (HIGS) and Spray-Induced Gene Silencing (SIGS) indicate that functional genomics in downy mildews is now possible. Altogether, these breakthrough technologies and attendant fundamental understanding will advance our ability to mitigate downy mildew diseases.

霜霉是专性卵菌病原体,可攻击多种植物,并可对商业作物和观赏植物造成重大经济影响。传统上,霜霉菌病控制依赖于综合策略,包括培养实践、抗性品种的部署、作物轮作、接触和系统杀虫剂的应用以及生物杀虫剂。基因组学的最新进展提供了数据,极大地促进了对霜霉菌进化、分类学和分类的理解。此外,霜霉菌基因组学还表明,与半生物营养型和坏死营养型卵菌相比,这些专性卵菌的毒力因子基因数量减少。然而,绒毛霉菌确实部署了大量的毒力蛋白,包括所谓的RXLR蛋白,这些蛋白可以促进毒力或被认为是无毒因子。病原学正被应用于霜霉菌种群研究,以确定霜霉菌种群内的遗传多样性,并通过选择合适的品种和管理策略来控制疾病。基因组编辑技术已被用于操纵包括葡萄藤和甜罗勒在内的不同植物中的宿主病易感性基因,从而提供新的抗霜霉病基因库。以前,事实证明,由于绒毛霉菌的生活方式,很难对其进行改造和操作。然而,最近通过宿主诱导的基因沉默(HIGS)和喷雾诱导的基因静音(SIGS)对RNA干扰机制的开发表明,霜霉菌的功能基因组学现在是可能的。总之,这些突破性技术和随之而来的基本理解将提高我们减轻霜霉菌疾病的能力。
{"title":"Recent developments in plant-downy mildew interactions","authors":"Mahmut Tör ,&nbsp;Tom Wood ,&nbsp;Anne Webb ,&nbsp;Deniz Göl ,&nbsp;John M. McDowell","doi":"10.1016/j.semcdb.2023.01.010","DOIUrl":"10.1016/j.semcdb.2023.01.010","url":null,"abstract":"<div><p>Downy mildews are obligate oomycete pathogens that attack a wide range of plants and can cause significant economic impacts on commercial crops and ornamental plants. Traditionally, downy mildew disease control relied on an integrated strategies, that incorporate cultural practices, deployment of resistant cultivars, crop rotation, application of contact and systemic pesticides, and biopesticides. Recent advances in genomics provided data that significantly advanced understanding of downy mildew evolution, taxonomy and classification. In addition, downy mildew genomics also revealed that these obligate oomycetes have reduced numbers of virulence factor genes in comparison to hemibiotrophic and necrotrophic oomycetes. However, downy mildews do deploy significant arrays of virulence proteins, including so-called RXLR proteins that promote virulence or are recognized as avirulence factors. Pathogenomics are being applied to downy mildew population studies to determine the genetic diversity within the downy mildew populations and manage disease by selection of appropriate varieties and management strategies. Genome editing technologies have been used to manipulate host disease susceptibility genes in different plants including grapevine and sweet basil and thereby provide new soucres of resistance genes against downy mildews. Previously, it has proved difficult to transform and manipulate downy mildews because of their obligate lifestyle. However, recent exploitation of RNA interference machinery through Host-Induced Gene Silencing (HIGS) and Spray-Induced Gene Silencing (SIGS) indicate that functional genomics in downy mildews is now possible. Altogether, these breakthrough technologies and attendant fundamental understanding will advance our ability to mitigate downy mildew diseases.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"148 ","pages":"Pages 42-50"},"PeriodicalIF":7.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9601143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Getting to the root of Ralstonia invasion 探究拉尔斯顿尼亚入侵的根源
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-01 DOI: 10.1016/j.semcdb.2022.12.002
Katherine Rivera-Zuluaga, Rachel Hiles, Pragya Barua, Denise Caldwell, Anjali S. Iyer-Pascuzzi

Plant diseases caused by soilborne pathogens are a major limiting factor in crop production. Bacterial wilt disease, caused by soilborne bacteria in the Ralstonia solanacearum Species Complex (Ralstonia), results in significant crop loss throughout the world. Ralstonia invades root systems and colonizes plant xylem, changing plant physiology and ultimately causing plant wilting in susceptible varieties. Elucidating how Ralstonia invades and colonizes plants is central to developing strategies for crop protection. Here we review Ralstonia pathogenesis from root detection and attachment, early root colonization, xylem invasion and subsequent wilting. We focus primarily on studies in tomato from the last 5–10 years. Recent work has identified elegant mechanisms Ralstonia uses to adapt to the plant xylem, and has discovered new genes that function in Ralstonia fitness in planta. A picture is emerging of an amazingly versatile pathogen that uses multiple strategies to make its surrounding environment more hospitable and can adapt to new environments.

由土传病原体引起的植物病害是作物生产的主要限制因素。青萎病是由青枯菌群(Ralstonia solanacearum Species Complex)中的土壤细菌引起的,在世界各地造成了严重的作物损失。Ralstonia侵入根系并定植于植物木质部,改变植物生理,最终导致易感品种的植物枯萎。阐明雷氏菌如何入侵和定植植物是制定作物保护战略的核心。在这里,我们从根的检测和附着、早期根定殖、木质部入侵和随后的萎蔫等方面综述了Ralstonia的发病机制。我们主要关注过去5-10年的番茄研究。最近的工作已经确定了Ralstonia适应植物木质部的优雅机制,并发现了新的基因,这些基因在植物中起到了Ralstone适应性的作用。一种用途惊人的病原体正在出现,它使用多种策略使周围环境更加适宜,并能够适应新的环境。
{"title":"Getting to the root of Ralstonia invasion","authors":"Katherine Rivera-Zuluaga,&nbsp;Rachel Hiles,&nbsp;Pragya Barua,&nbsp;Denise Caldwell,&nbsp;Anjali S. Iyer-Pascuzzi","doi":"10.1016/j.semcdb.2022.12.002","DOIUrl":"10.1016/j.semcdb.2022.12.002","url":null,"abstract":"<div><p>Plant diseases caused by soilborne pathogens are a major limiting factor in crop production. Bacterial wilt disease, caused by soilborne bacteria in the <span><span>Ralstonia solanacearum</span></span> Species Complex (<em>Ralstonia</em>), results in significant crop loss throughout the world. <em>Ralstonia</em> invades root systems and colonizes plant xylem, changing plant physiology and ultimately causing plant wilting in susceptible varieties. Elucidating how <em>Ralstonia</em> invades and colonizes plants is central to developing strategies for crop protection. Here we review <em>Ralstonia</em> pathogenesis from root detection and attachment, early root colonization, xylem invasion and subsequent wilting. We focus primarily on studies in tomato from the last 5–10 years. Recent work has identified elegant mechanisms <em>Ralstonia</em> uses to adapt to the plant xylem, and has discovered new genes that function in <em>Ralstonia</em> fitness <em>in planta</em>. A picture is emerging of an amazingly versatile pathogen that uses multiple strategies to make its surrounding environment more hospitable and can adapt to new environments.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"148 ","pages":"Pages 3-12"},"PeriodicalIF":7.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9598321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
All eggs in one basket: How potyvirus infection is controlled at a single cap-independent translation event 所有鸡蛋放在一个篮子里:如何在一个帽独立的翻译事件中控制痘病毒感染
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2023-10-01 DOI: 10.1016/j.semcdb.2022.12.011
Helena Jaramillo-Mesa, Aurélie M. Rakotondrafara

Regulation of protein synthesis is a strong determinant of potyviral pathogenicity. The Potyviridae family is the largest family of plant-infecting positive sense RNA viruses. Similar to the animal-infecting Picornaviridae family, the potyviral RNA genome lacks a 5′ cap, and instead has a viral protein (VPg) linked to its 5′ end. Potyviral genomes are mainly translated into one large polyprotein relying on a single translation event to express all their protein repertoire. In the absence of the 5′ cap, the Potyviridae family depends on cis-acting elements in their 5′ untranslated regions (UTR) to recruit the translation machinery. In this review, we summarize the diverse 5′UTR-driven, cap-independent translation mechanisms employed by the Potyviridae family including scanning-dependent mechanism, internal initiation, and the stimulatory role of the VPg. These mechanisms have direct implications on potyviral pathogenicity, including host range specificity and resistance. Finally, we discuss how these viral strategies could not only inform new avenues for engineering and/or breeding for crop resistance but would also provide opportunities for the development of biotechnological tools for large-scale protein production in plant systems.

蛋白质合成的调节是病毒致病性的一个重要决定因素。Potyviridae家族是感染正义RNA病毒的植物中最大的家族。与感染小核糖核酸病毒科的动物相似,病毒核糖核酸基因组没有5′端,而是在其5′端连接了一种病毒蛋白(VPg)。Potyviral基因组主要依靠单个翻译事件翻译成一个大的多蛋白来表达其所有蛋白质库。在没有5′端帽的情况下,Potyviridae家族依靠其5′非翻译区(UTR)中的顺式作用元件来招募翻译机器。在这篇综述中,我们总结了Potyviridae家族所采用的各种5′UTR驱动的、与帽无关的翻译机制,包括扫描依赖性机制、内部启动和VPg的刺激作用。这些机制对potyviral致病性有直接影响,包括宿主范围特异性和耐药性。最后,我们讨论了这些病毒策略如何不仅为作物抗性的工程和/或育种提供新的途径,而且为开发植物系统中大规模蛋白质生产的生物技术工具提供机会。
{"title":"All eggs in one basket: How potyvirus infection is controlled at a single cap-independent translation event","authors":"Helena Jaramillo-Mesa,&nbsp;Aurélie M. Rakotondrafara","doi":"10.1016/j.semcdb.2022.12.011","DOIUrl":"10.1016/j.semcdb.2022.12.011","url":null,"abstract":"<div><p><span>Regulation of protein synthesis is a strong determinant of potyviral pathogenicity. The </span><span><em>Potyviridae</em></span><span> family is the largest family of plant-infecting positive sense RNA viruses. Similar to the animal-infecting </span><span><em>Picornaviridae</em></span><span> family, the potyviral RNA<span> genome lacks a 5′ cap, and instead has a viral protein (VPg) linked to its 5′ end. Potyviral genomes are mainly translated into one large polyprotein relying on a single translation event to express all their protein repertoire. In the absence of the 5′ cap, the </span></span><em>Potyviridae</em> family depends on <em>cis</em><span>-acting elements in their 5′ untranslated regions (UTR) to recruit the translation machinery. In this review, we summarize the diverse 5′UTR-driven, cap-independent translation mechanisms employed by the </span><em>Potyviridae</em><span> family including scanning-dependent mechanism, internal initiation, and the stimulatory role of the VPg. These mechanisms have direct implications on potyviral pathogenicity, including host range specificity and resistance. Finally, we discuss how these viral strategies could not only inform new avenues for engineering and/or breeding for crop resistance but would also provide opportunities for the development of biotechnological tools for large-scale protein production in plant systems.</span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"148 ","pages":"Pages 51-61"},"PeriodicalIF":7.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9956010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Seminars in cell & developmental biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1