首页 > 最新文献

Skeletal Muscle最新文献

英文 中文
Sarcopenia: investigation of metabolic changes and its associated mechanisms. 肌肉减少症:代谢变化及其相关机制的研究。
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2023-01-19 DOI: 10.1186/s13395-022-00312-w
Jair Marques, Engy Shokry, Olaf Uhl, Lisa Baber, Fabian Hofmeister, Stefanie Jarmusch, Martin Bidlingmaier, Uta Ferrari, Berthold Koletzko, Michael Drey

Background: Sarcopenia is one of the most predominant musculoskeletal diseases of the elderly, defined as age-related progressive and generalized loss of muscle mass with a simultaneous reduction in muscle strength and/or function. Using metabolomics, we aimed to examine the association between sarcopenia and the plasma metabolic profile of sarcopenic patients, measured using a targeted HPLC-MS/MS platform.

Methods: Plasma samples from 22 (17 men) hip fracture patients undergoing surgery (8 sarcopenic, age 81.4+6.3, and 14 non-sarcopenic, age 78.4±8.1) were analyzed. T test, fold change, orthogonal partial least squares discriminant analysis, and sparse partial least squares discriminant analysis were used for mining significant features. Metabolite set enrichment analysis and mediation analysis by PLSSEM were thereafter performed.

Results: Using a univariate analysis for sarcopenia z score, the amino acid citrulline was the only metabolite with a significant group difference after FDR correction. Positive trends were observed between the sarcopenia z score and very long-chain fatty acids as well as dicarboxylic acid carnitines. Multivariate analysis showed citrulline, non-esterified fatty acid 26:2, and decanedioyl carnitine as the top three metabolites according to the variable importance in projection using oPLS-DA and loadings weight by sPLS-DA. Metabolite set enrichment analysis showed carnitine palmitoyltransferase deficiency (II) as the highest condition related to the metabolome.

Conclusions: We observed a difference in the plasma metabolic profile in association with different measures of sarcopenia, which identifies very long-chain fatty acids, Carn.DC and citrulline as key variables associated with the disease severity. These findings point to a potential link between sarcopenia and mitochondrial dysfunction and portraits a number of possible biochemical pathways which might be involved in the disease pathogenesis.

背景:肌少症是老年人最主要的肌肉骨骼疾病之一,定义为与年龄相关的进行性和全身性肌肉质量损失,同时肌肉力量和/或功能下降。利用代谢组学,我们旨在研究肌肉减少症与肌肉减少症患者血浆代谢谱之间的关系,使用靶向HPLC-MS/MS平台进行测量。方法:分析22例(男性17例)髋部骨折手术患者的血浆样本,其中肌肉减少症8例,年龄81.4±6.3岁,非肌肉减少症14例,年龄78.4±8.1岁。采用T检验、折叠变化、正交偏最小二乘判别分析和稀疏偏最小二乘判别分析挖掘显著特征。随后进行代谢物集富集分析和PLSSEM中介分析。结果:通过对肌肉减少症z评分的单变量分析,氨基酸瓜氨酸是FDR校正后唯一具有显著组差异的代谢物。骨骼肌减少症z值与长链脂肪酸和二羧酸肉毒碱呈正相关。多因素分析显示,根据oPLS-DA预测的变量重要性和sPLS-DA负荷重量,瓜氨酸、非酯化脂肪酸26:2和十二烷基肉碱是前三名代谢物。代谢组富集分析显示,肉碱棕榈酰转移酶缺陷(II)是与代谢组相关的最高条件。结论:我们观察到血浆代谢谱的差异与肌肉减少症的不同测量值有关,其中确定了非常长链脂肪酸,卡恩。DC和瓜氨酸是与疾病严重程度相关的关键变量。这些发现指出了肌少症和线粒体功能障碍之间的潜在联系,并描绘了一些可能参与疾病发病机制的生化途径。
{"title":"Sarcopenia: investigation of metabolic changes and its associated mechanisms.","authors":"Jair Marques,&nbsp;Engy Shokry,&nbsp;Olaf Uhl,&nbsp;Lisa Baber,&nbsp;Fabian Hofmeister,&nbsp;Stefanie Jarmusch,&nbsp;Martin Bidlingmaier,&nbsp;Uta Ferrari,&nbsp;Berthold Koletzko,&nbsp;Michael Drey","doi":"10.1186/s13395-022-00312-w","DOIUrl":"https://doi.org/10.1186/s13395-022-00312-w","url":null,"abstract":"<p><strong>Background: </strong>Sarcopenia is one of the most predominant musculoskeletal diseases of the elderly, defined as age-related progressive and generalized loss of muscle mass with a simultaneous reduction in muscle strength and/or function. Using metabolomics, we aimed to examine the association between sarcopenia and the plasma metabolic profile of sarcopenic patients, measured using a targeted HPLC-MS/MS platform.</p><p><strong>Methods: </strong>Plasma samples from 22 (17 men) hip fracture patients undergoing surgery (8 sarcopenic, age 81.4+6.3, and 14 non-sarcopenic, age 78.4±8.1) were analyzed. T test, fold change, orthogonal partial least squares discriminant analysis, and sparse partial least squares discriminant analysis were used for mining significant features. Metabolite set enrichment analysis and mediation analysis by PLSSEM were thereafter performed.</p><p><strong>Results: </strong>Using a univariate analysis for sarcopenia z score, the amino acid citrulline was the only metabolite with a significant group difference after FDR correction. Positive trends were observed between the sarcopenia z score and very long-chain fatty acids as well as dicarboxylic acid carnitines. Multivariate analysis showed citrulline, non-esterified fatty acid 26:2, and decanedioyl carnitine as the top three metabolites according to the variable importance in projection using oPLS-DA and loadings weight by sPLS-DA. Metabolite set enrichment analysis showed carnitine palmitoyltransferase deficiency (II) as the highest condition related to the metabolome.</p><p><strong>Conclusions: </strong>We observed a difference in the plasma metabolic profile in association with different measures of sarcopenia, which identifies very long-chain fatty acids, Carn.DC and citrulline as key variables associated with the disease severity. These findings point to a potential link between sarcopenia and mitochondrial dysfunction and portraits a number of possible biochemical pathways which might be involved in the disease pathogenesis.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"13 1","pages":"2"},"PeriodicalIF":4.9,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850598/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10698115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Multi-omics analysis of sarcospan overexpression in mdx skeletal muscle reveals compensatory remodeling of cytoskeleton-matrix interactions that promote mechanotransduction pathways. 对mdx骨骼肌中sarcospan过表达的多组学分析揭示了促进机械传导途径的细胞骨架-基质相互作用的代偿性重塑。
IF 5.3 2区 医学 Q2 CELL BIOLOGY Pub Date : 2023-01-06 DOI: 10.1186/s13395-022-00311-x
Jackie L McCourt, Kristen M Stearns-Reider, Hafsa Mamsa, Pranav Kannan, Mohammad Hossein Afsharinia, Cynthia Shu, Elizabeth M Gibbs, Kara M Shin, Yerbol Z Kurmangaliyev, Lauren R Schmitt, Kirk C Hansen, Rachelle H Crosbie

Background: The dystrophin-glycoprotein complex (DGC) is a critical adhesion complex of the muscle cell membrane, providing a mechanical link between the extracellular matrix (ECM) and the cortical cytoskeleton that stabilizes the sarcolemma during repeated muscle contractions. One integral component of the DGC is the transmembrane protein, sarcospan (SSPN). Overexpression of SSPN in the skeletal muscle of mdx mice (murine model of DMD) restores muscle fiber attachment to the ECM in part through an associated increase in utrophin and integrin adhesion complexes at the cell membrane, protecting the muscle from contraction-induced injury. In this study, we utilized transcriptomic and ECM protein-optimized proteomics data sets from wild-type, mdx, and mdx transgenic (mdxTG) skeletal muscle tissues to identify pathways and proteins driving the compensatory action of SSPN overexpression.

Methods: The tibialis anterior and quadriceps muscles were isolated from wild-type, mdx, and mdxTG mice and subjected to bulk RNA-Seq and global proteomics analysis using methods to enhance capture of ECM proteins. Data sets were further analyzed through the ingenuity pathway analysis (QIAGEN) and integrative gene set enrichment to identify candidate networks, signaling pathways, and upstream regulators.

Results: Through our multi-omics approach, we identified 3 classes of differentially expressed genes and proteins in mdxTG muscle, including those that were (1) unrestored (significantly different from wild type, but not from mdx), (2) restored (significantly different from mdx, but not from wild type), and (3) compensatory (significantly different from both wild type and mdx). We identified signaling pathways that may contribute to the rescue phenotype, most notably cytoskeleton and ECM organization pathways. ECM-optimized proteomics revealed an increased abundance of collagens II, V, and XI, along with β-spectrin in mdxTG samples. Using ingenuity pathway analysis, we identified upstream regulators that are computationally predicted to drive compensatory changes, revealing a possible mechanism of SSPN rescue through a rewiring of cell-ECM bidirectional communication. We found that SSPN overexpression results in upregulation of key signaling molecules associated with regulation of cytoskeleton organization and mechanotransduction, including Yap1, Sox9, Rho, RAC, and Wnt.

Conclusions: Our findings indicate that SSPN overexpression rescues dystrophin deficiency partially through mechanotransduction signaling cascades mediated through components of the ECM and the cortical cytoskeleton.

背景:肌营养蛋白-糖蛋白复合物(DGC)是肌肉细胞膜的一个重要粘附复合物,它在细胞外基质(ECM)和皮质细胞骨架之间提供了一个机械连接,在肌肉反复收缩时稳定了肌浆膜。DGC 的一个组成部分是跨膜蛋白肌球蛋白(Sarcospan,SSPN)。在 mdx 小鼠(DMD 的小鼠模型)的骨骼肌中过表达 SSPN 可恢复肌纤维对 ECM 的附着,部分原因是细胞膜上的胞体蛋白和整合素粘附复合物增加,从而保护肌肉免受收缩引起的损伤。在这项研究中,我们利用野生型、mdx 和 mdx 转基因(mdxTG)骨骼肌组织的转录组学和 ECM 蛋白优化蛋白质组学数据集来确定驱动 SSPN 过表达的代偿作用的途径和蛋白质:从野生型小鼠、mdx 小鼠和 mdxTG 小鼠身上分离出胫前肌和股四头肌,使用增强 ECM 蛋白捕获的方法对其进行批量 RNA-Seq 和全局蛋白质组学分析。通过巧妙通路分析(QIAGEN)和整合基因组富集进一步分析数据集,以确定候选网络、信号通路和上游调控因子:通过多组学方法,我们在mdxTG肌肉中发现了3类差异表达的基因和蛋白质,包括(1)未修复的(与野生型有显著差异,但与mdx无显著差异);(2)修复的(与mdx有显著差异,但与野生型无显著差异);(3)代偿的(与野生型和mdx均有显著差异)。我们确定了可能有助于拯救表型的信号通路,其中最主要的是细胞骨架和 ECM 组织通路。ECM优化蛋白质组学显示,在mdxTG样本中,胶原蛋白II、V和XI以及β-pectrin的丰度增加。通过巧妙通路分析,我们确定了经计算预测可驱动代偿性变化的上游调节因子,揭示了通过重新连接细胞-ECM双向交流来拯救SSPN的可能机制。我们发现,SSPN过表达会导致与细胞骨架组织调控和机械传导相关的关键信号分子上调,包括Yap1、Sox9、Rho、RAC和Wnt:我们的研究结果表明,SSPN过表达可部分通过由ECM和皮质细胞骨架成分介导的机械传导信号级联来挽救肌营养不良症。
{"title":"Multi-omics analysis of sarcospan overexpression in mdx skeletal muscle reveals compensatory remodeling of cytoskeleton-matrix interactions that promote mechanotransduction pathways.","authors":"Jackie L McCourt, Kristen M Stearns-Reider, Hafsa Mamsa, Pranav Kannan, Mohammad Hossein Afsharinia, Cynthia Shu, Elizabeth M Gibbs, Kara M Shin, Yerbol Z Kurmangaliyev, Lauren R Schmitt, Kirk C Hansen, Rachelle H Crosbie","doi":"10.1186/s13395-022-00311-x","DOIUrl":"10.1186/s13395-022-00311-x","url":null,"abstract":"<p><strong>Background: </strong>The dystrophin-glycoprotein complex (DGC) is a critical adhesion complex of the muscle cell membrane, providing a mechanical link between the extracellular matrix (ECM) and the cortical cytoskeleton that stabilizes the sarcolemma during repeated muscle contractions. One integral component of the DGC is the transmembrane protein, sarcospan (SSPN). Overexpression of SSPN in the skeletal muscle of mdx mice (murine model of DMD) restores muscle fiber attachment to the ECM in part through an associated increase in utrophin and integrin adhesion complexes at the cell membrane, protecting the muscle from contraction-induced injury. In this study, we utilized transcriptomic and ECM protein-optimized proteomics data sets from wild-type, mdx, and mdx transgenic (mdx<sup>TG</sup>) skeletal muscle tissues to identify pathways and proteins driving the compensatory action of SSPN overexpression.</p><p><strong>Methods: </strong>The tibialis anterior and quadriceps muscles were isolated from wild-type, mdx, and mdx<sup>TG</sup> mice and subjected to bulk RNA-Seq and global proteomics analysis using methods to enhance capture of ECM proteins. Data sets were further analyzed through the ingenuity pathway analysis (QIAGEN) and integrative gene set enrichment to identify candidate networks, signaling pathways, and upstream regulators.</p><p><strong>Results: </strong>Through our multi-omics approach, we identified 3 classes of differentially expressed genes and proteins in mdx<sup>TG</sup> muscle, including those that were (1) unrestored (significantly different from wild type, but not from mdx), (2) restored (significantly different from mdx, but not from wild type), and (3) compensatory (significantly different from both wild type and mdx). We identified signaling pathways that may contribute to the rescue phenotype, most notably cytoskeleton and ECM organization pathways. ECM-optimized proteomics revealed an increased abundance of collagens II, V, and XI, along with β-spectrin in mdx<sup>TG</sup> samples. Using ingenuity pathway analysis, we identified upstream regulators that are computationally predicted to drive compensatory changes, revealing a possible mechanism of SSPN rescue through a rewiring of cell-ECM bidirectional communication. We found that SSPN overexpression results in upregulation of key signaling molecules associated with regulation of cytoskeleton organization and mechanotransduction, including Yap1, Sox9, Rho, RAC, and Wnt.</p><p><strong>Conclusions: </strong>Our findings indicate that SSPN overexpression rescues dystrophin deficiency partially through mechanotransduction signaling cascades mediated through components of the ECM and the cortical cytoskeleton.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"13 1","pages":"1"},"PeriodicalIF":5.3,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10134465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The prevalence of low muscle mass associated with obesity in the USA. 在美国,低肌肉量的流行与肥胖有关。
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2022-12-21 DOI: 10.1186/s13395-022-00309-5
Dana J Murdock, Ning Wu, Joseph S Grimsby, Roberto A Calle, Stephen Donahue, David J Glass, Mark W Sleeman, Robert J Sanchez

Background: Sarcopenia is defined as age-related low muscle mass and function, and can also describe the loss of muscle mass in certain medical conditions, such as sarcopenic obesity. Sarcopenic obesity describes loss of muscle and function in obese individuals; however, as sarcopenia is an age-related condition and obesity can occur in any age group, a more accurate term is obesity with low lean muscle mass (OLLMM). Given limited data on OLLMM (particularly in those aged < 65 years), the purpose of this study was to estimate the prevalence of OLLMM in adults aged ≥ 20 years in the USA.

Methods: Data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 and 1999-2006 were used. OLLMM was defined as an appendicular lean mass, adjusted for body mass index (BMI), cut-off point < 0.789 for males and < 0.512 for females, measured by dual-energy X-ray absorptiometry (DXA). DXA was only measured in individuals 20-59 years old in NHANES 2017-2018; we therefore utilized logistic regression models to predict OLLMM from NHANES 1999-2006 for those aged ≥ 60 years. The prevalence of OLLMM was estimated overall, and by sex, age, race/ethnicity, and clinical subgroup (high BMI, prediabetes, type 2 diabetes mellitus [T2DM], non-alcoholic fatty liver disease [NAFLD] with fibrosis, or post-bariatric surgery). Prevalence estimates were extrapolated to the USA population using NHANES sampling weights.

Results: We estimated that, during 2017-2018, 28.7 million or 15.9% of the USA population had OLLMM. The prevalence of OLLMM was greater in older individuals (8.1%, aged 20-59 years vs 28.3%, aged ≥ 60 years), highest (66.6%) in Mexican-American females aged ≥ 60 years, and lowest (2.6%) in non-Hispanic Black males aged 20-59 years. There was a higher prevalence of OLLMM in adults with prediabetes (19.7%), T2DM (34.5%), NAFLD with fibrosis (25.4%), or post-bariatric surgery (21.8%), compared with those without each condition.

Conclusions: Overall, the burden of OLLMM in the USA is substantial, affecting almost 30 million adults. The prevalence of OLLMM increased with age, and among those with prediabetes, T2DM, NAFLD with fibrosis, or post-bariatric surgery. A unified definition of OLLMM will aid diagnosis and treatment strategies.

背景:肌肉减少症被定义为与年龄相关的肌肉质量和功能降低,也可以描述某些医疗条件下肌肉质量的减少,如肌肉减少性肥胖。肌肉减少性肥胖描述的是肥胖个体肌肉和功能的丧失;然而,由于肌肉减少症是一种与年龄有关的疾病,肥胖可以发生在任何年龄组,因此更准确的术语是低瘦肌肉量肥胖(OLLMM)。考虑到有关OLLMM的数据有限(尤其是年龄< 65岁的人群),本研究的目的是估计美国年龄≥20岁的成年人OLLMM的患病率。方法:使用2017-2018年和1999-2006年国家健康与营养检查调查(NHANES)的数据。通过双能x线吸收仪(DXA)测量,经体重指数(BMI)调整后,OLLMM定义为阑尾瘦体重,截断点男性< 0.789,女性< 0.512。在NHANES 2017-2018中,仅在20-59岁的个体中测量DXA;因此,我们使用逻辑回归模型来预测NHANES 1999-2006中年龄≥60岁的OLLMM。总体估计了OLLMM的患病率,并按性别、年龄、种族/民族和临床亚组(高BMI、前驱糖尿病、2型糖尿病[T2DM]、非酒精性脂肪肝[NAFLD]合并纤维化或减肥手术后)进行了评估。患病率估计外推到美国人口使用NHANES抽样权重。结果:我们估计,在2017-2018年期间,2870万人或15.9%的美国人口患有OLLMM。OLLMM的患病率在老年人中更高(8.1%,年龄在20-59岁,28.3%,年龄≥60岁),在年龄≥60岁的墨西哥裔美国女性中最高(66.6%),在20-59岁的非西班牙裔黑人男性中最低(2.6%)。与没有这两种疾病的成年人相比,患有糖尿病前期(19.7%)、2型糖尿病(34.5%)、NAFLD合并纤维化(25.4%)或减肥手术后(21.8%)的成年人中OLLMM的患病率更高。结论:总体而言,在美国,OLLMM的负担是巨大的,影响了近3000万成年人。随着年龄的增长,在糖尿病前期、2型糖尿病、NAFLD合并纤维化或减肥手术后患者中,OLLMM的患病率增加。OLLMM的统一定义将有助于诊断和治疗策略。
{"title":"The prevalence of low muscle mass associated with obesity in the USA.","authors":"Dana J Murdock,&nbsp;Ning Wu,&nbsp;Joseph S Grimsby,&nbsp;Roberto A Calle,&nbsp;Stephen Donahue,&nbsp;David J Glass,&nbsp;Mark W Sleeman,&nbsp;Robert J Sanchez","doi":"10.1186/s13395-022-00309-5","DOIUrl":"https://doi.org/10.1186/s13395-022-00309-5","url":null,"abstract":"<p><strong>Background: </strong>Sarcopenia is defined as age-related low muscle mass and function, and can also describe the loss of muscle mass in certain medical conditions, such as sarcopenic obesity. Sarcopenic obesity describes loss of muscle and function in obese individuals; however, as sarcopenia is an age-related condition and obesity can occur in any age group, a more accurate term is obesity with low lean muscle mass (OLLMM). Given limited data on OLLMM (particularly in those aged < 65 years), the purpose of this study was to estimate the prevalence of OLLMM in adults aged ≥ 20 years in the USA.</p><p><strong>Methods: </strong>Data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018 and 1999-2006 were used. OLLMM was defined as an appendicular lean mass, adjusted for body mass index (BMI), cut-off point < 0.789 for males and < 0.512 for females, measured by dual-energy X-ray absorptiometry (DXA). DXA was only measured in individuals 20-59 years old in NHANES 2017-2018; we therefore utilized logistic regression models to predict OLLMM from NHANES 1999-2006 for those aged ≥ 60 years. The prevalence of OLLMM was estimated overall, and by sex, age, race/ethnicity, and clinical subgroup (high BMI, prediabetes, type 2 diabetes mellitus [T2DM], non-alcoholic fatty liver disease [NAFLD] with fibrosis, or post-bariatric surgery). Prevalence estimates were extrapolated to the USA population using NHANES sampling weights.</p><p><strong>Results: </strong>We estimated that, during 2017-2018, 28.7 million or 15.9% of the USA population had OLLMM. The prevalence of OLLMM was greater in older individuals (8.1%, aged 20-59 years vs 28.3%, aged ≥ 60 years), highest (66.6%) in Mexican-American females aged ≥ 60 years, and lowest (2.6%) in non-Hispanic Black males aged 20-59 years. There was a higher prevalence of OLLMM in adults with prediabetes (19.7%), T2DM (34.5%), NAFLD with fibrosis (25.4%), or post-bariatric surgery (21.8%), compared with those without each condition.</p><p><strong>Conclusions: </strong>Overall, the burden of OLLMM in the USA is substantial, affecting almost 30 million adults. The prevalence of OLLMM increased with age, and among those with prediabetes, T2DM, NAFLD with fibrosis, or post-bariatric surgery. A unified definition of OLLMM will aid diagnosis and treatment strategies.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"12 1","pages":"26"},"PeriodicalIF":4.9,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769063/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10579759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Limb-girdle muscular dystrophy type 2B causes HDL-C abnormalities in patients and statin-resistant muscle wasting in dysferlin-deficient mice. 2B型肢带性肌营养不良症导致患者HDL-C异常,并导致异ferlin缺乏小鼠出现他汀类药物抵抗性肌肉萎缩。
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2022-11-29 DOI: 10.1186/s13395-022-00308-6
Zoe White, Zeren Sun, Elodie Sauge, Dan Cox, Graham Donen, Dmitri Pechkovsky, Volker Straub, Gordon A Francis, Pascal Bernatchez

Limb-girdle muscular dystrophy (MD) type 2B (LGMD2B) and Duchenne MD (DMD) are caused by mutations to the Dysferlin and Dystrophin genes, respectively. We have recently demonstrated in typically mild dysferlin- and dystrophin-deficient mouse models that increased plasma cholesterol levels severely exacerbate muscle wasting, and that DMD patients display primary dyslipidemia characterized by elevated plasma cholesterol and triglycerides. Herein, we investigate lipoprotein abnormalities in LGMD2B and if statin therapy protects dysferlin-deficient mice (Dysf) from muscle damage. Herein, lipoproteins and liver enzymes from LGMD2B patients and dysferlin-null (Dysf) mice were analyzed. Simvastatin, which exhibits anti-muscle wasting effects in mouse models of DMD and corrects aberrant expression of key markers of lipid metabolism and endogenous cholesterol synthesis, was tested in Dysf mice. Muscle damage and fibrosis were assessed by immunohistochemistry and cholesterol signalling pathways via Western blot. LGMD2B patients show reduced serum high-density lipoprotein cholesterol (HDL-C) levels compared to healthy controls and exhibit a greater prevalence of abnormal total cholesterol (CHOL)/HDL-C ratios despite an absence of liver dysfunction. While Dysf mice presented with reduced CHOL and associated HDL-C and LDL-C-associated fractions, simvastatin treatment did not prevent muscle wasting in quadriceps and triceps muscle groups or correct aberrant low-density lipoprotein receptor (LDLR) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) protein expression. LGMD2B patients present with reduced serum concentrations of HDL-C, a major metabolic comorbidity, and as a result, statin therapy is unlikely to prevent muscle wasting in this population. We propose that like DMD, LGMD2B should be considered as a new type of genetic dyslipidemia.

四肢带状肌营养不良(MD) 2B型(LGMD2B)和杜氏肌营养不良(DMD)分别是由Dysferlin和Dystrophin基因突变引起的。我们最近在典型的轻度dysferlin和dystrophin缺陷小鼠模型中证明,血浆胆固醇水平升高严重加剧了肌肉萎缩,DMD患者表现出以血浆胆固醇和甘油三酯升高为特征的原发性血脂异常。在这里,我们研究了LGMD2B的脂蛋白异常,以及他汀类药物治疗是否能保护dysferlin缺陷小鼠(Dysf)免受肌肉损伤。本文对LGMD2B患者和dysferlin-null (Dysf)小鼠的脂蛋白和肝酶进行分析。辛伐他汀在DMD小鼠模型中表现出抗肌肉萎缩作用,并纠正脂质代谢和内源性胆固醇合成关键标志物的异常表达,在Dysf小鼠中进行了测试。通过免疫组化和Western blot检测胆固醇信号通路评估肌肉损伤和纤维化。与健康对照相比,LGMD2B患者血清高密度脂蛋白胆固醇(HDL-C)水平降低,尽管没有肝功能障碍,但总胆固醇(CHOL)/HDL-C比率异常的发生率更高。虽然Dysf小鼠表现出CHOL和相关HDL-C和ldl - c相关部分的降低,但辛伐他汀治疗并不能防止股四头肌和三头肌肌肉群的肌肉萎缩,也不能纠正低密度脂蛋白受体(LDLR)和3-羟基-3-甲基戊二酰辅酶A还原酶(HMGCR)蛋白表达的异常。LGMD2B患者表现为血清HDL-C浓度降低,这是一种主要的代谢合并症,因此,他汀类药物治疗不太可能预防该人群的肌肉萎缩。我们建议与DMD一样,将LGMD2B视为一种新型的遗传性血脂异常。
{"title":"Limb-girdle muscular dystrophy type 2B causes HDL-C abnormalities in patients and statin-resistant muscle wasting in dysferlin-deficient mice.","authors":"Zoe White,&nbsp;Zeren Sun,&nbsp;Elodie Sauge,&nbsp;Dan Cox,&nbsp;Graham Donen,&nbsp;Dmitri Pechkovsky,&nbsp;Volker Straub,&nbsp;Gordon A Francis,&nbsp;Pascal Bernatchez","doi":"10.1186/s13395-022-00308-6","DOIUrl":"https://doi.org/10.1186/s13395-022-00308-6","url":null,"abstract":"<p><p>Limb-girdle muscular dystrophy (MD) type 2B (LGMD2B) and Duchenne MD (DMD) are caused by mutations to the Dysferlin and Dystrophin genes, respectively. We have recently demonstrated in typically mild dysferlin- and dystrophin-deficient mouse models that increased plasma cholesterol levels severely exacerbate muscle wasting, and that DMD patients display primary dyslipidemia characterized by elevated plasma cholesterol and triglycerides. Herein, we investigate lipoprotein abnormalities in LGMD2B and if statin therapy protects dysferlin-deficient mice (Dysf) from muscle damage. Herein, lipoproteins and liver enzymes from LGMD2B patients and dysferlin-null (Dysf) mice were analyzed. Simvastatin, which exhibits anti-muscle wasting effects in mouse models of DMD and corrects aberrant expression of key markers of lipid metabolism and endogenous cholesterol synthesis, was tested in Dysf mice. Muscle damage and fibrosis were assessed by immunohistochemistry and cholesterol signalling pathways via Western blot. LGMD2B patients show reduced serum high-density lipoprotein cholesterol (HDL-C) levels compared to healthy controls and exhibit a greater prevalence of abnormal total cholesterol (CHOL)/HDL-C ratios despite an absence of liver dysfunction. While Dysf mice presented with reduced CHOL and associated HDL-C and LDL-C-associated fractions, simvastatin treatment did not prevent muscle wasting in quadriceps and triceps muscle groups or correct aberrant low-density lipoprotein receptor (LDLR) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) protein expression. LGMD2B patients present with reduced serum concentrations of HDL-C, a major metabolic comorbidity, and as a result, statin therapy is unlikely to prevent muscle wasting in this population. We propose that like DMD, LGMD2B should be considered as a new type of genetic dyslipidemia.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"12 1","pages":"25"},"PeriodicalIF":4.9,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10526261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Prolonged FOS activity disrupts a global myogenic transcriptional program by altering 3D chromatin architecture in primary muscle progenitor cells. 长时间的 FOS 活性通过改变原生肌肉祖细胞的三维染色质结构,破坏了全局性的成肌转录程序。
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2022-08-15 DOI: 10.1186/s13395-022-00303-x
A Rasim Barutcu, Gabriel Elizalde, Alfredo E Gonzalez, Kartik Soni, John L Rinn, Amy J Wagers, Albert E Almada

Background: The AP-1 transcription factor, FBJ osteosarcoma oncogene (FOS), is induced in adult muscle satellite cells (SCs) within hours following muscle damage and is required for effective stem cell activation and muscle repair. However, why FOS is rapidly downregulated before SCs enter cell cycle as progenitor cells (i.e., transiently expressed) remains unclear. Further, whether boosting FOS levels in the proliferating progeny of SCs can enhance their myogenic properties needs further evaluation.

Methods: We established an inducible, FOS expression system to evaluate the impact of persistent FOS activity in muscle progenitor cells ex vivo. We performed various assays to measure cellular proliferation and differentiation, as well as uncover changes in RNA levels and three-dimensional (3D) chromatin interactions.

Results: Persistent FOS activity in primary muscle progenitor cells severely antagonizes their ability to differentiate and form myotubes within the first 2 weeks in culture. RNA-seq analysis revealed that ectopic FOS activity in muscle progenitor cells suppressed a global pro-myogenic transcriptional program, while activating a stress-induced, mitogen-activated protein kinase (MAPK) transcriptional signature. Additionally, we observed various FOS-dependent, chromosomal re-organization events in A/B compartments, topologically associated domains (TADs), and genomic loops near FOS-regulated genes.

Conclusions: Our results suggest that elevated FOS activity in recently activated muscle progenitor cells perturbs cellular differentiation by altering the 3D chromosome organization near critical pro-myogenic genes. This work highlights the crucial importance of tightly controlling FOS expression in the muscle lineage and suggests that in states of chronic stress or disease, persistent FOS activity in muscle precursor cells may disrupt the muscle-forming process.

背景:AP-1转录因子FBJ骨肉瘤癌基因(FOS)在肌肉损伤后数小时内就会在成肌卫星细胞(SCs)中被诱导,是干细胞有效激活和肌肉修复所必需的。然而,为什么FOS会在SCs作为祖细胞进入细胞周期之前迅速下调(即瞬时表达),目前仍不清楚。此外,提高 SCs 增殖祖细胞中的 FOS 水平是否能增强其致肌特性还需要进一步评估:我们建立了一个可诱导的 FOS 表达系统,以评估 FOS 在体内外肌肉祖细胞中持续活性的影响。我们进行了各种实验来测量细胞的增殖和分化,并揭示了 RNA 水平和三维染色质相互作用的变化:结果:原代肌肉祖细胞中持续存在的 FOS 活性严重影响了它们在培养头两周内分化和形成肌管的能力。RNA-seq分析显示,肌肉祖细胞中异位的FOS活性抑制了全局性的促肌肉生成转录程序,同时激活了应激诱导的丝裂原活化蛋白激酶(MAPK)转录特征。此外,我们还观察到 FOS 调控基因附近的 A/B 区、拓扑相关域(TAD)和基因组环路中发生了各种依赖 FOS 的染色体重组事件:我们的研究结果表明,最近激活的肌肉祖细胞中升高的 FOS 活性会通过改变关键的促肌肉生成基因附近的三维染色体组织来扰乱细胞分化。这项工作强调了严格控制 FOS 在肌肉系中表达的重要性,并表明在慢性应激或疾病状态下,肌肉前体细胞中持续的 FOS 活性可能会破坏肌肉形成过程。
{"title":"Prolonged FOS activity disrupts a global myogenic transcriptional program by altering 3D chromatin architecture in primary muscle progenitor cells.","authors":"A Rasim Barutcu, Gabriel Elizalde, Alfredo E Gonzalez, Kartik Soni, John L Rinn, Amy J Wagers, Albert E Almada","doi":"10.1186/s13395-022-00303-x","DOIUrl":"10.1186/s13395-022-00303-x","url":null,"abstract":"<p><strong>Background: </strong>The AP-1 transcription factor, FBJ osteosarcoma oncogene (FOS), is induced in adult muscle satellite cells (SCs) within hours following muscle damage and is required for effective stem cell activation and muscle repair. However, why FOS is rapidly downregulated before SCs enter cell cycle as progenitor cells (i.e., transiently expressed) remains unclear. Further, whether boosting FOS levels in the proliferating progeny of SCs can enhance their myogenic properties needs further evaluation.</p><p><strong>Methods: </strong>We established an inducible, FOS expression system to evaluate the impact of persistent FOS activity in muscle progenitor cells ex vivo. We performed various assays to measure cellular proliferation and differentiation, as well as uncover changes in RNA levels and three-dimensional (3D) chromatin interactions.</p><p><strong>Results: </strong>Persistent FOS activity in primary muscle progenitor cells severely antagonizes their ability to differentiate and form myotubes within the first 2 weeks in culture. RNA-seq analysis revealed that ectopic FOS activity in muscle progenitor cells suppressed a global pro-myogenic transcriptional program, while activating a stress-induced, mitogen-activated protein kinase (MAPK) transcriptional signature. Additionally, we observed various FOS-dependent, chromosomal re-organization events in A/B compartments, topologically associated domains (TADs), and genomic loops near FOS-regulated genes.</p><p><strong>Conclusions: </strong>Our results suggest that elevated FOS activity in recently activated muscle progenitor cells perturbs cellular differentiation by altering the 3D chromosome organization near critical pro-myogenic genes. This work highlights the crucial importance of tightly controlling FOS expression in the muscle lineage and suggests that in states of chronic stress or disease, persistent FOS activity in muscle precursor cells may disrupt the muscle-forming process.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"12 1","pages":"20"},"PeriodicalIF":4.9,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9838031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of age, sex, and exercise on autophagy, mitophagy, and lysosome biogenesis in skeletal muscle 年龄、性别和运动对骨骼肌自噬、有丝分裂和溶酶体生物发生的影响
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2022-06-11 DOI: 10.1186/s13395-022-00296-7
Matthew Triolo, Ashley N. Oliveira, Rita Kumari, D. Hood
{"title":"The influence of age, sex, and exercise on autophagy, mitophagy, and lysosome biogenesis in skeletal muscle","authors":"Matthew Triolo, Ashley N. Oliveira, Rita Kumari, D. Hood","doi":"10.1186/s13395-022-00296-7","DOIUrl":"https://doi.org/10.1186/s13395-022-00296-7","url":null,"abstract":"","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"43 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65847501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The Myotube Analyzer: how to assess myogenic features in muscle stem cells 肌管分析仪:如何评估肌肉干细胞的肌源性特征
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2022-06-10 DOI: 10.1186/s13395-022-00297-6
Noë, Simon, Corvelyn, Marlies, Willems, Sarah, Costamagna, Domiziana, Aerts, Jean-Marie, Van Campenhout, Anja, Desloovere, Kaat
The analysis of in vitro cultures of human adult muscle stem cells obtained from biopsies delineates the potential of skeletal muscles and may help to understand altered muscle morphology in patients. In these analyses, the fusion index is a commonly used quantitative metric to assess the myogenic potency of the muscle stem cells. Since the fusion index only partly describes myogenic potency, we developed the Myotube Analyzer tool, which combines the definition of the fusion index with extra features of myonuclei and myotubes obtained from satellite cell cultures. The software contains image adjustment and mask editing functions for preprocessing and semi-automatic segmentation, while other functions can be used to determine the features of nuclei and myotubes. The fusion index and a set of five novel parameters were tested for reliability and validity in a comparison between satellite cell cultures from children with cerebral palsy and typically developing children. These novel parameters quantified extra nucleus and myotube properties and can be used to describe nucleus clustering and myotube shape. Two analyzers who were trained in cell culture defined all parameters using the Myotube Analyzer app. Out of the six parameters, five had good reliability reflected by good intra-class correlation coefficients (> 0.75). Children with cerebral palsy were significantly different from the typically developing children (p < 0.05) for five parameters, and for three of the six parameters, these differences exceeded the minimal detectable differences. The Myotube Analyzer can be used for the analysis of fixed differentiated myoblast cultures with nuclear and MyHC staining. The app can calculate the fusion index, an already existing parameter, but also provides multiple new parameters to comprehensively describe myogenic potential in its output. The raw data used to determine these parameters are also available in the output. The parameters calculated by the tool can be used to detect differences between cultures from children with cerebral palsy and typically developing children. Since the program is open source, users can customize it to fit their own analysis requirements.
从活组织检查中获得的成人肌肉干细胞体外培养物的分析描绘了骨骼肌的潜力,并可能有助于理解患者肌肉形态的改变。在这些分析中,融合指数是一种常用的定量指标来评估肌肉干细胞的成肌能力。由于融合指数只能部分描述肌源性,我们开发了肌管分析仪工具,该工具将融合指数的定义与从卫星细胞培养中获得的肌核和肌管的额外特征结合起来。该软件包含图像调整和掩模编辑功能,用于预处理和半自动分割,其他功能可用于确定细胞核和肌管的特征。在脑瘫儿童和正常发育儿童卫星细胞培养的比较中,对融合指数和一组五个新参数进行了可靠性和有效性测试。这些新参数量化了额外核和肌管的特性,并可用于描述核聚类和肌管形状。两名接受过细胞培养训练的分析仪使用Myotube Analyzer应用程序定义了所有参数。在六个参数中,五个具有良好的可靠性,反映了良好的类内相关系数(> 0.75)。脑瘫患儿与正常发育儿童在5个参数上存在显著差异(p < 0.05),其中3个参数的差异超过了可检测的最小差异。肌管分析仪可用于核染色和MyHC染色的固定分化成肌细胞培养物的分析。该应用程序可以计算融合指数,这是一个已经存在的参数,但也提供了多个新参数,以全面描述其输出的肌生成电位。用于确定这些参数的原始数据也可在输出中获得。该工具计算的参数可用于检测脑瘫儿童和正常发育儿童之间的文化差异。由于该程序是开源的,用户可以自定义它以适应自己的分析需求。
{"title":"The Myotube Analyzer: how to assess myogenic features in muscle stem cells","authors":"Noë, Simon, Corvelyn, Marlies, Willems, Sarah, Costamagna, Domiziana, Aerts, Jean-Marie, Van Campenhout, Anja, Desloovere, Kaat","doi":"10.1186/s13395-022-00297-6","DOIUrl":"https://doi.org/10.1186/s13395-022-00297-6","url":null,"abstract":"The analysis of in vitro cultures of human adult muscle stem cells obtained from biopsies delineates the potential of skeletal muscles and may help to understand altered muscle morphology in patients. In these analyses, the fusion index is a commonly used quantitative metric to assess the myogenic potency of the muscle stem cells. Since the fusion index only partly describes myogenic potency, we developed the Myotube Analyzer tool, which combines the definition of the fusion index with extra features of myonuclei and myotubes obtained from satellite cell cultures. The software contains image adjustment and mask editing functions for preprocessing and semi-automatic segmentation, while other functions can be used to determine the features of nuclei and myotubes. The fusion index and a set of five novel parameters were tested for reliability and validity in a comparison between satellite cell cultures from children with cerebral palsy and typically developing children. These novel parameters quantified extra nucleus and myotube properties and can be used to describe nucleus clustering and myotube shape. Two analyzers who were trained in cell culture defined all parameters using the Myotube Analyzer app. Out of the six parameters, five had good reliability reflected by good intra-class correlation coefficients (> 0.75). Children with cerebral palsy were significantly different from the typically developing children (p < 0.05) for five parameters, and for three of the six parameters, these differences exceeded the minimal detectable differences. The Myotube Analyzer can be used for the analysis of fixed differentiated myoblast cultures with nuclear and MyHC staining. The app can calculate the fusion index, an already existing parameter, but also provides multiple new parameters to comprehensively describe myogenic potential in its output. The raw data used to determine these parameters are also available in the output. The parameters calculated by the tool can be used to detect differences between cultures from children with cerebral palsy and typically developing children. Since the program is open source, users can customize it to fit their own analysis requirements.","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"162 5","pages":""},"PeriodicalIF":4.9,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Alternative splicing diversifies the skeletal muscle transcriptome during prolonged spaceflight 在长时间的太空飞行中,选择性剪接使骨骼肌转录组多样化
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2022-05-31 DOI: 10.1186/s13395-022-00294-9
Mason Henrich, Pin Ha, Yuanyuan Wang, K. Ting, L. Stodieck, C. Soo, John S. Adams, R. Chun
{"title":"Alternative splicing diversifies the skeletal muscle transcriptome during prolonged spaceflight","authors":"Mason Henrich, Pin Ha, Yuanyuan Wang, K. Ting, L. Stodieck, C. Soo, John S. Adams, R. Chun","doi":"10.1186/s13395-022-00294-9","DOIUrl":"https://doi.org/10.1186/s13395-022-00294-9","url":null,"abstract":"","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":" ","pages":""},"PeriodicalIF":4.9,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44565760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Growth differentiation factor 11 induces skeletal muscle atrophy via a STAT3-dependent mechanism in pulmonary arterial hypertension 生长分化因子11在肺动脉高压中通过stat3依赖机制诱导骨骼肌萎缩
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2022-05-06 DOI: 10.1186/s13395-022-00292-x
Xiang, Guiling, Ying, Kelu, Jiang, Pan, Jia, Mengping, Sun, Yipeng, Li, Shanqun, Wu, Xiaodan, Hao, Shengyu
Skeletal muscle wasting is a clinically remarkable phenotypic feature of pulmonary arterial hypertension (PAH) that increases the risk of mortality. Growth differentiation factor 11 (GDF11), centrally involved in PAH pathogenesis, has an inhibitory effect on skeletal muscle growth in other conditions. However, whether GDF11 is involved in the pathogenesis of skeletal muscle wasting in PAH remains unknown. We showed that serum GDF11 levels in patients were increased following PAH. Skeletal muscle wasting in the MCT-treated PAH model is accompanied by an increase in circulating GDF11 levels and local catabolic markers (Fbx32, Trim63, Foxo1, and protease activity). In vitro GDF11 activated phosphorylation of STAT3. Antagonizing STAT3, with Stattic, in vitro and in vivo, could partially reverse proteolytic pathways including STAT3/socs3 and iNOS/NO in GDF11-meditated muscle wasting. Our findings demonstrate that GDF11 contributes to muscle wasting and the inhibition of its downstream molecule STAT3 shows promise as a therapeutic intervention by which muscle atrophy may be directly prevented in PAH.
骨骼肌萎缩是肺动脉高压(PAH)的临床显着表型特征,可增加死亡风险。生长分化因子11 (GDF11)在多环芳烃发病机制中起核心作用,在其他情况下对骨骼肌生长有抑制作用。然而,GDF11是否参与PAH骨骼肌萎缩的发病机制尚不清楚。我们发现PAH患者血清GDF11水平升高。mct处理的PAH模型骨骼肌萎缩伴随着循环GDF11水平和局部分解代谢标志物(Fbx32、Trim63、fox01和蛋白酶活性)的增加。在体外,GDF11激活STAT3的磷酸化。体外和体内用Stattic拮抗STAT3,可以部分逆转gdf11介导的肌肉萎缩中STAT3/socs3和iNOS/NO等蛋白水解途径。我们的研究结果表明,GDF11有助于肌肉萎缩,抑制其下游分子STAT3有望作为一种治疗干预措施,通过这种干预措施可以直接预防PAH中的肌肉萎缩。
{"title":"Growth differentiation factor 11 induces skeletal muscle atrophy via a STAT3-dependent mechanism in pulmonary arterial hypertension","authors":"Xiang, Guiling, Ying, Kelu, Jiang, Pan, Jia, Mengping, Sun, Yipeng, Li, Shanqun, Wu, Xiaodan, Hao, Shengyu","doi":"10.1186/s13395-022-00292-x","DOIUrl":"https://doi.org/10.1186/s13395-022-00292-x","url":null,"abstract":"Skeletal muscle wasting is a clinically remarkable phenotypic feature of pulmonary arterial hypertension (PAH) that increases the risk of mortality. Growth differentiation factor 11 (GDF11), centrally involved in PAH pathogenesis, has an inhibitory effect on skeletal muscle growth in other conditions. However, whether GDF11 is involved in the pathogenesis of skeletal muscle wasting in PAH remains unknown. We showed that serum GDF11 levels in patients were increased following PAH. Skeletal muscle wasting in the MCT-treated PAH model is accompanied by an increase in circulating GDF11 levels and local catabolic markers (Fbx32, Trim63, Foxo1, and protease activity). In vitro GDF11 activated phosphorylation of STAT3. Antagonizing STAT3, with Stattic, in vitro and in vivo, could partially reverse proteolytic pathways including STAT3/socs3 and iNOS/NO in GDF11-meditated muscle wasting. Our findings demonstrate that GDF11 contributes to muscle wasting and the inhibition of its downstream molecule STAT3 shows promise as a therapeutic intervention by which muscle atrophy may be directly prevented in PAH.","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"159 2","pages":""},"PeriodicalIF":4.9,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The Notch signaling network in muscle stem cells during development, homeostasis, and disease 肌肉干细胞发育、体内平衡和疾病过程中的Notch信号网络
IF 4.9 2区 医学 Q2 CELL BIOLOGY Pub Date : 2022-04-22 DOI: 10.1186/s13395-022-00293-w
Gioftsidi, Stamatia, Relaix, Frederic, Mourikis, Philippos
Skeletal muscle stem cells have a central role in muscle growth and regeneration. They reside as quiescent cells in resting muscle and in response to damage they transiently amplify and fuse to produce new myofibers or self-renew to replenish the stem cell pool. A signaling pathway that is critical in the regulation of all these processes is Notch. Despite the major differences in the anatomical and cellular niches between the embryonic myotome, the adult sarcolemma/basement-membrane interphase, and the regenerating muscle, Notch signaling has evolved to support the context-specific requirements of the muscle cells. In this review, we discuss the diverse ways by which Notch signaling factors and other modifying partners are operating during the lifetime of muscle stem cells to establish an adaptive dynamic network.
骨骼肌干细胞在肌肉生长和再生中起着核心作用。它们以静止细胞的形式存在于静止的肌肉中,作为对损伤的反应,它们短暂地扩增和融合以产生新的肌纤维或自我更新以补充干细胞库。在所有这些过程的调控中起关键作用的信号通路是Notch。尽管胚胎肌瘤、成人肌膜/基底膜间期和再生肌肉在解剖和细胞壁龛上存在重大差异,但Notch信号已经进化到支持肌肉细胞的环境特异性需求。在这篇综述中,我们讨论了Notch信号因子和其他修饰伙伴在肌肉干细胞的生命周期中运作的各种方式,以建立一个自适应的动态网络。
{"title":"The Notch signaling network in muscle stem cells during development, homeostasis, and disease","authors":"Gioftsidi, Stamatia, Relaix, Frederic, Mourikis, Philippos","doi":"10.1186/s13395-022-00293-w","DOIUrl":"https://doi.org/10.1186/s13395-022-00293-w","url":null,"abstract":"Skeletal muscle stem cells have a central role in muscle growth and regeneration. They reside as quiescent cells in resting muscle and in response to damage they transiently amplify and fuse to produce new myofibers or self-renew to replenish the stem cell pool. A signaling pathway that is critical in the regulation of all these processes is Notch. Despite the major differences in the anatomical and cellular niches between the embryonic myotome, the adult sarcolemma/basement-membrane interphase, and the regenerating muscle, Notch signaling has evolved to support the context-specific requirements of the muscle cells. In this review, we discuss the diverse ways by which Notch signaling factors and other modifying partners are operating during the lifetime of muscle stem cells to establish an adaptive dynamic network.","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"159 1","pages":""},"PeriodicalIF":4.9,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
期刊
Skeletal Muscle
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1