Abstract Salix is a genus of considerable taxonomic complexity, and accurate identification of its species and hybrids is not always possible. Quantification of ovules was used in this study to verify the parentage of a few hybrids of Salix. It has been shown that ovule numbers in willow hybrids are the mean of the ovule numbers of their parents. The ovule index of a prostrate specimen of S. ×cottetii affirmed that this was a hybrid of S. myrsinifolia Salisb. and S. retusa L., and the ovule index of the ornamental cultivar ‘The Hague’ affirmed that this was a hybrid of S. caprea L. and S. gracilistyla Miq. Finally, we also examined a confusing group, previously identified in North America as S. pentandra. The ovule indexes and other morphological characters indicated that there were four taxa among the studied specimens: S. pentandra, S. ×meyeriana, S. serissima Fernald, and a hybrid of S. serissima and S. fragilis that has not previously been described. It was concluded that quantification of ovules in willows is a reliable tool that can be used in willow taxonomy, genetics and population studies.
柳属是一个分类学相当复杂的属,其种和杂种的准确鉴定并不总是可能的。本研究采用胚珠定量鉴定方法,对几个柳属杂交品种进行亲本鉴定。研究表明,柳树杂种的胚珠数是其亲本胚珠数的平均值。匍匐生长的S. ×cottetii的胚珠指数证实这是S. myrsinifolia Salisb的杂种。通过对观赏性栽培品种“海牙”的胚珠指数测定,证实该品种为荆芥和荆芥的杂交品种。最后,我们还研究了一个令人困惑的群体,以前在北美被确定为S. pentandra。胚珠指数和其他形态特征表明,所研究的标本中有4个分类群:S. pentandra, S. ×meyeriana, S. serissima Fernald,以及S. serissima和S. fragilis的一个未被描述的杂交类群。结果表明,对柳树胚珠进行定量分析是柳树分类、遗传和种群研究的可靠工具。
{"title":"Identification of hybrid formulae of a few willows (Salix) using ovule numbers","authors":"Аlexander M. Marchenko, Y. Kuzovkina","doi":"10.2478/sg-2021-0006","DOIUrl":"https://doi.org/10.2478/sg-2021-0006","url":null,"abstract":"Abstract Salix is a genus of considerable taxonomic complexity, and accurate identification of its species and hybrids is not always possible. Quantification of ovules was used in this study to verify the parentage of a few hybrids of Salix. It has been shown that ovule numbers in willow hybrids are the mean of the ovule numbers of their parents. The ovule index of a prostrate specimen of S. ×cottetii affirmed that this was a hybrid of S. myrsinifolia Salisb. and S. retusa L., and the ovule index of the ornamental cultivar ‘The Hague’ affirmed that this was a hybrid of S. caprea L. and S. gracilistyla Miq. Finally, we also examined a confusing group, previously identified in North America as S. pentandra. The ovule indexes and other morphological characters indicated that there were four taxa among the studied specimens: S. pentandra, S. ×meyeriana, S. serissima Fernald, and a hybrid of S. serissima and S. fragilis that has not previously been described. It was concluded that quantification of ovules in willows is a reliable tool that can be used in willow taxonomy, genetics and population studies.","PeriodicalId":21834,"journal":{"name":"Silvae Genetica","volume":"22 1","pages":"75 - 83"},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82389888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gihwan Kim, Ana P. Leite Montalvão, B. Kersten, M. Fladung, Niels A. Müller
Abstract Many dioecious angiosperms are trees, which only flower after years of vegetative development and do not usually exhibit marked secondary sexual dimorphism. Nevertheless, if the genetic basis of sex determination is known, the sex of an individual can be determined using molecular markers. Here, we report that in the genus Populus sect. Populus an XY system of sex determination, which is found in P. tremula and P. tremuloides, likely re-evolved from a ZW system present in P. alba, P. adenopoda and P. qiongdaoensis. Strikingly, this new XY system is mechanistically identical to the older system found in several species of the Populus sections Tacamahaca, Aigeiros and Turanga demonstrating a remarkable example of convergent evolution. In both XY systems, male-specific inversely repeated sequences appear to silence the ARR17 gene, which functions as a sex switch, via small interfering RNAs and DNA methylation. In the ZW system, female-specific copies of ARR17 appear to regulate dioecy. With this detailed information on the genetic basis of sex determination it was possible to develop molecular markers that can be utilized to determine the sex in seedlings and non-flowering trees of different poplar species. We used the female-specific ARR17 gene to develop a sex marker for P. alba and P. adenopoda. For P. grandidentata, we employed the male-specific ARR17 inverted repeat. Finally, we summarize previously described markers for P. tremula, P. tremuloides, P. trichocarpa, P. deltoides and P. nigra. These markers can be useful for poplar ecologists, geneticists and breeders.
许多雌雄异株被子植物是乔木,经过多年的营养发育后才开花,通常不表现出明显的次生两性二态性。然而,如果性别决定的遗传基础是已知的,个体的性别可以用分子标记来确定。在这里,我们报道了在白杨属和白杨科中发现的XY性别决定系统,可能是由白杨、腺足杨和琼道杨的ZW系统重新进化而来的。引人注目的是,这个新的XY系统在机制上与在Tacamahaca, Aigeiros和Turanga的几个杨种中发现的旧系统相同,证明了趋同进化的一个显着例子。在这两种XY系统中,男性特异性的反向重复序列似乎通过小干扰rna和DNA甲基化使ARR17基因沉默,ARR17基因起着性别开关的作用。在ZW系统中,ARR17的雌性特异性拷贝似乎调节雌雄异株。利用这一详细的性别决定遗传基础信息,可以开发用于确定不同杨树种苗和非开花树性别的分子标记。我们利用雌性特异性的ARR17基因开发了白藻和腺足藻的性别标记。对于桔梗,我们采用了雄性特异性的ARR17反向重复序列。最后,我们总结了先前描述的tremula P., tremuloides, P. trichocarpa, P. deltoides和P. nigra的标记。这些标记可为杨树生态学家、遗传学家和育种家提供参考。
{"title":"The genetic basis of sex determination in Populus provides molecular markers across the genus and indicates convergent evolution","authors":"Gihwan Kim, Ana P. Leite Montalvão, B. Kersten, M. Fladung, Niels A. Müller","doi":"10.2478/sg-2021-0012","DOIUrl":"https://doi.org/10.2478/sg-2021-0012","url":null,"abstract":"Abstract Many dioecious angiosperms are trees, which only flower after years of vegetative development and do not usually exhibit marked secondary sexual dimorphism. Nevertheless, if the genetic basis of sex determination is known, the sex of an individual can be determined using molecular markers. Here, we report that in the genus Populus sect. Populus an XY system of sex determination, which is found in P. tremula and P. tremuloides, likely re-evolved from a ZW system present in P. alba, P. adenopoda and P. qiongdaoensis. Strikingly, this new XY system is mechanistically identical to the older system found in several species of the Populus sections Tacamahaca, Aigeiros and Turanga demonstrating a remarkable example of convergent evolution. In both XY systems, male-specific inversely repeated sequences appear to silence the ARR17 gene, which functions as a sex switch, via small interfering RNAs and DNA methylation. In the ZW system, female-specific copies of ARR17 appear to regulate dioecy. With this detailed information on the genetic basis of sex determination it was possible to develop molecular markers that can be utilized to determine the sex in seedlings and non-flowering trees of different poplar species. We used the female-specific ARR17 gene to develop a sex marker for P. alba and P. adenopoda. For P. grandidentata, we employed the male-specific ARR17 inverted repeat. Finally, we summarize previously described markers for P. tremula, P. tremuloides, P. trichocarpa, P. deltoides and P. nigra. These markers can be useful for poplar ecologists, geneticists and breeders.","PeriodicalId":21834,"journal":{"name":"Silvae Genetica","volume":"24 1","pages":"145 - 155"},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86080621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Gymnosperms show a significantly higher mean (1C=18.16, 1Cx=16.80) and a narrow range (16.89-fold) of genome sizes as compared with angiosperms. Among the 12 families the largest ranges of 1C values is shown by Ephedraceae (4.73-fold) and Cupressaceae (4.45-fold) which are partly due to polyploidy as 1Cx values vary 2.41 and 1.37-fold respectively. In rest of the families which have only diploid taxa the range of 1C values is from 1.18-fold (Cycadaeae) to 4.36-fold (Podocarpaceae). The question is how gymnosperms acquired such big genome sizes despite the rarity of recent instances of polyploidy. A general survey of different families and genera shows that gymnosperms have experienced both increase and decrease in their genome size during evolution. Various genomic components which have accounted for these large genomes have been discussed. The major contributors are the transposable elements particularly LTR-retrotransposons comprising of Ty3gypsy, Ty1copia and gymny superfamilies which are most widespread. The genomes of gymnosperms have been acquiring diverse LTR-RTs in their long evolution in the absence of any efficient mechanism of their elimination. The epigenetic machinery which silences these large tracts of repeat sequences into the stretches of heterochromatin and the adaptive value of these silenced repeat sequences need further investigation.
{"title":"Variation and Evolution of Genome Size in Gymnosperms","authors":"D. Ohri","doi":"10.2478/sg-2021-0013","DOIUrl":"https://doi.org/10.2478/sg-2021-0013","url":null,"abstract":"Abstract Gymnosperms show a significantly higher mean (1C=18.16, 1Cx=16.80) and a narrow range (16.89-fold) of genome sizes as compared with angiosperms. Among the 12 families the largest ranges of 1C values is shown by Ephedraceae (4.73-fold) and Cupressaceae (4.45-fold) which are partly due to polyploidy as 1Cx values vary 2.41 and 1.37-fold respectively. In rest of the families which have only diploid taxa the range of 1C values is from 1.18-fold (Cycadaeae) to 4.36-fold (Podocarpaceae). The question is how gymnosperms acquired such big genome sizes despite the rarity of recent instances of polyploidy. A general survey of different families and genera shows that gymnosperms have experienced both increase and decrease in their genome size during evolution. Various genomic components which have accounted for these large genomes have been discussed. The major contributors are the transposable elements particularly LTR-retrotransposons comprising of Ty3gypsy, Ty1copia and gymny superfamilies which are most widespread. The genomes of gymnosperms have been acquiring diverse LTR-RTs in their long evolution in the absence of any efficient mechanism of their elimination. The epigenetic machinery which silences these large tracts of repeat sequences into the stretches of heterochromatin and the adaptive value of these silenced repeat sequences need further investigation.","PeriodicalId":21834,"journal":{"name":"Silvae Genetica","volume":"60 1","pages":"156 - 169"},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79204644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chander Shekhar, A. Rawat, M. Bhandari, S. Barthwal, H. Ginwal, R. Meena
Abstract Cross-amplification is a cost-effective method to extend the applicability of SSR markers to closely related taxa which lack their own sequence information. In the present study, 35 SSR markers developed in four oak species of Europe, North America and Asia were selected and screened in five species of the western Himalayas. Fifteen markers were successfully amplified in Quercus semecarpifolia, followed by 11 each in Q. floribunda and Q. leucotrichophora, 10 in Q. glauca, and 9 in Q. lana-ta. Except two primer pairs in Q. semecarpifolia, all were found to be polymorphic. Most of the positively cross-amplified SSRs were derived from the Asian oak, Q. mongolica. The genoty-ping of 10 individuals of each species with positively cross-amplified SSRs displayed varied levels of polymorphism in the five target oak species, viz., QmC00419 was most polymorphic in Q. floribunda, QmC00716 in Q. glauca and Q. lanata, QmC01368 in Q. leucotrichophora, and QmC02269 in Q. semecarpifolia. Among five oak species, the highest gene diversity was depicted in Q. lanata and Q. semecarpifolia with expected heterozygosity (He = 0.72), while the minimum was recorded for Q. leucotrichophora and Q. glauca (He = 0.65). The SSRs validated here provide a valuable resource to carry out further population genetic analysis in oaks of the western Himalayas.
{"title":"Cross-transferability-based identification and validation of simple sequence repeat (SSR) markers in oaks of western Himalayas","authors":"Chander Shekhar, A. Rawat, M. Bhandari, S. Barthwal, H. Ginwal, R. Meena","doi":"10.2478/sg-2021-0009","DOIUrl":"https://doi.org/10.2478/sg-2021-0009","url":null,"abstract":"Abstract Cross-amplification is a cost-effective method to extend the applicability of SSR markers to closely related taxa which lack their own sequence information. In the present study, 35 SSR markers developed in four oak species of Europe, North America and Asia were selected and screened in five species of the western Himalayas. Fifteen markers were successfully amplified in Quercus semecarpifolia, followed by 11 each in Q. floribunda and Q. leucotrichophora, 10 in Q. glauca, and 9 in Q. lana-ta. Except two primer pairs in Q. semecarpifolia, all were found to be polymorphic. Most of the positively cross-amplified SSRs were derived from the Asian oak, Q. mongolica. The genoty-ping of 10 individuals of each species with positively cross-amplified SSRs displayed varied levels of polymorphism in the five target oak species, viz., QmC00419 was most polymorphic in Q. floribunda, QmC00716 in Q. glauca and Q. lanata, QmC01368 in Q. leucotrichophora, and QmC02269 in Q. semecarpifolia. Among five oak species, the highest gene diversity was depicted in Q. lanata and Q. semecarpifolia with expected heterozygosity (He = 0.72), while the minimum was recorded for Q. leucotrichophora and Q. glauca (He = 0.65). The SSRs validated here provide a valuable resource to carry out further population genetic analysis in oaks of the western Himalayas.","PeriodicalId":21834,"journal":{"name":"Silvae Genetica","volume":"186 1","pages":"108 - 116"},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74331606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract New first and 1.5 generation seed orchards are to be created in Germany based on recently assembled breeding populations of Acer pseudoplatanus, Larix sp., Picea abies, Pinus sylvestris, Pseudotsuga menziesii, and Quercus sp. To justify the high expenses in time and cost for orchard establishment and maintenance, planning should make use of consolidated knowledge and experience of both the national and international scientific community. Here, we briefly describe advances in genetic gains achieved through tree breeding, and resume population genetic aspects and design considerations to draw conclusions for clonal composition and spatial design of the new orchards. We conclude that to avoid outbreeding depression separate orchards are required for each breeding zone. The zones are species-specific and defined by ecological and climatic aspects. A minimum of 60-80 clones per orchard is recommended for native tree species with high proportions of natural regeneration in forest practice. This would allow future selective thinning based on estimated breeding values from progeny testing. It would also permit the transfer of seed orchard progenies into a naturally regenerating forest stands without the risk of a genetic bottleneck. Lower clone numbers are appropriate for non-native species and hybrids. It is important to strictly avoid inbreeding depression, achieved by using only one clone per progeny or population, from which the plus trees were selected. Further, the spatial layout should promote random mating by optimizing the neighbourhood of each clone. With all of these considerations taken into account, we expect superior quality traits and at least 10-15 % more volume from the new seed orchards.
{"title":"Towards new seed orchard designs in Germany – A review","authors":"H. Liesebach, K. Liepe, Cornelia Bäucker","doi":"10.2478/sg-2021-0007","DOIUrl":"https://doi.org/10.2478/sg-2021-0007","url":null,"abstract":"Abstract New first and 1.5 generation seed orchards are to be created in Germany based on recently assembled breeding populations of Acer pseudoplatanus, Larix sp., Picea abies, Pinus sylvestris, Pseudotsuga menziesii, and Quercus sp. To justify the high expenses in time and cost for orchard establishment and maintenance, planning should make use of consolidated knowledge and experience of both the national and international scientific community. Here, we briefly describe advances in genetic gains achieved through tree breeding, and resume population genetic aspects and design considerations to draw conclusions for clonal composition and spatial design of the new orchards. We conclude that to avoid outbreeding depression separate orchards are required for each breeding zone. The zones are species-specific and defined by ecological and climatic aspects. A minimum of 60-80 clones per orchard is recommended for native tree species with high proportions of natural regeneration in forest practice. This would allow future selective thinning based on estimated breeding values from progeny testing. It would also permit the transfer of seed orchard progenies into a naturally regenerating forest stands without the risk of a genetic bottleneck. Lower clone numbers are appropriate for non-native species and hybrids. It is important to strictly avoid inbreeding depression, achieved by using only one clone per progeny or population, from which the plus trees were selected. Further, the spatial layout should promote random mating by optimizing the neighbourhood of each clone. With all of these considerations taken into account, we expect superior quality traits and at least 10-15 % more volume from the new seed orchards.","PeriodicalId":21834,"journal":{"name":"Silvae Genetica","volume":"53 1","pages":"84 - 98"},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85725875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Provenance trials remain an important tool for understanding genetic variation in forest trees. Maintaining decades-old experiments is critical for revealing maladaptation of translocated populations to local sites and meaningful divergence in survival and growth. We revisited the Second International Larch Provenance Test in southeastern Michigan, which featuring 24 provenances of European and Japanese larch. We compiled data collected when the plantation was 25, 41, and 61 years from seed to supplement data published at 19 years from seed. Divergence in survival rates first became pronounced at 41 years from seed. Plantation sources of unknown origin and continental Sudeten provenances had the highest rates of survival. High-elevation sources from the southern Alps performed the poorest. Survival differences were likely driven by ice storm damage and severe growing season droughts, both of which occurred at least 1-2 times per decade in southeastern Michigan over the last 60 years. Provenance performance for growth mirrored that of survival, although sources varied more in their survival than in their growth. Growth rate among sources varied over the 43-year sampling period, with intervals of fast growth occurring in several of the overall poor-performing provenances. Diameter was moderately correlated to both elevation and latitude, with inconsistent correlations to climatic variables. Broad geographical variation in provenance performance was also important in explaining variation in growth. Our data corroborate that monitoring of long-term provenance trials could be an important source of information needed to predict and understand how forest species may respond to imminent climate change and may be critical for developing strategies for its mitigation.
{"title":"Tree growth and survival over 61 years at the Second International Larch Provenance Test in southeastern Michigan, USA","authors":"D. Kashian, B. V. Barnes","doi":"10.2478/sg-2021-0002","DOIUrl":"https://doi.org/10.2478/sg-2021-0002","url":null,"abstract":"Abstract Provenance trials remain an important tool for understanding genetic variation in forest trees. Maintaining decades-old experiments is critical for revealing maladaptation of translocated populations to local sites and meaningful divergence in survival and growth. We revisited the Second International Larch Provenance Test in southeastern Michigan, which featuring 24 provenances of European and Japanese larch. We compiled data collected when the plantation was 25, 41, and 61 years from seed to supplement data published at 19 years from seed. Divergence in survival rates first became pronounced at 41 years from seed. Plantation sources of unknown origin and continental Sudeten provenances had the highest rates of survival. High-elevation sources from the southern Alps performed the poorest. Survival differences were likely driven by ice storm damage and severe growing season droughts, both of which occurred at least 1-2 times per decade in southeastern Michigan over the last 60 years. Provenance performance for growth mirrored that of survival, although sources varied more in their survival than in their growth. Growth rate among sources varied over the 43-year sampling period, with intervals of fast growth occurring in several of the overall poor-performing provenances. Diameter was moderately correlated to both elevation and latitude, with inconsistent correlations to climatic variables. Broad geographical variation in provenance performance was also important in explaining variation in growth. Our data corroborate that monitoring of long-term provenance trials could be an important source of information needed to predict and understand how forest species may respond to imminent climate change and may be critical for developing strategies for its mitigation.","PeriodicalId":21834,"journal":{"name":"Silvae Genetica","volume":"6 1","pages":"9 - 21"},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82195578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Nelson, W. E. Berguson, B. McMahon, Meijun Cai, Daniel J. Buchman
Abstract The Natural Resources Research Institute Hybrid Poplar Program breeds and tests genetically improved clones for bio-mass production and environmental services. The testing process progresses from Nursery Progeny Tests (NPT) to Family Field Trials (FFT) to Clone Trials (CT) to Yield Blocks (YB), with limited replication of many clones in FFT and CT and a limited number of highly selected clones set out in monoclonal blocks (YB) to approximate the conditions of commercial plantations. We used correlation vectors, R2 (coefficient of determination) and rs (Spearman’s Coefficient) for growth (DBH2) and McFadden’s Pseudo R2 for canker severity score, to determine where testing times could be altered (age – age correlations) and whole testing steps eliminated. FFT can be shortened from 5 years to 4 years. In CT, rank correlations between age 5 (half-rotation) and age 9/10 (full rotation) were significant (R2 = 0.39 – 0.72), but age 5 selection missed 44 % of the top ten clones at age 9/10. Clone rank in CT at full, but not half, rotation was correlated with rank at full rotation in YB. Choosing clones at 9 years in CT adds 4 years but allows possible elimination of YB for clone selection. Both FFT and CT are necessary. Canker abundance and severity in CT at full rotation cannot be determined at earlier ages. An aggressive strategy saves 6 years of testing.
{"title":"Vectors of Efficiency in Hybrid Poplar Genotype Testing","authors":"N. Nelson, W. E. Berguson, B. McMahon, Meijun Cai, Daniel J. Buchman","doi":"10.2478/sg-2021-0004","DOIUrl":"https://doi.org/10.2478/sg-2021-0004","url":null,"abstract":"Abstract The Natural Resources Research Institute Hybrid Poplar Program breeds and tests genetically improved clones for bio-mass production and environmental services. The testing process progresses from Nursery Progeny Tests (NPT) to Family Field Trials (FFT) to Clone Trials (CT) to Yield Blocks (YB), with limited replication of many clones in FFT and CT and a limited number of highly selected clones set out in monoclonal blocks (YB) to approximate the conditions of commercial plantations. We used correlation vectors, R2 (coefficient of determination) and rs (Spearman’s Coefficient) for growth (DBH2) and McFadden’s Pseudo R2 for canker severity score, to determine where testing times could be altered (age – age correlations) and whole testing steps eliminated. FFT can be shortened from 5 years to 4 years. In CT, rank correlations between age 5 (half-rotation) and age 9/10 (full rotation) were significant (R2 = 0.39 – 0.72), but age 5 selection missed 44 % of the top ten clones at age 9/10. Clone rank in CT at full, but not half, rotation was correlated with rank at full rotation in YB. Choosing clones at 9 years in CT adds 4 years but allows possible elimination of YB for clone selection. Both FFT and CT are necessary. Canker abundance and severity in CT at full rotation cannot be determined at earlier ages. An aggressive strategy saves 6 years of testing.","PeriodicalId":21834,"journal":{"name":"Silvae Genetica","volume":"5 1","pages":"39 - 56"},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74686885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kiran Singewar, Christian R Moschner, E. Hartung, M. Fladung
Abstract Plant SABATH family members catalyze the methylation of many hormones, signaling molecules, and floral scent metabolites, including salicylic acid (SA), jasmonic acid (JA), and indol-3 acetic acid (IAA). Demethylation of resulting methyl esters was executed by members of the MES family. Members of both families are significantly involved in plant developmental processes. Here, using different bioinformatics tools, we studied the evolutionary relationship and characterized the putative functions of the family members in silver birch (Betula pendula). It is a socio-ecologically important tree species and plays a vital role in reforestation. Ten and twelve members of the SABATH (BpSABATH1-10) and MES (BpMES1-12) family were identified in silver birch, respectively at the gene and enzyme levels. The BpSABATH and BpMES genes were distributed on seven of fourteen chromosomes, indicating the occurrence of moderate duplication events important for the expansion of both families. Phylogenetic clustering and the gene ontology database suggest, BpSA-BATH8 is involved in the methylation of indole-3-acetic acid (IAA), while BpSABATH5, BpSABATH6, and BpSABATH7 methylate JA to methyl jasmonate (MeJA). BpSABATH9 was alone in the phylogenetic functional group 1 and prefers SA as a substrate to synthesize methyl salicylate (MeSA). Likewise, BpMES5 and BpMES12 are possibly involved in the demethylation of the methyl ester of IAA, while BpMES6, BpMES7, and BpMES8 are responsible for the demethylation of MeJA. BpMES9 clustered with MES and prefers MeSA as a substrate. The current analysis helped to select candidate genes that could be subjected to further molecular breeding of birch varieties adapted to biotic and abiotic stress conditions.
{"title":"Genome-wide bioinformatics analysis revealed putative substrate specificities of SABATH and MES family members in silver birch (Betula pendula)","authors":"Kiran Singewar, Christian R Moschner, E. Hartung, M. Fladung","doi":"10.2478/sg-2021-0005","DOIUrl":"https://doi.org/10.2478/sg-2021-0005","url":null,"abstract":"Abstract Plant SABATH family members catalyze the methylation of many hormones, signaling molecules, and floral scent metabolites, including salicylic acid (SA), jasmonic acid (JA), and indol-3 acetic acid (IAA). Demethylation of resulting methyl esters was executed by members of the MES family. Members of both families are significantly involved in plant developmental processes. Here, using different bioinformatics tools, we studied the evolutionary relationship and characterized the putative functions of the family members in silver birch (Betula pendula). It is a socio-ecologically important tree species and plays a vital role in reforestation. Ten and twelve members of the SABATH (BpSABATH1-10) and MES (BpMES1-12) family were identified in silver birch, respectively at the gene and enzyme levels. The BpSABATH and BpMES genes were distributed on seven of fourteen chromosomes, indicating the occurrence of moderate duplication events important for the expansion of both families. Phylogenetic clustering and the gene ontology database suggest, BpSA-BATH8 is involved in the methylation of indole-3-acetic acid (IAA), while BpSABATH5, BpSABATH6, and BpSABATH7 methylate JA to methyl jasmonate (MeJA). BpSABATH9 was alone in the phylogenetic functional group 1 and prefers SA as a substrate to synthesize methyl salicylate (MeSA). Likewise, BpMES5 and BpMES12 are possibly involved in the demethylation of the methyl ester of IAA, while BpMES6, BpMES7, and BpMES8 are responsible for the demethylation of MeJA. BpMES9 clustered with MES and prefers MeSA as a substrate. The current analysis helped to select candidate genes that could be subjected to further molecular breeding of birch varieties adapted to biotic and abiotic stress conditions.","PeriodicalId":21834,"journal":{"name":"Silvae Genetica","volume":"28 1","pages":"57 - 74"},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86351551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Recent polyploidy in gymnosperms is unusually scarce being present in only 9.80 % of the 714 taxa studied cytologically. Polyploid forms are represented by sporadic seedlings and individual trees, intraspecific polyploidy in cultivation or in wild and entirely polyploid species and genera. Polyploidy shows a non-random distribution in different genera being mostly prevalent in Ephedra and Juniperus, besides the classic examples of Sequoia and Fitzroya. Remarkably, both Ephedra and Juniperus show adaptive radiation by interspecific hybridization followed by polyploidy while in Ginkgo viable polyploid cytotypes are found in cultivation. Induced polyploidy has not provided any tangible results in the past but recent attempts on certain genera of Cupressaceae hold some promise of producing cultivars for horticulture trade. Lastly, various evidences derived from cytological analysis, fossil pollen, guard cells and comparative genomic studies indicating the occurrence of paleopolyploidy have been discussed.
{"title":"Polyploidy in Gymnosperms-A Reappraisal","authors":"D. Ohri","doi":"10.2478/sg-2021-0003","DOIUrl":"https://doi.org/10.2478/sg-2021-0003","url":null,"abstract":"Abstract Recent polyploidy in gymnosperms is unusually scarce being present in only 9.80 % of the 714 taxa studied cytologically. Polyploid forms are represented by sporadic seedlings and individual trees, intraspecific polyploidy in cultivation or in wild and entirely polyploid species and genera. Polyploidy shows a non-random distribution in different genera being mostly prevalent in Ephedra and Juniperus, besides the classic examples of Sequoia and Fitzroya. Remarkably, both Ephedra and Juniperus show adaptive radiation by interspecific hybridization followed by polyploidy while in Ginkgo viable polyploid cytotypes are found in cultivation. Induced polyploidy has not provided any tangible results in the past but recent attempts on certain genera of Cupressaceae hold some promise of producing cultivars for horticulture trade. Lastly, various evidences derived from cytological analysis, fossil pollen, guard cells and comparative genomic studies indicating the occurrence of paleopolyploidy have been discussed.","PeriodicalId":21834,"journal":{"name":"Silvae Genetica","volume":"8 1","pages":"22 - 38"},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74544575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Hou, L. Zhang, Jinning Wang, Jin-quan Li, Chang-jie Zhao, Zhixin Li, Hanguo Zhang
Abstract Pinus koraiensis Sieb. et Zucc. (Korean pine) is an evergreen coniferous tree species with significant therapeutic and nutritional value in northeastern China. To assess variation and select highly productive and nutritionally valuable materials, 25 cone, seed, and kernel nutritional components traits were measured and analyzed. Coefficients of variation for phenotypic traits ranged from 6.32 % to 161.51 %, and the coefficients of most traits were approximately 10 %. Most traits showed significant or extremely significant differences among clones or groups, especially for amino acid content. Cone numbers were under moderate genetic control, and their repeated ability ranged from 0.42 to 0.53. Most other traits were under high genetic control, and their repeated ability was higher than 0.70. Despite the weak correlation with seed traits, cone number had strong correlations with other characters. Four principal components were obtained with a cumulative variance contribution of 93.51 %. The selected elite material will provide a theoretical basis for selection and breeding of P. koraiensis.
{"title":"Variation in cone, seed, and kernel nutritional components traits of Pinus koraiensis","authors":"D. Hou, L. Zhang, Jinning Wang, Jin-quan Li, Chang-jie Zhao, Zhixin Li, Hanguo Zhang","doi":"10.2478/sg-2021-0018","DOIUrl":"https://doi.org/10.2478/sg-2021-0018","url":null,"abstract":"Abstract Pinus koraiensis Sieb. et Zucc. (Korean pine) is an evergreen coniferous tree species with significant therapeutic and nutritional value in northeastern China. To assess variation and select highly productive and nutritionally valuable materials, 25 cone, seed, and kernel nutritional components traits were measured and analyzed. Coefficients of variation for phenotypic traits ranged from 6.32 % to 161.51 %, and the coefficients of most traits were approximately 10 %. Most traits showed significant or extremely significant differences among clones or groups, especially for amino acid content. Cone numbers were under moderate genetic control, and their repeated ability ranged from 0.42 to 0.53. Most other traits were under high genetic control, and their repeated ability was higher than 0.70. Despite the weak correlation with seed traits, cone number had strong correlations with other characters. Four principal components were obtained with a cumulative variance contribution of 93.51 %. The selected elite material will provide a theoretical basis for selection and breeding of P. koraiensis.","PeriodicalId":21834,"journal":{"name":"Silvae Genetica","volume":"6 1","pages":"205 - 216"},"PeriodicalIF":1.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90201375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}