首页 > 最新文献

Skeletal Muscle最新文献

英文 中文
Restoring skeletal muscle mass as an independent determinant of liver fat deposition improvement in MAFLD 恢复骨骼肌质量是改善 MAFLD 患者肝脏脂肪沉积的独立决定因素
IF 4.9 2区 医学 Q1 Medicine Pub Date : 2023-12-19 DOI: 10.1186/s13395-023-00333-z
Ting Zhou, Junzhao Ye, Ling Luo, Wei Wang, Shiting Feng, Zhi Dong, Shuyu Zhuo, Bihui Zhong
Cross-sectional studies have demonstrated the association of skeletal muscle mass with metabolic-associated fatty liver disease (MAFLD), while longitudinal data are scarce. We aimed to explore the impact of changes in relative skeletal muscle mass on the MAFLD treatment response. MAFLD patients undergoing magnetic resonance imaging-based proton density fat fraction for liver fat content (LFC) assessments and bioelectrical impedance analysis before and after treatment (orlistat, meal replacement, lifestyle modifications) were enrolled. Appendicular muscle mass (ASM) was adjusted by weight (ASM/W). Overall, 256 participants were recruited and divided into two groups: with an ASM/W increase (n=166) and without an ASM/W increase (n=90). There was a great reduction in LFC in the group with an ASM/W increase (16.9% versus 8.2%, P < 0.001). However, the change in LFC in the group without an ASM/W increase showed no significant difference (12.5% versus 15.0%, P > 0.05). △ASM/W Follow-up-Baseline [odds ratio (OR)=1.48, 95% confidence interval (CI) 1.05-2.07, P = 0.024] and △total fat mass (OR=1.45, 95% CI 1.12-1.87, P = 0.004) were independent predictors for steatosis improvement (relative reduction of LFC ≥ 30%). The subgroup analysis showed that, despite without weight loss, decrease in HOMA-IR (OR=6.21, 95% CI 1.28-30.13, P=0.023), △total fat mass Baseline -Follow-up (OR=3.48, 95% CI 1.95-6.21, P <0.001 and △ASM/W Follow-up-Baseline (OR=2.13, 95% CI 1.12-4.05, P=0.022) independently predicted steatosis improvement. ASM/W increase and loss of total fat mass benefit the resolution of liver steatosis, independent of weight loss for MAFLD.
横断面研究表明,骨骼肌质量与代谢相关性脂肪肝(MAFLD)有关,但纵向数据却很少。我们旨在探索骨骼肌相对质量的变化对 MAFLD 治疗反应的影响。我们招募了在治疗(奥利司他、代餐、生活方式调整)前后接受基于磁共振成像的质子密度脂肪分数肝脏脂肪含量(LFC)评估和生物电阻抗分析的 MAFLD 患者。腓肠肌质量(ASM)根据体重(ASM/W)进行调整。总共招募了 256 名参与者,分为两组:ASM/W 增加组(166 人)和 ASM/W 未增加组(90 人)。ASM/W 增加组的 LFC 显著降低(16.9% 对 8.2%,P < 0.001)。然而,未提高 ASM/W 组的 LFC 变化无显著差异(12.5% 对 15.0%,P > 0.05)。△ASM/W随访-基线[几率比(OR)=1.48,95% 置信区间(CI)1.05-2.07,P = 0.024]和△总脂肪量(OR=1.45,95% CI 1.12-1.87,P = 0.004)是脂肪变性改善(LFC相对减少≥30%)的独立预测因素。亚组分析表明,尽管体重没有减轻,HOMA-IR的下降(OR=6.21,95% CI 1.28-30.13,P=0.023)、△总脂肪量基线-随访(OR=3.48,95% CI 1.95-6.21,P<0.001)和△ASM/W随访-基线(OR=2.13,95% CI 1.12-4.05,P=0.022)独立预测了脂肪变性的改善。ASM/W的增加和总脂肪量的减少有利于肝脏脂肪变性的缓解,与MAFLD的体重减轻无关。
{"title":"Restoring skeletal muscle mass as an independent determinant of liver fat deposition improvement in MAFLD","authors":"Ting Zhou, Junzhao Ye, Ling Luo, Wei Wang, Shiting Feng, Zhi Dong, Shuyu Zhuo, Bihui Zhong","doi":"10.1186/s13395-023-00333-z","DOIUrl":"https://doi.org/10.1186/s13395-023-00333-z","url":null,"abstract":"Cross-sectional studies have demonstrated the association of skeletal muscle mass with metabolic-associated fatty liver disease (MAFLD), while longitudinal data are scarce. We aimed to explore the impact of changes in relative skeletal muscle mass on the MAFLD treatment response. MAFLD patients undergoing magnetic resonance imaging-based proton density fat fraction for liver fat content (LFC) assessments and bioelectrical impedance analysis before and after treatment (orlistat, meal replacement, lifestyle modifications) were enrolled. Appendicular muscle mass (ASM) was adjusted by weight (ASM/W). Overall, 256 participants were recruited and divided into two groups: with an ASM/W increase (n=166) and without an ASM/W increase (n=90). There was a great reduction in LFC in the group with an ASM/W increase (16.9% versus 8.2%, P < 0.001). However, the change in LFC in the group without an ASM/W increase showed no significant difference (12.5% versus 15.0%, P > 0.05). △ASM/W Follow-up-Baseline [odds ratio (OR)=1.48, 95% confidence interval (CI) 1.05-2.07, P = 0.024] and △total fat mass (OR=1.45, 95% CI 1.12-1.87, P = 0.004) were independent predictors for steatosis improvement (relative reduction of LFC ≥ 30%). The subgroup analysis showed that, despite without weight loss, decrease in HOMA-IR (OR=6.21, 95% CI 1.28-30.13, P=0.023), △total fat mass Baseline -Follow-up (OR=3.48, 95% CI 1.95-6.21, P <0.001 and △ASM/W Follow-up-Baseline (OR=2.13, 95% CI 1.12-4.05, P=0.022) independently predicted steatosis improvement. ASM/W increase and loss of total fat mass benefit the resolution of liver steatosis, independent of weight loss for MAFLD.","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138743524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eldecalcitol prevents muscle loss and osteoporosis in disuse muscle atrophy via NF-κB signaling in mice 艾地骨化醇通过 NF-κB 信号转导防止小鼠肌肉损失和废用性肌肉萎缩中的骨质疏松症
IF 4.9 2区 医学 Q1 Medicine Pub Date : 2023-12-19 DOI: 10.1186/s13395-023-00332-0
Haichao Zhang, Yanping Du, Wenjing Tang, Minmin Chen, Weijia Yu, Zheng Ke, Shuangshuang Dong, Qun Cheng
We investigated the effect of eldecalcitol on disuse muscle atrophy. C57BL/6J male mice aged 6 weeks were randomly assigned to control, tail suspension (TS), and TS-eldecalcitol–treated groups and were injected intraperitoneally twice a week with either vehicle (control and TS) or eldecalcitol at 3.5 or 5 ng for 3 weeks. Grip strength and muscle weights of the gastrocnemius (GAS), tibialis anterior (TA), and soleus (SOL) were determined. Oxidative stress was evaluated by malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase. Bone microarchitecture was analyzed using microcomputed tomography. The effect of eldecalcitol on C2C12 myoblasts was analyzed by measuring myofibrillar protein MHC and the atrophy markers Atrogin-1 and MuRF-1 using immunofluorescence. The influence of eldecalcitol on NF-κB signaling pathway and vitamin D receptor (VDR) was assessed through immunofluorescence, (co)-immunoprecipitation, and VDR knockdown studies. Eldecalcitol increased grip strength (P < 0.01) and restored muscle loss in GAS, TA, and SOL (P < 0.05 to P < 0.001) induced by TS. An improvement was noted in bone mineral density and bone architecture in the eldecalcitol group. The impaired oxidative defense system was restored by eldecalcitol (P < 0.05 to P < 0.01 vs. TS). Eldecalcitol (10 nM) significantly inhibited the expression of MuRF-1 (P < 0.001) and Atrogin-1 (P < 0.01), increased the diameter of myotubes (P < 0.05), inhibited the expression of P65 and P52 components of NF-κB and P65 nuclear location, thereby inhibiting NF-κB signaling. Eldecalcitol promoted VDR binding to P65 and P52. VDR signaling is required for eldecalcitol-mediated anti-atrophy effects. In conclusion, eldecalcitol exerted its beneficial effects on disuse-induced muscle atrophy via NF-κB inhibition.
我们研究了艾地卡糖醇对废用性肌肉萎缩的影响。将年龄为6周的C57BL/6J雄性小鼠随机分配到对照组、尾悬液(TS)组和TS-艾地卡醇处理组,每周腹腔注射两次载体(对照组和TS组)或3.5或5纳克的艾地卡醇,连续注射3周。测定腓肠肌(GAS)、胫骨前肌(TA)和比目鱼肌(SOL)的握力和肌肉重量。通过丙二醛、超氧化物歧化酶、谷胱甘肽过氧化物酶和过氧化氢酶评估氧化应激。使用微型计算机断层扫描分析了骨的微观结构。通过使用免疫荧光法测定肌纤维蛋白 MHC 以及萎缩标志物 Atrogin-1 和 MuRF-1,分析了长骨钙醇对 C2C12 肌细胞的影响。通过免疫荧光、(共)免疫沉淀和 VDR 敲除研究评估了艾地卡糖醇对 NF-κB 信号通路和维生素 D 受体(VDR)的影响。艾地卡糖醇增加了握力(P<0.01),并恢复了TS诱导的GAS、TA和SOL的肌肉损失(P<0.05至P<0.001)。在长骨钙醇组中,骨矿物质密度和骨结构均有所改善。与 TS 相比,氧化防御系统受损的情况得到了恢复(P < 0.05 至 P < 0.01)。艾地卡糖醇(10 nM)能显著抑制MuRF-1(P<0.001)和Atrogin-1(P<0.01)的表达,增加肌管直径(P<0.05),抑制NF-κB的P65和P52成分的表达以及P65的核位置,从而抑制NF-κB信号转导。艾地卡糖醇促进了 VDR 与 P65 和 P52 的结合。艾地卡糖醇介导的抗萎缩作用需要VDR信号。总之,艾地卡糖醇通过抑制NF-κB对废用诱导的肌肉萎缩产生有益影响。
{"title":"Eldecalcitol prevents muscle loss and osteoporosis in disuse muscle atrophy via NF-κB signaling in mice","authors":"Haichao Zhang, Yanping Du, Wenjing Tang, Minmin Chen, Weijia Yu, Zheng Ke, Shuangshuang Dong, Qun Cheng","doi":"10.1186/s13395-023-00332-0","DOIUrl":"https://doi.org/10.1186/s13395-023-00332-0","url":null,"abstract":"We investigated the effect of eldecalcitol on disuse muscle atrophy. C57BL/6J male mice aged 6 weeks were randomly assigned to control, tail suspension (TS), and TS-eldecalcitol–treated groups and were injected intraperitoneally twice a week with either vehicle (control and TS) or eldecalcitol at 3.5 or 5 ng for 3 weeks. Grip strength and muscle weights of the gastrocnemius (GAS), tibialis anterior (TA), and soleus (SOL) were determined. Oxidative stress was evaluated by malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase. Bone microarchitecture was analyzed using microcomputed tomography. The effect of eldecalcitol on C2C12 myoblasts was analyzed by measuring myofibrillar protein MHC and the atrophy markers Atrogin-1 and MuRF-1 using immunofluorescence. The influence of eldecalcitol on NF-κB signaling pathway and vitamin D receptor (VDR) was assessed through immunofluorescence, (co)-immunoprecipitation, and VDR knockdown studies. Eldecalcitol increased grip strength (P < 0.01) and restored muscle loss in GAS, TA, and SOL (P < 0.05 to P < 0.001) induced by TS. An improvement was noted in bone mineral density and bone architecture in the eldecalcitol group. The impaired oxidative defense system was restored by eldecalcitol (P < 0.05 to P < 0.01 vs. TS). Eldecalcitol (10 nM) significantly inhibited the expression of MuRF-1 (P < 0.001) and Atrogin-1 (P < 0.01), increased the diameter of myotubes (P < 0.05), inhibited the expression of P65 and P52 components of NF-κB and P65 nuclear location, thereby inhibiting NF-κB signaling. Eldecalcitol promoted VDR binding to P65 and P52. VDR signaling is required for eldecalcitol-mediated anti-atrophy effects. In conclusion, eldecalcitol exerted its beneficial effects on disuse-induced muscle atrophy via NF-κB inhibition.","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138743519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypoxia enhances human myoblast differentiation: involvement of HIF1α and impact of DUX4, the FSHD causal gene 缺氧可促进人类肌母细胞分化:HIF1α的参与和FSHD致病基因DUX4的影响
IF 4.9 2区 医学 Q1 Medicine Pub Date : 2023-12-16 DOI: 10.1186/s13395-023-00330-2
Thuy-Hang Nguyen, Lise Paprzycki, Alexandre Legrand, Anne-Emilie Declèves, Philipp Heher, Maelle Limpens, Alexandra Belayew, Christopher R. S. Banerji, Peter S. Zammit, Alexandra Tassin
Hypoxia is known to modify skeletal muscle biological functions and muscle regeneration. However, the mechanisms underlying the effects of hypoxia on human myoblast differentiation remain unclear. The hypoxic response pathway is of particular interest in patients with hereditary muscular dystrophies since many present respiratory impairment and muscle regeneration defects. For example, an altered hypoxia response characterizes the muscles of patients with facioscapulohumeral dystrophy (FSHD). We examined the impact of hypoxia on the differentiation of human immortalized myoblasts (LHCN-M2) cultured in normoxia (PO2: 21%) or hypoxia (PO2: 1%). Cells were grown in proliferation (myoblasts) or differentiation medium for 2 (myocytes) or 4 days (myotubes). We evaluated proliferation rate by EdU incorporation, used myogenin-positive nuclei as a differentiation marker for myocytes, and determined the fusion index and myosin heavy chain-positive area in myotubes. The contribution of HIF1α was studied by gain (CoCl2) and loss (siRNAs) of function experiments. We further examined hypoxia in LHCN-M2-iDUX4 myoblasts with inducible expression of DUX4, the transcription factor underlying FSHD pathology. We found that the hypoxic response did not impact myoblast proliferation but activated precocious myogenic differentiation and that HIF1α was critical for this process. Hypoxia also enhanced the late differentiation of human myocytes, but in an HIF1α-independent manner. Interestingly, the impact of hypoxia on muscle cell proliferation was influenced by dexamethasone. In the FSHD pathological context, DUX4 suppressed HIF1α-mediated precocious muscle differentiation. Hypoxia stimulates myogenic differentiation in healthy myoblasts, with HIF1α-dependent early steps. In FSHD, DUX4-HIF1α interplay indicates a novel mechanism by which DUX4 could interfere with HIF1α function in the myogenic program and therefore with FSHD muscle performance and regeneration.
众所周知,缺氧会改变骨骼肌的生物功能和肌肉再生。然而,低氧对人类成肌细胞分化的影响机制仍不清楚。遗传性肌肉萎缩症患者对低氧反应途径尤为关注,因为许多患者存在呼吸障碍和肌肉再生缺陷。例如,面岬肱肌营养不良症(FSHD)患者的肌肉就具有低氧反应改变的特征。我们研究了低氧对在常氧(PO2:21%)或低氧(PO2:1%)条件下培养的人类永生肌母细胞(LHCN-M2)分化的影响。细胞在增殖培养基(肌母细胞)或分化培养基中培养 2 天(肌细胞)或 4 天(肌管)。我们用 EdU 结合评估增殖率,用肌原蛋白阳性核作为肌细胞的分化标记,并测定肌管的融合指数和肌球蛋白重链阳性面积。通过功能增益(CoCl2)和功能缺失(siRNAs)实验研究了HIF1α的贡献。我们进一步研究了LHCN-M2-iDUX4肌母细胞的缺氧反应,这些肌母细胞诱导性表达了DUX4,DUX4是FSHD病理学的基础转录因子。我们发现,缺氧反应不会影响肌母细胞的增殖,但会激活早熟的肌原分化,而HIF1α对这一过程至关重要。缺氧也增强了人类肌细胞的后期分化,但其方式与 HIF1α 无关。有趣的是,低氧对肌肉细胞增殖的影响受到地塞米松的影响。在前列腺增生症的病理环境中,DUX4抑制了HIF1α介导的肌肉早熟分化。缺氧会刺激健康肌母细胞的成肌分化,其早期步骤依赖于 HIF1α。在前列腺增生症中,DUX4-HIF1α的相互作用表明了一种新的机制,通过这种机制,DUX4可以干扰肌生成程序中HIF1α的功能,从而影响前列腺增生症肌肉的性能和再生。
{"title":"Hypoxia enhances human myoblast differentiation: involvement of HIF1α and impact of DUX4, the FSHD causal gene","authors":"Thuy-Hang Nguyen, Lise Paprzycki, Alexandre Legrand, Anne-Emilie Declèves, Philipp Heher, Maelle Limpens, Alexandra Belayew, Christopher R. S. Banerji, Peter S. Zammit, Alexandra Tassin","doi":"10.1186/s13395-023-00330-2","DOIUrl":"https://doi.org/10.1186/s13395-023-00330-2","url":null,"abstract":"Hypoxia is known to modify skeletal muscle biological functions and muscle regeneration. However, the mechanisms underlying the effects of hypoxia on human myoblast differentiation remain unclear. The hypoxic response pathway is of particular interest in patients with hereditary muscular dystrophies since many present respiratory impairment and muscle regeneration defects. For example, an altered hypoxia response characterizes the muscles of patients with facioscapulohumeral dystrophy (FSHD). We examined the impact of hypoxia on the differentiation of human immortalized myoblasts (LHCN-M2) cultured in normoxia (PO2: 21%) or hypoxia (PO2: 1%). Cells were grown in proliferation (myoblasts) or differentiation medium for 2 (myocytes) or 4 days (myotubes). We evaluated proliferation rate by EdU incorporation, used myogenin-positive nuclei as a differentiation marker for myocytes, and determined the fusion index and myosin heavy chain-positive area in myotubes. The contribution of HIF1α was studied by gain (CoCl2) and loss (siRNAs) of function experiments. We further examined hypoxia in LHCN-M2-iDUX4 myoblasts with inducible expression of DUX4, the transcription factor underlying FSHD pathology. We found that the hypoxic response did not impact myoblast proliferation but activated precocious myogenic differentiation and that HIF1α was critical for this process. Hypoxia also enhanced the late differentiation of human myocytes, but in an HIF1α-independent manner. Interestingly, the impact of hypoxia on muscle cell proliferation was influenced by dexamethasone. In the FSHD pathological context, DUX4 suppressed HIF1α-mediated precocious muscle differentiation. Hypoxia stimulates myogenic differentiation in healthy myoblasts, with HIF1α-dependent early steps. In FSHD, DUX4-HIF1α interplay indicates a novel mechanism by which DUX4 could interfere with HIF1α function in the myogenic program and therefore with FSHD muscle performance and regeneration.","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138686794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Replenishing NAD+ content reduces aspects of striated muscle disease in a dog model of Duchenne muscular dystrophy. 补充NAD+含量可减少杜氏肌营养不良犬横纹肌疾病。
IF 4.9 2区 医学 Q1 Medicine Pub Date : 2023-12-04 DOI: 10.1186/s13395-023-00328-w
Déborah Cardoso, Inès Barthélémy, Stéphane Blot, Antoine Muchir

Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in DMD gene and loss of the protein dystrophin, which ultimately leads to myofiber membrane fragility and necrosis, with eventual muscle atrophy and contractures. Affected boys typically die in their second or third decade due to either respiratory failure or cardiomyopathy. Among the developed therapeutic strategies for DMD, gene therapy approaches partially restore micro-dystrophin or quasi-dystrophin expression. However, despite extensive attempts to develop definitive therapies for DMD, the standard of care remains corticosteroid, which has only palliative benefits. Animal models have played a key role in studies of DMD pathogenesis and treatment development. The golden retriever muscular dystrophy (GRMD) dog displays a phenotype aligning with the progressive course of DMD. Therefore, canine studies may translate better to humans. Recent studies suggested that nicotinamide adenine dinucleotide (NAD+) cellular content could be a critical determinant for striated muscle function. We showed here that NAD+ content was decreased in the striated muscles of GRMD, leading to an alteration of one of NAD+ co-substrate enzymes, PARP-1. Moreover, we showed that boosting NAD+ content using nicotinamide (NAM), a natural NAD+ precursor, modestly reduces aspects of striated muscle disease. Collectively, our results provide mechanistic insights into DMD.

杜氏肌营养不良症(DMD)是一种由DMD基因突变和肌营养不良蛋白缺失引起的x连锁疾病,最终导致肌纤维膜脆性和坏死,最终导致肌肉萎缩和收缩。受影响的男孩通常在他们的第二个或第三个十年死于呼吸衰竭或心肌病。在已开发的DMD治疗策略中,基因治疗方法部分恢复微肌营养不良蛋白或准肌营养不良蛋白的表达。然而,尽管广泛尝试开发DMD的明确治疗方法,但标准的护理仍然是皮质类固醇,它只有姑息性的益处。动物模型在DMD发病机制和治疗发展的研究中发挥了关键作用。金毛寻回犬肌肉萎缩症(GRMD)犬表现出与DMD进展过程一致的表型。因此,犬类研究可能更好地适用于人类。最近的研究表明,烟酰胺腺嘌呤二核苷酸(NAD+)细胞含量可能是横纹肌功能的关键决定因素。我们在这里发现,GRMD横纹肌中NAD+含量降低,导致NAD+共底物酶PARP-1的改变。此外,我们发现,使用烟酰胺(NAM)(一种天然NAD+前体)提高NAD+含量,可以适度减少横纹肌疾病的各个方面。总的来说,我们的结果为DMD提供了机制上的见解。
{"title":"Replenishing NAD<sup>+</sup> content reduces aspects of striated muscle disease in a dog model of Duchenne muscular dystrophy.","authors":"Déborah Cardoso, Inès Barthélémy, Stéphane Blot, Antoine Muchir","doi":"10.1186/s13395-023-00328-w","DOIUrl":"10.1186/s13395-023-00328-w","url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in DMD gene and loss of the protein dystrophin, which ultimately leads to myofiber membrane fragility and necrosis, with eventual muscle atrophy and contractures. Affected boys typically die in their second or third decade due to either respiratory failure or cardiomyopathy. Among the developed therapeutic strategies for DMD, gene therapy approaches partially restore micro-dystrophin or quasi-dystrophin expression. However, despite extensive attempts to develop definitive therapies for DMD, the standard of care remains corticosteroid, which has only palliative benefits. Animal models have played a key role in studies of DMD pathogenesis and treatment development. The golden retriever muscular dystrophy (GRMD) dog displays a phenotype aligning with the progressive course of DMD. Therefore, canine studies may translate better to humans. Recent studies suggested that nicotinamide adenine dinucleotide (NAD<sup>+</sup>) cellular content could be a critical determinant for striated muscle function. We showed here that NAD<sup>+</sup> content was decreased in the striated muscles of GRMD, leading to an alteration of one of NAD<sup>+</sup> co-substrate enzymes, PARP-1. Moreover, we showed that boosting NAD<sup>+</sup> content using nicotinamide (NAM), a natural NAD<sup>+</sup> precursor, modestly reduces aspects of striated muscle disease. Collectively, our results provide mechanistic insights into DMD.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694913/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138478455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrical impedance myography detects dystrophin-related muscle changes in mdx mice. 电阻抗肌图检测mdx小鼠与肌营养不良蛋白相关的肌肉变化。
IF 4.9 2区 医学 Q1 Medicine Pub Date : 2023-11-18 DOI: 10.1186/s13395-023-00331-1
Tetsuaki Hiyoshi, Fuqiang Zhao, Rina Baba, Takeshi Hirakawa, Ryosuke Kuboki, Kazunori Suzuki, Yoshiro Tomimatsu, Patricio O'Donnell, Steve Han, Neta Zach, Masato Nakashima

Background: The lack of functional dystrophin protein in Duchenne muscular dystrophy (DMD) causes chronic skeletal muscle inflammation and degeneration. Therefore, the restoration of functional dystrophin levels is a fundamental approach for DMD therapy. Electrical impedance myography (EIM) is an emerging tool that provides noninvasive monitoring of muscle conditions and has been suggested as a treatment response biomarker in diverse indications. Although magnetic resonance imaging (MRI) of skeletal muscles has become a standard measurement in clinical trials for DMD, EIM offers distinct advantages, such as portability, user-friendliness, and reduced cost, allowing for remote monitoring of disease progression or response to therapy. To investigate the potential of EIM as a biomarker for DMD, we compared longitudinal EIM data with MRI/histopathological data from an X-linked muscular dystrophy (mdx) mouse model of DMD. In addition, we investigated whether EIM could detect dystrophin-related changes in muscles using antisense-mediated exon skipping in mdx mice.

Methods: The MRI data for muscle T2, the magnetic resonance spectroscopy (MRS) data for fat fraction, and three EIM parameters with histopathology were longitudinally obtained from the hindlimb muscles of wild-type (WT) and mdx mice. In the EIM study, a cell-penetrating peptide (Pip9b2) conjugated antisense phosphorodiamidate morpholino oligomer (PPMO), designed to induce exon-skipping and restore functional dystrophin production, was administered intravenously to mdx mice.

Results: MRI imaging in mdx mice showed higher T2 intensity at 6 weeks of age in hindlimb muscles compared to WT mice, which decreased at ≥ 9 weeks of age. In contrast, EIM reactance began to decline at 12 weeks of age, with peak reduction at 18 weeks of age in mdx mice. This decline was associated with myofiber atrophy and connective tissue infiltration in the skeletal muscles. Repeated dosing of PPMO (10 mg/kg, 4 times every 2 weeks) in mdx mice led to an increase in muscular dystrophin protein and reversed the decrease in EIM reactance.

Conclusions: These findings suggest that muscle T2 MRI is sensitive to the early inflammatory response associated with dystrophin deficiency, whereas EIM provides a valuable biomarker for the noninvasive monitoring of subsequent changes in skeletal muscle composition. Furthermore, EIM reactance has the potential to monitor dystrophin-deficient muscle abnormalities and their recovery in response to antisense-mediated exon skipping.

背景:杜氏肌营养不良症(DMD)患者缺乏功能性肌营养不良蛋白导致慢性骨骼肌炎症和变性。因此,恢复功能性肌营养不良蛋白水平是治疗DMD的基本途径。电阻抗肌图(EIM)是一种新兴的工具,可提供无创监测肌肉状况,并已被建议作为多种适应症的治疗反应生物标志物。尽管骨骼肌磁共振成像(MRI)已成为DMD临床试验的标准测量方法,但EIM具有明显的优势,如便携性、用户友好性和降低成本,允许远程监测疾病进展或对治疗的反应。为了研究EIM作为DMD生物标志物的潜力,我们将纵向EIM数据与DMD x连锁肌营养不良(mdx)小鼠模型的MRI/组织病理学数据进行了比较。此外,我们研究了EIM是否可以通过反义介导的外显子跳变检测mdx小鼠肌肉中肌营养不良蛋白相关的变化。方法:从野生型(WT)和mdx小鼠后肢肌肉纵向获取肌肉T2的MRI数据、脂肪部分的磁共振波谱(MRS)数据和三个具有组织病理学意义的EIM参数。在EIM研究中,给mdx小鼠静脉注射了一种细胞穿透肽(Pip9b2)偶联的反义磷酸二酯morpholino oligomer (PPMO),旨在诱导外显子跳变并恢复功能性肌营养不良蛋白的产生。结果:mdx小鼠6周龄时后肢肌肉T2强度较WT小鼠高,≥9周龄时T2强度下降。相比之下,mdx小鼠的EIM电抗在12周龄时开始下降,在18周龄时达到峰值。这种下降与骨骼肌的肌纤维萎缩和结缔组织浸润有关。在mdx小鼠中重复给药PPMO (10 mg/kg,每2周4次)导致肌营养不良蛋白增加,逆转了EIM电抗的下降。结论:这些发现表明,肌肉T2 MRI对与肌营养不良蛋白缺乏相关的早期炎症反应敏感,而EIM为后续骨骼肌组成变化的无创监测提供了有价值的生物标志物。此外,EIM电抗具有监测肌营养不良蛋白缺陷的肌肉异常及其在反义介导的外显子跳变反应中的恢复的潜力。
{"title":"Electrical impedance myography detects dystrophin-related muscle changes in mdx mice.","authors":"Tetsuaki Hiyoshi, Fuqiang Zhao, Rina Baba, Takeshi Hirakawa, Ryosuke Kuboki, Kazunori Suzuki, Yoshiro Tomimatsu, Patricio O'Donnell, Steve Han, Neta Zach, Masato Nakashima","doi":"10.1186/s13395-023-00331-1","DOIUrl":"10.1186/s13395-023-00331-1","url":null,"abstract":"<p><strong>Background: </strong>The lack of functional dystrophin protein in Duchenne muscular dystrophy (DMD) causes chronic skeletal muscle inflammation and degeneration. Therefore, the restoration of functional dystrophin levels is a fundamental approach for DMD therapy. Electrical impedance myography (EIM) is an emerging tool that provides noninvasive monitoring of muscle conditions and has been suggested as a treatment response biomarker in diverse indications. Although magnetic resonance imaging (MRI) of skeletal muscles has become a standard measurement in clinical trials for DMD, EIM offers distinct advantages, such as portability, user-friendliness, and reduced cost, allowing for remote monitoring of disease progression or response to therapy. To investigate the potential of EIM as a biomarker for DMD, we compared longitudinal EIM data with MRI/histopathological data from an X-linked muscular dystrophy (mdx) mouse model of DMD. In addition, we investigated whether EIM could detect dystrophin-related changes in muscles using antisense-mediated exon skipping in mdx mice.</p><p><strong>Methods: </strong>The MRI data for muscle T2, the magnetic resonance spectroscopy (MRS) data for fat fraction, and three EIM parameters with histopathology were longitudinally obtained from the hindlimb muscles of wild-type (WT) and mdx mice. In the EIM study, a cell-penetrating peptide (Pip9b2) conjugated antisense phosphorodiamidate morpholino oligomer (PPMO), designed to induce exon-skipping and restore functional dystrophin production, was administered intravenously to mdx mice.</p><p><strong>Results: </strong>MRI imaging in mdx mice showed higher T2 intensity at 6 weeks of age in hindlimb muscles compared to WT mice, which decreased at ≥ 9 weeks of age. In contrast, EIM reactance began to decline at 12 weeks of age, with peak reduction at 18 weeks of age in mdx mice. This decline was associated with myofiber atrophy and connective tissue infiltration in the skeletal muscles. Repeated dosing of PPMO (10 mg/kg, 4 times every 2 weeks) in mdx mice led to an increase in muscular dystrophin protein and reversed the decrease in EIM reactance.</p><p><strong>Conclusions: </strong>These findings suggest that muscle T2 MRI is sensitive to the early inflammatory response associated with dystrophin deficiency, whereas EIM provides a valuable biomarker for the noninvasive monitoring of subsequent changes in skeletal muscle composition. Furthermore, EIM reactance has the potential to monitor dystrophin-deficient muscle abnormalities and their recovery in response to antisense-mediated exon skipping.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138047842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tropomyosin 3 (TPM3) function in skeletal muscle and in myopathy. 原肌球蛋白3(TPM3)在骨骼肌和肌病中的作用。
IF 4.9 2区 医学 Q1 Medicine Pub Date : 2023-11-07 DOI: 10.1186/s13395-023-00327-x
Matthias R Lambert, Emanuela Gussoni

The tropomyosin genes (TPM1-4) contribute to the functional diversity of skeletal muscle fibers. Since its discovery in 1988, the TPM3 gene has been recognized as an indispensable regulator of muscle contraction in slow muscle fibers. Recent advances suggest that TPM3 isoforms hold more extensive functions during skeletal muscle development and in postnatal muscle. Additionally, mutations in the TPM3 gene have been associated with the features of congenital myopathies. The use of different in vitro and in vivo model systems has leveraged the discovery of several disease mechanisms associated with TPM3-related myopathy. Yet, the precise mechanisms by which TPM3 mutations lead to muscle dysfunction remain unclear. This review consolidates over three decades of research about the role of TPM3 in skeletal muscle. Overall, the progress made has led to a better understanding of the phenotypic spectrum in patients affected by mutations in this gene. The comprehensive body of work generated over these decades has also laid robust groundwork for capturing the multiple functions this protein plays in muscle fibers.

原肌球蛋白基因(TPM1-4)对骨骼肌纤维的功能多样性有贡献。自1988年发现以来,TPM3基因已被认为是慢肌纤维肌肉收缩不可或缺的调节因子。最近的进展表明,TPM3亚型在骨骼肌发育和出生后肌肉中具有更广泛的功能。此外,TPM3基因的突变与先天性肌病的特征有关。不同的体外和体内模型系统的使用利用了与TPM3相关肌病相关的几种疾病机制的发现。然而,TPM3突变导致肌肉功能障碍的确切机制尚不清楚。这篇综述总结了30多年来关于TPM3在骨骼肌中作用的研究。总的来说,所取得的进展使人们更好地了解了受该基因突变影响的患者的表型谱。这几十年来产生的大量工作也为捕捉这种蛋白质在肌肉纤维中发挥的多种功能奠定了坚实的基础。
{"title":"Tropomyosin 3 (TPM3) function in skeletal muscle and in myopathy.","authors":"Matthias R Lambert, Emanuela Gussoni","doi":"10.1186/s13395-023-00327-x","DOIUrl":"10.1186/s13395-023-00327-x","url":null,"abstract":"<p><p>The tropomyosin genes (TPM1-4) contribute to the functional diversity of skeletal muscle fibers. Since its discovery in 1988, the TPM3 gene has been recognized as an indispensable regulator of muscle contraction in slow muscle fibers. Recent advances suggest that TPM3 isoforms hold more extensive functions during skeletal muscle development and in postnatal muscle. Additionally, mutations in the TPM3 gene have been associated with the features of congenital myopathies. The use of different in vitro and in vivo model systems has leveraged the discovery of several disease mechanisms associated with TPM3-related myopathy. Yet, the precise mechanisms by which TPM3 mutations lead to muscle dysfunction remain unclear. This review consolidates over three decades of research about the role of TPM3 in skeletal muscle. Overall, the progress made has led to a better understanding of the phenotypic spectrum in patients affected by mutations in this gene. The comprehensive body of work generated over these decades has also laid robust groundwork for capturing the multiple functions this protein plays in muscle fibers.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629095/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71485754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA methylation of insulin signaling pathways is associated with HOMA2-IR in primary myoblasts from older adults. 胰岛素信号通路的DNA甲基化与老年人原发性成肌细胞中的HOMA2-IR相关。
IF 4.9 2区 医学 Q1 Medicine Pub Date : 2023-10-28 DOI: 10.1186/s13395-023-00326-y
Mark A Burton, Emma S Garratt, Matthew O Hewitt, Hanan Y Sharkh, Elie Antoun, Leo D Westbury, Elaine M Dennison, Nicholas C Harvey, Cyrus Cooper, Julia L MacIsaac, Michael S Kobor, Harnish P Patel, Keith M Godfrey, Karen A Lillycrop

Background: While ageing is associated with increased insulin resistance (IR), the molecular mechanisms underlying increased IR in the muscle, the primary organ for glucose clearance, have yet to be elucidated in older individuals. As epigenetic processes are suggested to contribute to the development of ageing-associated diseases, we investigated whether differential DNA methylation was associated with IR in human primary muscle stem cells (myoblasts) from community-dwelling older individuals.

Methods: We measured DNA methylation (Infinium HumanMethylationEPIC BeadChip) in myoblast cultures from vastus lateralis biopsies (119 males/females, mean age 78.24 years) from the Hertfordshire Sarcopenia Study extension (HSSe) and examined differentially methylated cytosine phosphate guanine (CpG) sites (dmCpG), regions (DMRs) and gene pathways associated with HOMA2-IR, an index for the assessment of insulin resistance, and levels of glycated hemoglobin HbA1c.

Results: Thirty-eight dmCpGs (false discovery rate (FDR) < 0.05) were associated with HOMA2-IR, with dmCpGs enriched in genes linked with JNK, AMPK and insulin signaling. The methylation signal associated with HOMA2-IR was attenuated after the addition of either BMI (6 dmCpGs), appendicular lean mass index (ALMi) (7 dmCpGs), grip strength (15 dmCpGs) or gait speed (23 dmCpGs) as covariates in the model. There were 8 DMRs (Stouffer < 0.05) associated with HOMA2-IR, including DMRs within T-box transcription factor (TBX1) and nuclear receptor subfamily-2 group F member-2 (NR2F2); the DMRs within TBX1 and NR2F2 remained associated with HOMA2-IR after adjustment for BMI, ALMi, grip strength or gait speed. Forty-nine dmCpGs and 21 DMRs were associated with HbA1c, with cg13451048, located within exoribonuclease family member 3 (ERI3) associated with both HOMA2-IR and HbA1c. HOMA2-IR and HbA1c were not associated with accelerated epigenetic ageing.

Conclusions: These findings suggest that insulin resistance is associated with differential DNA methylation in human primary myoblasts with both muscle mass and body composition making a significant contribution to the methylation changes associated with IR.

背景:虽然衰老与胰岛素抵抗(IR)增加有关,但肌肉(葡萄糖清除的主要器官)胰岛素抵抗增加的分子机制尚未在老年人中阐明。由于表观遗传学过程被认为有助于衰老相关疾病的发展,我们研究了来自社区老年人的人类原代肌肉干细胞(成肌细胞)中差异性DNA甲基化是否与IR相关。方法:我们测量了来自赫特福德郡Sarcopenia研究扩展(HSSe)的股外侧肌活检(119名男性/女性,平均年龄78.24岁)的成肌细胞培养物中的DNA甲基化(Infinium HumanMethylationEPIC BeadChip),评估胰岛素抵抗和糖化血红蛋白HbA1c水平的指标。结果:38个dmCpG(错误发现率(FDR)) 结论:这些发现表明,胰岛素抵抗与人类原发性成肌细胞中不同的DNA甲基化有关,肌肉质量和身体成分对与IR相关的甲基化变化都有重要贡献。
{"title":"DNA methylation of insulin signaling pathways is associated with HOMA2-IR in primary myoblasts from older adults.","authors":"Mark A Burton, Emma S Garratt, Matthew O Hewitt, Hanan Y Sharkh, Elie Antoun, Leo D Westbury, Elaine M Dennison, Nicholas C Harvey, Cyrus Cooper, Julia L MacIsaac, Michael S Kobor, Harnish P Patel, Keith M Godfrey, Karen A Lillycrop","doi":"10.1186/s13395-023-00326-y","DOIUrl":"10.1186/s13395-023-00326-y","url":null,"abstract":"<p><strong>Background: </strong>While ageing is associated with increased insulin resistance (IR), the molecular mechanisms underlying increased IR in the muscle, the primary organ for glucose clearance, have yet to be elucidated in older individuals. As epigenetic processes are suggested to contribute to the development of ageing-associated diseases, we investigated whether differential DNA methylation was associated with IR in human primary muscle stem cells (myoblasts) from community-dwelling older individuals.</p><p><strong>Methods: </strong>We measured DNA methylation (Infinium HumanMethylationEPIC BeadChip) in myoblast cultures from vastus lateralis biopsies (119 males/females, mean age 78.24 years) from the Hertfordshire Sarcopenia Study extension (HSSe) and examined differentially methylated cytosine phosphate guanine (CpG) sites (dmCpG), regions (DMRs) and gene pathways associated with HOMA2-IR, an index for the assessment of insulin resistance, and levels of glycated hemoglobin HbA1c.</p><p><strong>Results: </strong>Thirty-eight dmCpGs (false discovery rate (FDR) < 0.05) were associated with HOMA2-IR, with dmCpGs enriched in genes linked with JNK, AMPK and insulin signaling. The methylation signal associated with HOMA2-IR was attenuated after the addition of either BMI (6 dmCpGs), appendicular lean mass index (ALMi) (7 dmCpGs), grip strength (15 dmCpGs) or gait speed (23 dmCpGs) as covariates in the model. There were 8 DMRs (Stouffer < 0.05) associated with HOMA2-IR, including DMRs within T-box transcription factor (TBX1) and nuclear receptor subfamily-2 group F member-2 (NR2F2); the DMRs within TBX1 and NR2F2 remained associated with HOMA2-IR after adjustment for BMI, ALMi, grip strength or gait speed. Forty-nine dmCpGs and 21 DMRs were associated with HbA1c, with cg13451048, located within exoribonuclease family member 3 (ERI3) associated with both HOMA2-IR and HbA1c. HOMA2-IR and HbA1c were not associated with accelerated epigenetic ageing.</p><p><strong>Conclusions: </strong>These findings suggest that insulin resistance is associated with differential DNA methylation in human primary myoblasts with both muscle mass and body composition making a significant contribution to the methylation changes associated with IR.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66784281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sox11 is enriched in myogenic progenitors but dispensable for development and regeneration of the skeletal muscle. Sox11富含肌源性祖细胞,但对于骨骼肌的发育和再生是可有可无的。
IF 4.9 2区 医学 Q1 Medicine Pub Date : 2023-09-13 DOI: 10.1186/s13395-023-00324-0
Stephanie N Oprescu, Nick Baumann, Xiyue Chen, Qiang Sun, Yu Zhao, Feng Yue, Huating Wang, Shihuan Kuang

Transcription factors (TFs) play key roles in regulating differentiation and function of stem cells, including muscle satellite cells (MuSCs), a resident stem cell population responsible for postnatal regeneration of the skeletal muscle. Sox11 belongs to the Sry-related HMG-box (SOX) family of TFs that play diverse roles in stem cell behavior and tissue specification. Analysis of single-cell RNA-sequencing (scRNA-seq) datasets identify a specific enrichment of Sox11 mRNA in differentiating but not quiescent MuSCs. Consistent with the scRNA-seq data, Sox11 levels increase during differentiation of murine primary myoblasts in vitro. scRNA-seq data comparing muscle regeneration in young and old mice further demonstrate that Sox11 expression is reduced in aged MuSCs. Age-related decline of Sox11 expression is associated with reduced chromatin contacts within the topologically associating domains. Unexpectedly, Myod1Cre-driven deletion of Sox11 in embryonic myoblasts has no effects on muscle development and growth, resulting in apparently healthy muscles that regenerate normally. Pax7CreER- or Rosa26CreER- driven (MuSC-specific or global) deletion of Sox11 in adult mice similarly has no effects on MuSC differentiation or muscle regeneration. These results identify Sox11 as a novel myogenic differentiation marker with reduced expression in quiescent and aged MuSCs, but the specific function of Sox11 in myogenesis remains to be elucidated.

转录因子(TF)在调节干细胞的分化和功能方面发挥着关键作用,包括肌肉卫星细胞(MuSC),这是一种负责骨骼肌产后再生的常驻干细胞群体。Sox11属于Sry相关的HMG盒(SOX)TF家族,在干细胞行为和组织规范中发挥着不同的作用。单细胞RNA测序(scRNA-seq)数据集的分析确定了Sox11mRNA在分化而非静止的MuSC中的特异性富集。与scRNA-seq数据一致,Sox11水平在体外小鼠原代成肌细胞分化过程中增加。比较年轻和老年小鼠肌肉再生的scRNA-seq数据进一步表明,Sox11在老年MuSC中的表达减少。Sox11表达的年龄相关下降与拓扑相关结构域内染色质接触减少有关。出乎意料的是,胚胎成肌细胞中Myod1Cre驱动的Sox11缺失对肌肉发育和生长没有影响,导致明显健康的肌肉正常再生。成年小鼠中由Pax7CreER-或Rosa26CreER-驱动的(MuSC特异性或全局性)Sox11缺失同样对MuSC分化或肌肉再生没有影响。这些结果表明,Sox11是一种新的肌源分化标记物,在静止和衰老的MuSC中表达减少,但Sox11在肌发生中的具体功能仍有待阐明。
{"title":"Sox11 is enriched in myogenic progenitors but dispensable for development and regeneration of the skeletal muscle.","authors":"Stephanie N Oprescu, Nick Baumann, Xiyue Chen, Qiang Sun, Yu Zhao, Feng Yue, Huating Wang, Shihuan Kuang","doi":"10.1186/s13395-023-00324-0","DOIUrl":"10.1186/s13395-023-00324-0","url":null,"abstract":"<p><p>Transcription factors (TFs) play key roles in regulating differentiation and function of stem cells, including muscle satellite cells (MuSCs), a resident stem cell population responsible for postnatal regeneration of the skeletal muscle. Sox11 belongs to the Sry-related HMG-box (SOX) family of TFs that play diverse roles in stem cell behavior and tissue specification. Analysis of single-cell RNA-sequencing (scRNA-seq) datasets identify a specific enrichment of Sox11 mRNA in differentiating but not quiescent MuSCs. Consistent with the scRNA-seq data, Sox11 levels increase during differentiation of murine primary myoblasts in vitro. scRNA-seq data comparing muscle regeneration in young and old mice further demonstrate that Sox11 expression is reduced in aged MuSCs. Age-related decline of Sox11 expression is associated with reduced chromatin contacts within the topologically associating domains. Unexpectedly, Myod1<sup>Cre</sup>-driven deletion of Sox11 in embryonic myoblasts has no effects on muscle development and growth, resulting in apparently healthy muscles that regenerate normally. Pax7<sup>CreER</sup>- or Rosa26<sup>CreER</sup>- driven (MuSC-specific or global) deletion of Sox11 in adult mice similarly has no effects on MuSC differentiation or muscle regeneration. These results identify Sox11 as a novel myogenic differentiation marker with reduced expression in quiescent and aged MuSCs, but the specific function of Sox11 in myogenesis remains to be elucidated.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498607/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10309062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomarkers for Duchenne muscular dystrophy progression: impact of age in the mdx tongue spared muscle. Duchenne肌营养不良进展的生物标志物:年龄对mdx舌肌的影响。
IF 4.9 2区 医学 Q1 Medicine Pub Date : 2023-09-13 DOI: 10.1186/s13395-023-00325-z
Marcelo Dos Santos Voltani Lorena, Estela Kato Dos Santos, Renato Ferretti, G A Nagana Gowda, Guy L Odom, Jeffrey S Chamberlain, Cintia Yuri Matsumura

Background: Duchenne muscular dystrophy (DMD) is a severe form of muscular dystrophy without an effective treatment, caused by mutations in the DMD gene, leading to the absence of dystrophin. DMD results in muscle weakness, loss of ambulation, and death at an early age. Metabolomics studies in mdx mice, the most used model for DMD, reveal changes in metabolites associated with muscle degeneration and aging. In DMD, the tongue muscles exhibit unique behavior, initially showing partial protection against inflammation but later experiencing fibrosis and loss of muscle fibers. Certain metabolites and proteins, like TNF-α and TGF-β, are potential biomarkers for dystrophic muscle characterization.

Methods: To investigate disease progression and aging, we utilized young (1 month old) and old (21-25 months old) mdx and wild-type tongue muscles. Metabolite changes were analyzed using 1H nuclear magnetic resonance, while TNF-α and TGF-β were assessed using Western blotting to examine inflammation and fibrosis. Morphometric analysis was conducted to assess the extent of myofiber damage between groups.

Results: The histological analysis of the mid-belly tongue showed no differences between groups. No differences were found between the concentrations of metabolites from wild-type or mdx whole tongues of the same age. The metabolites alanine, methionine, and 3-methylhistidine were higher, and taurine and glycerol were lower in young tongues in both wild type and mdx (p < 0.001). The metabolites glycine (p < 0.001) and glutamic acid (p = 0.0018) were different only in the mdx groups, being higher in young mdx mice. Acetic acid, phosphocreatine, isoleucine, succinic acid, creatine, and the proteins TNF-α and TGF-β had no difference in the analysis between groups (p > 0.05).

Conclusions: Surprisingly, histological, metabolite, and protein analysis reveal that the tongue of old mdx remains partially spared from the severe myonecrosis observed in other muscles. The metabolites alanine, methionine, 3-methylhistidine, taurine, and glycerol may be effective for specific assessments, although their use for disease progression monitoring should be cautious due to age-related changes in the tongue muscle. Acetic acid, phosphocreatine, isoleucine, succinate, creatine, TNF-α, and TGF-β do not vary with aging and remain constant in spared muscles, suggesting their potential as specific biomarkers for DMD progression independent of aging.

背景:杜兴肌营养不良(DMD)是一种严重的肌营养不良,由于DMD基因突变,导致肌营养不良蛋白缺失,没有有效的治疗方法。DMD会导致肌肉无力、丧失活动能力和过早死亡。最常用的DMD模型mdx小鼠的代谢组学研究揭示了与肌肉退化和衰老相关的代谢产物的变化。在DMD中,舌头肌肉表现出独特的行为,最初对炎症表现出部分保护作用,但后来经历了纤维化和肌肉纤维损失。某些代谢产物和蛋白质,如TNF-α和TGF-β,是营养不良肌肉表征的潜在生物标志物。方法:为了研究疾病进展和衰老,我们使用年轻(1个月大)和老年(21-25个月大的)mdx和野生型舌肌。使用1H核磁共振分析代谢产物的变化,同时使用蛋白质印迹评估TNF-α和TGF-β以检查炎症和纤维化。进行形态计量学分析以评估各组之间的肌纤维损伤程度。结果:腹部中段舌的组织学分析显示各组之间没有差异。相同年龄的野生型或mdx全舌的代谢物浓度之间没有发现差异。野生型和mdx幼舌的代谢产物丙氨酸、蛋氨酸和3-甲基组氨酸含量较高,牛磺酸和甘油含量较低(p  0.05)。结论:令人惊讶的是,组织学、代谢产物和蛋白质分析显示,老年mdx的舌头部分没有受到其他肌肉中观察到的严重肌肉坏死的影响。代谢产物丙氨酸、甲硫氨酸、3-甲基组氨酸、牛磺酸和甘油可能对特定评估有效,尽管由于舌肌的年龄变化,应谨慎使用它们来监测疾病进展。乙酸、磷酸肌酸、异亮氨酸、琥珀酸、肌酸、TNF-α和TGF-β不会随着年龄的增长而变化,并且在备用肌肉中保持不变,这表明它们有可能成为DMD进展的特异性生物标志物,而与年龄无关。
{"title":"Biomarkers for Duchenne muscular dystrophy progression: impact of age in the mdx tongue spared muscle.","authors":"Marcelo Dos Santos Voltani Lorena, Estela Kato Dos Santos, Renato Ferretti, G A Nagana Gowda, Guy L Odom, Jeffrey S Chamberlain, Cintia Yuri Matsumura","doi":"10.1186/s13395-023-00325-z","DOIUrl":"10.1186/s13395-023-00325-z","url":null,"abstract":"<p><strong>Background: </strong>Duchenne muscular dystrophy (DMD) is a severe form of muscular dystrophy without an effective treatment, caused by mutations in the DMD gene, leading to the absence of dystrophin. DMD results in muscle weakness, loss of ambulation, and death at an early age. Metabolomics studies in mdx mice, the most used model for DMD, reveal changes in metabolites associated with muscle degeneration and aging. In DMD, the tongue muscles exhibit unique behavior, initially showing partial protection against inflammation but later experiencing fibrosis and loss of muscle fibers. Certain metabolites and proteins, like TNF-α and TGF-β, are potential biomarkers for dystrophic muscle characterization.</p><p><strong>Methods: </strong>To investigate disease progression and aging, we utilized young (1 month old) and old (21-25 months old) mdx and wild-type tongue muscles. Metabolite changes were analyzed using 1H nuclear magnetic resonance, while TNF-α and TGF-β were assessed using Western blotting to examine inflammation and fibrosis. Morphometric analysis was conducted to assess the extent of myofiber damage between groups.</p><p><strong>Results: </strong>The histological analysis of the mid-belly tongue showed no differences between groups. No differences were found between the concentrations of metabolites from wild-type or mdx whole tongues of the same age. The metabolites alanine, methionine, and 3-methylhistidine were higher, and taurine and glycerol were lower in young tongues in both wild type and mdx (p < 0.001). The metabolites glycine (p < 0.001) and glutamic acid (p = 0.0018) were different only in the mdx groups, being higher in young mdx mice. Acetic acid, phosphocreatine, isoleucine, succinic acid, creatine, and the proteins TNF-α and TGF-β had no difference in the analysis between groups (p > 0.05).</p><p><strong>Conclusions: </strong>Surprisingly, histological, metabolite, and protein analysis reveal that the tongue of old mdx remains partially spared from the severe myonecrosis observed in other muscles. The metabolites alanine, methionine, 3-methylhistidine, taurine, and glycerol may be effective for specific assessments, although their use for disease progression monitoring should be cautious due to age-related changes in the tongue muscle. Acetic acid, phosphocreatine, isoleucine, succinate, creatine, TNF-α, and TGF-β do not vary with aging and remain constant in spared muscles, suggesting their potential as specific biomarkers for DMD progression independent of aging.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500803/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10264045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MuscleJ2: a rebuilding of MuscleJ with new features for high-content analysis of skeletal muscle immunofluorescence slides. MuscleJ2:重建具有骨骼肌免疫荧光玻片高含量分析新功能的MuscleJ。
IF 4.9 2区 医学 Q1 Medicine Pub Date : 2023-08-23 DOI: 10.1186/s13395-023-00323-1
Anne Danckaert, Aurélie Trignol, Guillaume Le Loher, Sébastien Loubens, Bart Staels, Hélène Duez, Spencer L Shorte, Alicia Mayeuf-Louchart

Histological analysis of skeletal muscle is of major interest for understanding its behavior in different pathophysiological conditions, such as the response to different environments or myopathies. In this context, many software programs have been developed to perform automated high-content analysis. We created MuscleJ, a macro that runs in ImageJ/Fiji on batches of images. MuscleJ is a multianalysis tool that initially allows the analysis of muscle fibers, capillaries, and satellite cells. Since its creation, it has been used in many studies, and we have further developed the software and added new features, which are presented in this article. We converted the macro into a Java-language plugin with an improved user interface. MuscleJ2 provides quantitative analysis of fibrosis, vascularization, and cell phenotype in whole muscle sections. It also performs analysis of the peri-myonuclei, the individual capillaries, and any staining in the muscle fibers, providing accurate quantification within regional sublocalizations of the fiber. A multicartography option allows users to visualize multiple results simultaneously. The plugin is freely available to the muscle science community.

骨骼肌的组织学分析是了解其在不同病理生理条件下的行为,如对不同环境或肌病的反应的主要兴趣。在这种情况下,已经开发了许多软件程序来执行自动化的高含量分析。我们创建了MuscleJ,这是一个在ImageJ/Fiji中运行批量图像的宏。MuscleJ是一个多分析工具,最初允许分析肌肉纤维,毛细血管和卫星细胞。自创建以来,它已被用于许多研究,我们进一步开发了该软件并添加了新的功能,这些功能将在本文中介绍。我们将宏转换为具有改进的用户界面的java语言插件。MuscleJ2在整个肌肉切片中提供纤维化、血管化和细胞表型的定量分析。它还可以对肌核周围、单个毛细血管和肌纤维中的任何染色进行分析,在纤维的区域亚定位内提供准确的定量。多画图选项允许用户同时可视化多个结果。这个插件是免费提供给肌肉科学社区。
{"title":"MuscleJ2: a rebuilding of MuscleJ with new features for high-content analysis of skeletal muscle immunofluorescence slides.","authors":"Anne Danckaert, Aurélie Trignol, Guillaume Le Loher, Sébastien Loubens, Bart Staels, Hélène Duez, Spencer L Shorte, Alicia Mayeuf-Louchart","doi":"10.1186/s13395-023-00323-1","DOIUrl":"10.1186/s13395-023-00323-1","url":null,"abstract":"<p><p>Histological analysis of skeletal muscle is of major interest for understanding its behavior in different pathophysiological conditions, such as the response to different environments or myopathies. In this context, many software programs have been developed to perform automated high-content analysis. We created MuscleJ, a macro that runs in ImageJ/Fiji on batches of images. MuscleJ is a multianalysis tool that initially allows the analysis of muscle fibers, capillaries, and satellite cells. Since its creation, it has been used in many studies, and we have further developed the software and added new features, which are presented in this article. We converted the macro into a Java-language plugin with an improved user interface. MuscleJ2 provides quantitative analysis of fibrosis, vascularization, and cell phenotype in whole muscle sections. It also performs analysis of the peri-myonuclei, the individual capillaries, and any staining in the muscle fibers, providing accurate quantification within regional sublocalizations of the fiber. A multicartography option allows users to visualize multiple results simultaneously. The plugin is freely available to the muscle science community.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10150890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Skeletal Muscle
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1