Pub Date : 2023-01-19DOI: 10.1186/s13395-022-00312-w
Jair Marques, Engy Shokry, Olaf Uhl, Lisa Baber, Fabian Hofmeister, Stefanie Jarmusch, Martin Bidlingmaier, Uta Ferrari, Berthold Koletzko, Michael Drey
Background: Sarcopenia is one of the most predominant musculoskeletal diseases of the elderly, defined as age-related progressive and generalized loss of muscle mass with a simultaneous reduction in muscle strength and/or function. Using metabolomics, we aimed to examine the association between sarcopenia and the plasma metabolic profile of sarcopenic patients, measured using a targeted HPLC-MS/MS platform.
Methods: Plasma samples from 22 (17 men) hip fracture patients undergoing surgery (8 sarcopenic, age 81.4+6.3, and 14 non-sarcopenic, age 78.4±8.1) were analyzed. T test, fold change, orthogonal partial least squares discriminant analysis, and sparse partial least squares discriminant analysis were used for mining significant features. Metabolite set enrichment analysis and mediation analysis by PLSSEM were thereafter performed.
Results: Using a univariate analysis for sarcopenia z score, the amino acid citrulline was the only metabolite with a significant group difference after FDR correction. Positive trends were observed between the sarcopenia z score and very long-chain fatty acids as well as dicarboxylic acid carnitines. Multivariate analysis showed citrulline, non-esterified fatty acid 26:2, and decanedioyl carnitine as the top three metabolites according to the variable importance in projection using oPLS-DA and loadings weight by sPLS-DA. Metabolite set enrichment analysis showed carnitine palmitoyltransferase deficiency (II) as the highest condition related to the metabolome.
Conclusions: We observed a difference in the plasma metabolic profile in association with different measures of sarcopenia, which identifies very long-chain fatty acids, Carn.DC and citrulline as key variables associated with the disease severity. These findings point to a potential link between sarcopenia and mitochondrial dysfunction and portraits a number of possible biochemical pathways which might be involved in the disease pathogenesis.
{"title":"Sarcopenia: investigation of metabolic changes and its associated mechanisms.","authors":"Jair Marques, Engy Shokry, Olaf Uhl, Lisa Baber, Fabian Hofmeister, Stefanie Jarmusch, Martin Bidlingmaier, Uta Ferrari, Berthold Koletzko, Michael Drey","doi":"10.1186/s13395-022-00312-w","DOIUrl":"https://doi.org/10.1186/s13395-022-00312-w","url":null,"abstract":"<p><strong>Background: </strong>Sarcopenia is one of the most predominant musculoskeletal diseases of the elderly, defined as age-related progressive and generalized loss of muscle mass with a simultaneous reduction in muscle strength and/or function. Using metabolomics, we aimed to examine the association between sarcopenia and the plasma metabolic profile of sarcopenic patients, measured using a targeted HPLC-MS/MS platform.</p><p><strong>Methods: </strong>Plasma samples from 22 (17 men) hip fracture patients undergoing surgery (8 sarcopenic, age 81.4+6.3, and 14 non-sarcopenic, age 78.4±8.1) were analyzed. T test, fold change, orthogonal partial least squares discriminant analysis, and sparse partial least squares discriminant analysis were used for mining significant features. Metabolite set enrichment analysis and mediation analysis by PLSSEM were thereafter performed.</p><p><strong>Results: </strong>Using a univariate analysis for sarcopenia z score, the amino acid citrulline was the only metabolite with a significant group difference after FDR correction. Positive trends were observed between the sarcopenia z score and very long-chain fatty acids as well as dicarboxylic acid carnitines. Multivariate analysis showed citrulline, non-esterified fatty acid 26:2, and decanedioyl carnitine as the top three metabolites according to the variable importance in projection using oPLS-DA and loadings weight by sPLS-DA. Metabolite set enrichment analysis showed carnitine palmitoyltransferase deficiency (II) as the highest condition related to the metabolome.</p><p><strong>Conclusions: </strong>We observed a difference in the plasma metabolic profile in association with different measures of sarcopenia, which identifies very long-chain fatty acids, Carn.DC and citrulline as key variables associated with the disease severity. These findings point to a potential link between sarcopenia and mitochondrial dysfunction and portraits a number of possible biochemical pathways which might be involved in the disease pathogenesis.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"13 1","pages":"2"},"PeriodicalIF":4.9,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850598/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10698115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-06DOI: 10.1186/s13395-022-00311-x
Jackie L McCourt, Kristen M Stearns-Reider, Hafsa Mamsa, Pranav Kannan, Mohammad Hossein Afsharinia, Cynthia Shu, Elizabeth M Gibbs, Kara M Shin, Yerbol Z Kurmangaliyev, Lauren R Schmitt, Kirk C Hansen, Rachelle H Crosbie
Background: The dystrophin-glycoprotein complex (DGC) is a critical adhesion complex of the muscle cell membrane, providing a mechanical link between the extracellular matrix (ECM) and the cortical cytoskeleton that stabilizes the sarcolemma during repeated muscle contractions. One integral component of the DGC is the transmembrane protein, sarcospan (SSPN). Overexpression of SSPN in the skeletal muscle of mdx mice (murine model of DMD) restores muscle fiber attachment to the ECM in part through an associated increase in utrophin and integrin adhesion complexes at the cell membrane, protecting the muscle from contraction-induced injury. In this study, we utilized transcriptomic and ECM protein-optimized proteomics data sets from wild-type, mdx, and mdx transgenic (mdxTG) skeletal muscle tissues to identify pathways and proteins driving the compensatory action of SSPN overexpression.
Methods: The tibialis anterior and quadriceps muscles were isolated from wild-type, mdx, and mdxTG mice and subjected to bulk RNA-Seq and global proteomics analysis using methods to enhance capture of ECM proteins. Data sets were further analyzed through the ingenuity pathway analysis (QIAGEN) and integrative gene set enrichment to identify candidate networks, signaling pathways, and upstream regulators.
Results: Through our multi-omics approach, we identified 3 classes of differentially expressed genes and proteins in mdxTG muscle, including those that were (1) unrestored (significantly different from wild type, but not from mdx), (2) restored (significantly different from mdx, but not from wild type), and (3) compensatory (significantly different from both wild type and mdx). We identified signaling pathways that may contribute to the rescue phenotype, most notably cytoskeleton and ECM organization pathways. ECM-optimized proteomics revealed an increased abundance of collagens II, V, and XI, along with β-spectrin in mdxTG samples. Using ingenuity pathway analysis, we identified upstream regulators that are computationally predicted to drive compensatory changes, revealing a possible mechanism of SSPN rescue through a rewiring of cell-ECM bidirectional communication. We found that SSPN overexpression results in upregulation of key signaling molecules associated with regulation of cytoskeleton organization and mechanotransduction, including Yap1, Sox9, Rho, RAC, and Wnt.
Conclusions: Our findings indicate that SSPN overexpression rescues dystrophin deficiency partially through mechanotransduction signaling cascades mediated through components of the ECM and the cortical cytoskeleton.
{"title":"Multi-omics analysis of sarcospan overexpression in mdx skeletal muscle reveals compensatory remodeling of cytoskeleton-matrix interactions that promote mechanotransduction pathways.","authors":"Jackie L McCourt, Kristen M Stearns-Reider, Hafsa Mamsa, Pranav Kannan, Mohammad Hossein Afsharinia, Cynthia Shu, Elizabeth M Gibbs, Kara M Shin, Yerbol Z Kurmangaliyev, Lauren R Schmitt, Kirk C Hansen, Rachelle H Crosbie","doi":"10.1186/s13395-022-00311-x","DOIUrl":"10.1186/s13395-022-00311-x","url":null,"abstract":"<p><strong>Background: </strong>The dystrophin-glycoprotein complex (DGC) is a critical adhesion complex of the muscle cell membrane, providing a mechanical link between the extracellular matrix (ECM) and the cortical cytoskeleton that stabilizes the sarcolemma during repeated muscle contractions. One integral component of the DGC is the transmembrane protein, sarcospan (SSPN). Overexpression of SSPN in the skeletal muscle of mdx mice (murine model of DMD) restores muscle fiber attachment to the ECM in part through an associated increase in utrophin and integrin adhesion complexes at the cell membrane, protecting the muscle from contraction-induced injury. In this study, we utilized transcriptomic and ECM protein-optimized proteomics data sets from wild-type, mdx, and mdx transgenic (mdx<sup>TG</sup>) skeletal muscle tissues to identify pathways and proteins driving the compensatory action of SSPN overexpression.</p><p><strong>Methods: </strong>The tibialis anterior and quadriceps muscles were isolated from wild-type, mdx, and mdx<sup>TG</sup> mice and subjected to bulk RNA-Seq and global proteomics analysis using methods to enhance capture of ECM proteins. Data sets were further analyzed through the ingenuity pathway analysis (QIAGEN) and integrative gene set enrichment to identify candidate networks, signaling pathways, and upstream regulators.</p><p><strong>Results: </strong>Through our multi-omics approach, we identified 3 classes of differentially expressed genes and proteins in mdx<sup>TG</sup> muscle, including those that were (1) unrestored (significantly different from wild type, but not from mdx), (2) restored (significantly different from mdx, but not from wild type), and (3) compensatory (significantly different from both wild type and mdx). We identified signaling pathways that may contribute to the rescue phenotype, most notably cytoskeleton and ECM organization pathways. ECM-optimized proteomics revealed an increased abundance of collagens II, V, and XI, along with β-spectrin in mdx<sup>TG</sup> samples. Using ingenuity pathway analysis, we identified upstream regulators that are computationally predicted to drive compensatory changes, revealing a possible mechanism of SSPN rescue through a rewiring of cell-ECM bidirectional communication. We found that SSPN overexpression results in upregulation of key signaling molecules associated with regulation of cytoskeleton organization and mechanotransduction, including Yap1, Sox9, Rho, RAC, and Wnt.</p><p><strong>Conclusions: </strong>Our findings indicate that SSPN overexpression rescues dystrophin deficiency partially through mechanotransduction signaling cascades mediated through components of the ECM and the cortical cytoskeleton.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"13 1","pages":"1"},"PeriodicalIF":5.3,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10134465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-21DOI: 10.1186/s13395-022-00309-5
Dana J Murdock, Ning Wu, Joseph S Grimsby, Roberto A Calle, Stephen Donahue, David J Glass, Mark W Sleeman, Robert J Sanchez
Background: Sarcopenia is defined as age-related low muscle mass and function, and can also describe the loss of muscle mass in certain medical conditions, such as sarcopenic obesity. Sarcopenic obesity describes loss of muscle and function in obese individuals; however, as sarcopenia is an age-related condition and obesity can occur in any age group, a more accurate term is obesity with low lean muscle mass (OLLMM). Given limited data on OLLMM (particularly in those aged < 65 years), the purpose of this study was to estimate the prevalence of OLLMM in adults aged ≥ 20 years in the USA.
Methods: Data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 and 1999-2006 were used. OLLMM was defined as an appendicular lean mass, adjusted for body mass index (BMI), cut-off point < 0.789 for males and < 0.512 for females, measured by dual-energy X-ray absorptiometry (DXA). DXA was only measured in individuals 20-59 years old in NHANES 2017-2018; we therefore utilized logistic regression models to predict OLLMM from NHANES 1999-2006 for those aged ≥ 60 years. The prevalence of OLLMM was estimated overall, and by sex, age, race/ethnicity, and clinical subgroup (high BMI, prediabetes, type 2 diabetes mellitus [T2DM], non-alcoholic fatty liver disease [NAFLD] with fibrosis, or post-bariatric surgery). Prevalence estimates were extrapolated to the USA population using NHANES sampling weights.
Results: We estimated that, during 2017-2018, 28.7 million or 15.9% of the USA population had OLLMM. The prevalence of OLLMM was greater in older individuals (8.1%, aged 20-59 years vs 28.3%, aged ≥ 60 years), highest (66.6%) in Mexican-American females aged ≥ 60 years, and lowest (2.6%) in non-Hispanic Black males aged 20-59 years. There was a higher prevalence of OLLMM in adults with prediabetes (19.7%), T2DM (34.5%), NAFLD with fibrosis (25.4%), or post-bariatric surgery (21.8%), compared with those without each condition.
Conclusions: Overall, the burden of OLLMM in the USA is substantial, affecting almost 30 million adults. The prevalence of OLLMM increased with age, and among those with prediabetes, T2DM, NAFLD with fibrosis, or post-bariatric surgery. A unified definition of OLLMM will aid diagnosis and treatment strategies.
{"title":"The prevalence of low muscle mass associated with obesity in the USA.","authors":"Dana J Murdock, Ning Wu, Joseph S Grimsby, Roberto A Calle, Stephen Donahue, David J Glass, Mark W Sleeman, Robert J Sanchez","doi":"10.1186/s13395-022-00309-5","DOIUrl":"https://doi.org/10.1186/s13395-022-00309-5","url":null,"abstract":"<p><strong>Background: </strong>Sarcopenia is defined as age-related low muscle mass and function, and can also describe the loss of muscle mass in certain medical conditions, such as sarcopenic obesity. Sarcopenic obesity describes loss of muscle and function in obese individuals; however, as sarcopenia is an age-related condition and obesity can occur in any age group, a more accurate term is obesity with low lean muscle mass (OLLMM). Given limited data on OLLMM (particularly in those aged < 65 years), the purpose of this study was to estimate the prevalence of OLLMM in adults aged ≥ 20 years in the USA.</p><p><strong>Methods: </strong>Data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 and 1999-2006 were used. OLLMM was defined as an appendicular lean mass, adjusted for body mass index (BMI), cut-off point < 0.789 for males and < 0.512 for females, measured by dual-energy X-ray absorptiometry (DXA). DXA was only measured in individuals 20-59 years old in NHANES 2017-2018; we therefore utilized logistic regression models to predict OLLMM from NHANES 1999-2006 for those aged ≥ 60 years. The prevalence of OLLMM was estimated overall, and by sex, age, race/ethnicity, and clinical subgroup (high BMI, prediabetes, type 2 diabetes mellitus [T2DM], non-alcoholic fatty liver disease [NAFLD] with fibrosis, or post-bariatric surgery). Prevalence estimates were extrapolated to the USA population using NHANES sampling weights.</p><p><strong>Results: </strong>We estimated that, during 2017-2018, 28.7 million or 15.9% of the USA population had OLLMM. The prevalence of OLLMM was greater in older individuals (8.1%, aged 20-59 years vs 28.3%, aged ≥ 60 years), highest (66.6%) in Mexican-American females aged ≥ 60 years, and lowest (2.6%) in non-Hispanic Black males aged 20-59 years. There was a higher prevalence of OLLMM in adults with prediabetes (19.7%), T2DM (34.5%), NAFLD with fibrosis (25.4%), or post-bariatric surgery (21.8%), compared with those without each condition.</p><p><strong>Conclusions: </strong>Overall, the burden of OLLMM in the USA is substantial, affecting almost 30 million adults. The prevalence of OLLMM increased with age, and among those with prediabetes, T2DM, NAFLD with fibrosis, or post-bariatric surgery. A unified definition of OLLMM will aid diagnosis and treatment strategies.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"12 1","pages":"26"},"PeriodicalIF":4.9,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769063/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10579759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-29DOI: 10.1186/s13395-022-00308-6
Zoe White, Zeren Sun, Elodie Sauge, Dan Cox, Graham Donen, Dmitri Pechkovsky, Volker Straub, Gordon A Francis, Pascal Bernatchez
Limb-girdle muscular dystrophy (MD) type 2B (LGMD2B) and Duchenne MD (DMD) are caused by mutations to the Dysferlin and Dystrophin genes, respectively. We have recently demonstrated in typically mild dysferlin- and dystrophin-deficient mouse models that increased plasma cholesterol levels severely exacerbate muscle wasting, and that DMD patients display primary dyslipidemia characterized by elevated plasma cholesterol and triglycerides. Herein, we investigate lipoprotein abnormalities in LGMD2B and if statin therapy protects dysferlin-deficient mice (Dysf) from muscle damage. Herein, lipoproteins and liver enzymes from LGMD2B patients and dysferlin-null (Dysf) mice were analyzed. Simvastatin, which exhibits anti-muscle wasting effects in mouse models of DMD and corrects aberrant expression of key markers of lipid metabolism and endogenous cholesterol synthesis, was tested in Dysf mice. Muscle damage and fibrosis were assessed by immunohistochemistry and cholesterol signalling pathways via Western blot. LGMD2B patients show reduced serum high-density lipoprotein cholesterol (HDL-C) levels compared to healthy controls and exhibit a greater prevalence of abnormal total cholesterol (CHOL)/HDL-C ratios despite an absence of liver dysfunction. While Dysf mice presented with reduced CHOL and associated HDL-C and LDL-C-associated fractions, simvastatin treatment did not prevent muscle wasting in quadriceps and triceps muscle groups or correct aberrant low-density lipoprotein receptor (LDLR) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) protein expression. LGMD2B patients present with reduced serum concentrations of HDL-C, a major metabolic comorbidity, and as a result, statin therapy is unlikely to prevent muscle wasting in this population. We propose that like DMD, LGMD2B should be considered as a new type of genetic dyslipidemia.
{"title":"Limb-girdle muscular dystrophy type 2B causes HDL-C abnormalities in patients and statin-resistant muscle wasting in dysferlin-deficient mice.","authors":"Zoe White, Zeren Sun, Elodie Sauge, Dan Cox, Graham Donen, Dmitri Pechkovsky, Volker Straub, Gordon A Francis, Pascal Bernatchez","doi":"10.1186/s13395-022-00308-6","DOIUrl":"https://doi.org/10.1186/s13395-022-00308-6","url":null,"abstract":"<p><p>Limb-girdle muscular dystrophy (MD) type 2B (LGMD2B) and Duchenne MD (DMD) are caused by mutations to the Dysferlin and Dystrophin genes, respectively. We have recently demonstrated in typically mild dysferlin- and dystrophin-deficient mouse models that increased plasma cholesterol levels severely exacerbate muscle wasting, and that DMD patients display primary dyslipidemia characterized by elevated plasma cholesterol and triglycerides. Herein, we investigate lipoprotein abnormalities in LGMD2B and if statin therapy protects dysferlin-deficient mice (Dysf) from muscle damage. Herein, lipoproteins and liver enzymes from LGMD2B patients and dysferlin-null (Dysf) mice were analyzed. Simvastatin, which exhibits anti-muscle wasting effects in mouse models of DMD and corrects aberrant expression of key markers of lipid metabolism and endogenous cholesterol synthesis, was tested in Dysf mice. Muscle damage and fibrosis were assessed by immunohistochemistry and cholesterol signalling pathways via Western blot. LGMD2B patients show reduced serum high-density lipoprotein cholesterol (HDL-C) levels compared to healthy controls and exhibit a greater prevalence of abnormal total cholesterol (CHOL)/HDL-C ratios despite an absence of liver dysfunction. While Dysf mice presented with reduced CHOL and associated HDL-C and LDL-C-associated fractions, simvastatin treatment did not prevent muscle wasting in quadriceps and triceps muscle groups or correct aberrant low-density lipoprotein receptor (LDLR) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) protein expression. LGMD2B patients present with reduced serum concentrations of HDL-C, a major metabolic comorbidity, and as a result, statin therapy is unlikely to prevent muscle wasting in this population. We propose that like DMD, LGMD2B should be considered as a new type of genetic dyslipidemia.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"12 1","pages":"25"},"PeriodicalIF":4.9,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10526261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-15DOI: 10.1186/s13395-022-00303-x
A Rasim Barutcu, Gabriel Elizalde, Alfredo E Gonzalez, Kartik Soni, John L Rinn, Amy J Wagers, Albert E Almada
Background: The AP-1 transcription factor, FBJ osteosarcoma oncogene (FOS), is induced in adult muscle satellite cells (SCs) within hours following muscle damage and is required for effective stem cell activation and muscle repair. However, why FOS is rapidly downregulated before SCs enter cell cycle as progenitor cells (i.e., transiently expressed) remains unclear. Further, whether boosting FOS levels in the proliferating progeny of SCs can enhance their myogenic properties needs further evaluation.
Methods: We established an inducible, FOS expression system to evaluate the impact of persistent FOS activity in muscle progenitor cells ex vivo. We performed various assays to measure cellular proliferation and differentiation, as well as uncover changes in RNA levels and three-dimensional (3D) chromatin interactions.
Results: Persistent FOS activity in primary muscle progenitor cells severely antagonizes their ability to differentiate and form myotubes within the first 2 weeks in culture. RNA-seq analysis revealed that ectopic FOS activity in muscle progenitor cells suppressed a global pro-myogenic transcriptional program, while activating a stress-induced, mitogen-activated protein kinase (MAPK) transcriptional signature. Additionally, we observed various FOS-dependent, chromosomal re-organization events in A/B compartments, topologically associated domains (TADs), and genomic loops near FOS-regulated genes.
Conclusions: Our results suggest that elevated FOS activity in recently activated muscle progenitor cells perturbs cellular differentiation by altering the 3D chromosome organization near critical pro-myogenic genes. This work highlights the crucial importance of tightly controlling FOS expression in the muscle lineage and suggests that in states of chronic stress or disease, persistent FOS activity in muscle precursor cells may disrupt the muscle-forming process.
{"title":"Prolonged FOS activity disrupts a global myogenic transcriptional program by altering 3D chromatin architecture in primary muscle progenitor cells.","authors":"A Rasim Barutcu, Gabriel Elizalde, Alfredo E Gonzalez, Kartik Soni, John L Rinn, Amy J Wagers, Albert E Almada","doi":"10.1186/s13395-022-00303-x","DOIUrl":"10.1186/s13395-022-00303-x","url":null,"abstract":"<p><strong>Background: </strong>The AP-1 transcription factor, FBJ osteosarcoma oncogene (FOS), is induced in adult muscle satellite cells (SCs) within hours following muscle damage and is required for effective stem cell activation and muscle repair. However, why FOS is rapidly downregulated before SCs enter cell cycle as progenitor cells (i.e., transiently expressed) remains unclear. Further, whether boosting FOS levels in the proliferating progeny of SCs can enhance their myogenic properties needs further evaluation.</p><p><strong>Methods: </strong>We established an inducible, FOS expression system to evaluate the impact of persistent FOS activity in muscle progenitor cells ex vivo. We performed various assays to measure cellular proliferation and differentiation, as well as uncover changes in RNA levels and three-dimensional (3D) chromatin interactions.</p><p><strong>Results: </strong>Persistent FOS activity in primary muscle progenitor cells severely antagonizes their ability to differentiate and form myotubes within the first 2 weeks in culture. RNA-seq analysis revealed that ectopic FOS activity in muscle progenitor cells suppressed a global pro-myogenic transcriptional program, while activating a stress-induced, mitogen-activated protein kinase (MAPK) transcriptional signature. Additionally, we observed various FOS-dependent, chromosomal re-organization events in A/B compartments, topologically associated domains (TADs), and genomic loops near FOS-regulated genes.</p><p><strong>Conclusions: </strong>Our results suggest that elevated FOS activity in recently activated muscle progenitor cells perturbs cellular differentiation by altering the 3D chromosome organization near critical pro-myogenic genes. This work highlights the crucial importance of tightly controlling FOS expression in the muscle lineage and suggests that in states of chronic stress or disease, persistent FOS activity in muscle precursor cells may disrupt the muscle-forming process.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"12 1","pages":"20"},"PeriodicalIF":4.9,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9838031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-11DOI: 10.1186/s13395-022-00296-7
Matthew Triolo, Ashley N. Oliveira, Rita Kumari, D. Hood
{"title":"The influence of age, sex, and exercise on autophagy, mitophagy, and lysosome biogenesis in skeletal muscle","authors":"Matthew Triolo, Ashley N. Oliveira, Rita Kumari, D. Hood","doi":"10.1186/s13395-022-00296-7","DOIUrl":"https://doi.org/10.1186/s13395-022-00296-7","url":null,"abstract":"","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"43 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65847501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The analysis of in vitro cultures of human adult muscle stem cells obtained from biopsies delineates the potential of skeletal muscles and may help to understand altered muscle morphology in patients. In these analyses, the fusion index is a commonly used quantitative metric to assess the myogenic potency of the muscle stem cells. Since the fusion index only partly describes myogenic potency, we developed the Myotube Analyzer tool, which combines the definition of the fusion index with extra features of myonuclei and myotubes obtained from satellite cell cultures. The software contains image adjustment and mask editing functions for preprocessing and semi-automatic segmentation, while other functions can be used to determine the features of nuclei and myotubes. The fusion index and a set of five novel parameters were tested for reliability and validity in a comparison between satellite cell cultures from children with cerebral palsy and typically developing children. These novel parameters quantified extra nucleus and myotube properties and can be used to describe nucleus clustering and myotube shape. Two analyzers who were trained in cell culture defined all parameters using the Myotube Analyzer app. Out of the six parameters, five had good reliability reflected by good intra-class correlation coefficients (> 0.75). Children with cerebral palsy were significantly different from the typically developing children (p < 0.05) for five parameters, and for three of the six parameters, these differences exceeded the minimal detectable differences. The Myotube Analyzer can be used for the analysis of fixed differentiated myoblast cultures with nuclear and MyHC staining. The app can calculate the fusion index, an already existing parameter, but also provides multiple new parameters to comprehensively describe myogenic potential in its output. The raw data used to determine these parameters are also available in the output. The parameters calculated by the tool can be used to detect differences between cultures from children with cerebral palsy and typically developing children. Since the program is open source, users can customize it to fit their own analysis requirements.
{"title":"The Myotube Analyzer: how to assess myogenic features in muscle stem cells","authors":"Noë, Simon, Corvelyn, Marlies, Willems, Sarah, Costamagna, Domiziana, Aerts, Jean-Marie, Van Campenhout, Anja, Desloovere, Kaat","doi":"10.1186/s13395-022-00297-6","DOIUrl":"https://doi.org/10.1186/s13395-022-00297-6","url":null,"abstract":"The analysis of in vitro cultures of human adult muscle stem cells obtained from biopsies delineates the potential of skeletal muscles and may help to understand altered muscle morphology in patients. In these analyses, the fusion index is a commonly used quantitative metric to assess the myogenic potency of the muscle stem cells. Since the fusion index only partly describes myogenic potency, we developed the Myotube Analyzer tool, which combines the definition of the fusion index with extra features of myonuclei and myotubes obtained from satellite cell cultures. The software contains image adjustment and mask editing functions for preprocessing and semi-automatic segmentation, while other functions can be used to determine the features of nuclei and myotubes. The fusion index and a set of five novel parameters were tested for reliability and validity in a comparison between satellite cell cultures from children with cerebral palsy and typically developing children. These novel parameters quantified extra nucleus and myotube properties and can be used to describe nucleus clustering and myotube shape. Two analyzers who were trained in cell culture defined all parameters using the Myotube Analyzer app. Out of the six parameters, five had good reliability reflected by good intra-class correlation coefficients (> 0.75). Children with cerebral palsy were significantly different from the typically developing children (p < 0.05) for five parameters, and for three of the six parameters, these differences exceeded the minimal detectable differences. The Myotube Analyzer can be used for the analysis of fixed differentiated myoblast cultures with nuclear and MyHC staining. The app can calculate the fusion index, an already existing parameter, but also provides multiple new parameters to comprehensively describe myogenic potential in its output. The raw data used to determine these parameters are also available in the output. The parameters calculated by the tool can be used to detect differences between cultures from children with cerebral palsy and typically developing children. Since the program is open source, users can customize it to fit their own analysis requirements.","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"162 5","pages":""},"PeriodicalIF":4.9,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-31DOI: 10.1186/s13395-022-00294-9
Mason Henrich, Pin Ha, Yuanyuan Wang, K. Ting, L. Stodieck, C. Soo, John S. Adams, R. Chun
{"title":"Alternative splicing diversifies the skeletal muscle transcriptome during prolonged spaceflight","authors":"Mason Henrich, Pin Ha, Yuanyuan Wang, K. Ting, L. Stodieck, C. Soo, John S. Adams, R. Chun","doi":"10.1186/s13395-022-00294-9","DOIUrl":"https://doi.org/10.1186/s13395-022-00294-9","url":null,"abstract":"","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":" ","pages":""},"PeriodicalIF":4.9,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44565760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Skeletal muscle wasting is a clinically remarkable phenotypic feature of pulmonary arterial hypertension (PAH) that increases the risk of mortality. Growth differentiation factor 11 (GDF11), centrally involved in PAH pathogenesis, has an inhibitory effect on skeletal muscle growth in other conditions. However, whether GDF11 is involved in the pathogenesis of skeletal muscle wasting in PAH remains unknown. We showed that serum GDF11 levels in patients were increased following PAH. Skeletal muscle wasting in the MCT-treated PAH model is accompanied by an increase in circulating GDF11 levels and local catabolic markers (Fbx32, Trim63, Foxo1, and protease activity). In vitro GDF11 activated phosphorylation of STAT3. Antagonizing STAT3, with Stattic, in vitro and in vivo, could partially reverse proteolytic pathways including STAT3/socs3 and iNOS/NO in GDF11-meditated muscle wasting. Our findings demonstrate that GDF11 contributes to muscle wasting and the inhibition of its downstream molecule STAT3 shows promise as a therapeutic intervention by which muscle atrophy may be directly prevented in PAH.
{"title":"Growth differentiation factor 11 induces skeletal muscle atrophy via a STAT3-dependent mechanism in pulmonary arterial hypertension","authors":"Xiang, Guiling, Ying, Kelu, Jiang, Pan, Jia, Mengping, Sun, Yipeng, Li, Shanqun, Wu, Xiaodan, Hao, Shengyu","doi":"10.1186/s13395-022-00292-x","DOIUrl":"https://doi.org/10.1186/s13395-022-00292-x","url":null,"abstract":"Skeletal muscle wasting is a clinically remarkable phenotypic feature of pulmonary arterial hypertension (PAH) that increases the risk of mortality. Growth differentiation factor 11 (GDF11), centrally involved in PAH pathogenesis, has an inhibitory effect on skeletal muscle growth in other conditions. However, whether GDF11 is involved in the pathogenesis of skeletal muscle wasting in PAH remains unknown. We showed that serum GDF11 levels in patients were increased following PAH. Skeletal muscle wasting in the MCT-treated PAH model is accompanied by an increase in circulating GDF11 levels and local catabolic markers (Fbx32, Trim63, Foxo1, and protease activity). In vitro GDF11 activated phosphorylation of STAT3. Antagonizing STAT3, with Stattic, in vitro and in vivo, could partially reverse proteolytic pathways including STAT3/socs3 and iNOS/NO in GDF11-meditated muscle wasting. Our findings demonstrate that GDF11 contributes to muscle wasting and the inhibition of its downstream molecule STAT3 shows promise as a therapeutic intervention by which muscle atrophy may be directly prevented in PAH.","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"159 2","pages":""},"PeriodicalIF":4.9,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Skeletal muscle stem cells have a central role in muscle growth and regeneration. They reside as quiescent cells in resting muscle and in response to damage they transiently amplify and fuse to produce new myofibers or self-renew to replenish the stem cell pool. A signaling pathway that is critical in the regulation of all these processes is Notch. Despite the major differences in the anatomical and cellular niches between the embryonic myotome, the adult sarcolemma/basement-membrane interphase, and the regenerating muscle, Notch signaling has evolved to support the context-specific requirements of the muscle cells. In this review, we discuss the diverse ways by which Notch signaling factors and other modifying partners are operating during the lifetime of muscle stem cells to establish an adaptive dynamic network.
{"title":"The Notch signaling network in muscle stem cells during development, homeostasis, and disease","authors":"Gioftsidi, Stamatia, Relaix, Frederic, Mourikis, Philippos","doi":"10.1186/s13395-022-00293-w","DOIUrl":"https://doi.org/10.1186/s13395-022-00293-w","url":null,"abstract":"Skeletal muscle stem cells have a central role in muscle growth and regeneration. They reside as quiescent cells in resting muscle and in response to damage they transiently amplify and fuse to produce new myofibers or self-renew to replenish the stem cell pool. A signaling pathway that is critical in the regulation of all these processes is Notch. Despite the major differences in the anatomical and cellular niches between the embryonic myotome, the adult sarcolemma/basement-membrane interphase, and the regenerating muscle, Notch signaling has evolved to support the context-specific requirements of the muscle cells. In this review, we discuss the diverse ways by which Notch signaling factors and other modifying partners are operating during the lifetime of muscle stem cells to establish an adaptive dynamic network.","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"159 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}