首页 > 最新文献

SSRN Electronic Journal最新文献

英文 中文
Courts, Security and Trust 法院、安全与信任
Pub Date : 2024-07-01 DOI: 10.2139/ssrn.4774421
Nedim Hogic
{"title":"Courts, Security and Trust","authors":"Nedim Hogic","doi":"10.2139/ssrn.4774421","DOIUrl":"https://doi.org/10.2139/ssrn.4774421","url":null,"abstract":"","PeriodicalId":21855,"journal":{"name":"SSRN Electronic Journal","volume":"28 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141709888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aggregate Shocks and the Formation of Preferences and Beliefs 总量冲击与偏好和信念的形成
Pub Date : 2024-07-01 DOI: 10.2139/ssrn.4883869
Paola Giuliano, Antonio Spilimbergo
{"title":"Aggregate Shocks and the Formation of Preferences and Beliefs","authors":"Paola Giuliano, Antonio Spilimbergo","doi":"10.2139/ssrn.4883869","DOIUrl":"https://doi.org/10.2139/ssrn.4883869","url":null,"abstract":"","PeriodicalId":21855,"journal":{"name":"SSRN Electronic Journal","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141711498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Micro-jetting and Transverse Waves in Oblique Detonations 斜向爆破中的微喷射和横波
Pub Date : 2024-07-01 DOI: 10.2139/ssrn.4723570
Suryanarayan Ramachandran, Suo Yang
{"title":"Micro-jetting and Transverse Waves in Oblique Detonations","authors":"Suryanarayan Ramachandran, Suo Yang","doi":"10.2139/ssrn.4723570","DOIUrl":"https://doi.org/10.2139/ssrn.4723570","url":null,"abstract":"","PeriodicalId":21855,"journal":{"name":"SSRN Electronic Journal","volume":"8 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141701636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning for Predicting Neutron Effective Dose 预测中子有效剂量的机器学习
Pub Date : 2024-07-01 DOI: 10.2139/ssrn.4804225
A. Alghamdi
The calculation of effective doses is crucial in many medical and radiation fields in order to ensure safety and compliance with regulatory limits. Traditionally, Monte Carlo codes using detailed human body computational phantoms have been used for such calculations. Monte Carlo dose calculations can be time-consuming and require expertise in different processes when building the computational phantom and dose calculations. This study employs various machine learning (ML) algorithms to predict the organ doses and effective dose conversion coefficients (DCCs) from different anthropomorphic phantoms. A comprehensive data set comprising neutron energy bins, organ labels, masses, and densities is compiled from Monte Carlo studies, and it is used to train and evaluate the supervised ML models. This study includes a broad range of phantoms, including those from the International Commission on Radiation Protection (ICRP-110, ICRP-116 phantom), the Visible-Human Project (VIP-man phantom), and the Medical Internal Radiation Dose Committee (MIRD-Phantom), with row data prepared using numerical data and organ categorical labeled data. Extreme gradient boosting (XGB), gradient boosting (GB), and the random forest-based Extra Trees regressor are employed to assess the performance of the ML models against published ICRP neutron DCC values using the mean square error, mean absolute error, and R2 metrics. The results demonstrate that the ML predictions significantly vary in lower energy ranges and vary less in higher neutron energy ranges while showing good agreement with ICRP values at mid-range energies. Moreover, the categorical data models align closely with the reference doses, suggesting the potential of ML in predicting effective doses for custom phantoms based on regional populations, such as the Saudi voxel-based model. This study paves the way for efficient dose prediction using ML, particularly in scenarios requiring rapid results without extensive computational resources or expertise. The findings also indicate potential improvements in data representation and the inclusion of larger data sets to refine model accuracy and prevent overfitting. Thus, ML methods can serve as valuable techniques for the continued development of personalized dosimetry.
在许多医疗和辐射领域,有效剂量的计算对于确保安全和遵守法规限制至关重要。传统上,此类计算使用的是使用详细人体计算模型的蒙特卡洛代码。蒙特卡洛剂量计算非常耗时,而且在构建计算模型和剂量计算时需要不同流程的专业知识。本研究采用各种机器学习(ML)算法来预测不同拟人模型的器官剂量和有效剂量转换系数(DCC)。从蒙特卡洛研究中汇编了一个包含中子能量箱、器官标签、质量和密度的综合数据集,用于训练和评估有监督的 ML 模型。这项研究包括多种模型,其中包括国际辐射防护委员会(ICRP-110、ICRP-116 模型)、可见-人体项目(VIP-man 模型)和医学内部辐射剂量委员会(MIRD-模型)的模型,行数据使用数值数据和器官分类标签数据准备。采用极梯度提升(XGB)、梯度提升(GB)和基于随机森林的 Extra Trees 回归器,使用均方误差、平均绝对误差和 R2 指标,对照已公布的 ICRP 中子 DCC 值评估 ML 模型的性能。结果表明,ML 预测值在较低能量范围内变化较大,而在较高的中子能量范围内变化较小,同时在中等能量范围内与 ICRP 值显示出良好的一致性。此外,分类数据模型与参考剂量密切吻合,表明 ML 在预测基于区域人群的定制模型(如基于沙特体素的模型)的有效剂量方面具有潜力。这项研究为使用 ML 进行高效剂量预测铺平了道路,特别是在需要快速得出结果而又不需要大量计算资源或专业知识的情况下。研究结果还表明,在数据表示和纳入更大的数据集以提高模型准确性和防止过度拟合方面存在潜在的改进空间。因此,ML 方法可以作为个性化剂量测定持续发展的宝贵技术。
{"title":"Machine Learning for Predicting Neutron Effective Dose","authors":"A. Alghamdi","doi":"10.2139/ssrn.4804225","DOIUrl":"https://doi.org/10.2139/ssrn.4804225","url":null,"abstract":"The calculation of effective doses is crucial in many medical and radiation fields in order to ensure safety and compliance with regulatory limits. Traditionally, Monte Carlo codes using detailed human body computational phantoms have been used for such calculations. Monte Carlo dose calculations can be time-consuming and require expertise in different processes when building the computational phantom and dose calculations. This study employs various machine learning (ML) algorithms to predict the organ doses and effective dose conversion coefficients (DCCs) from different anthropomorphic phantoms. A comprehensive data set comprising neutron energy bins, organ labels, masses, and densities is compiled from Monte Carlo studies, and it is used to train and evaluate the supervised ML models. This study includes a broad range of phantoms, including those from the International Commission on Radiation Protection (ICRP-110, ICRP-116 phantom), the Visible-Human Project (VIP-man phantom), and the Medical Internal Radiation Dose Committee (MIRD-Phantom), with row data prepared using numerical data and organ categorical labeled data. Extreme gradient boosting (XGB), gradient boosting (GB), and the random forest-based Extra Trees regressor are employed to assess the performance of the ML models against published ICRP neutron DCC values using the mean square error, mean absolute error, and R2 metrics. The results demonstrate that the ML predictions significantly vary in lower energy ranges and vary less in higher neutron energy ranges while showing good agreement with ICRP values at mid-range energies. Moreover, the categorical data models align closely with the reference doses, suggesting the potential of ML in predicting effective doses for custom phantoms based on regional populations, such as the Saudi voxel-based model. This study paves the way for efficient dose prediction using ML, particularly in scenarios requiring rapid results without extensive computational resources or expertise. The findings also indicate potential improvements in data representation and the inclusion of larger data sets to refine model accuracy and prevent overfitting. Thus, ML methods can serve as valuable techniques for the continued development of personalized dosimetry.","PeriodicalId":21855,"journal":{"name":"SSRN Electronic Journal","volume":"79 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141713649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energetical Effects of the Edges and Vertices of Face-centered-cubic Pd and Au Nanoparticles: a Density Functional Theory Study 面心立方钯和金纳米粒子的边和顶点的能量效应:密度泛函理论研究
Pub Date : 2024-07-01 DOI: 10.2139/ssrn.4790706
Akio Ishii
{"title":"Energetical Effects of the Edges and Vertices of Face-centered-cubic Pd and Au Nanoparticles: a Density Functional Theory Study","authors":"Akio Ishii","doi":"10.2139/ssrn.4790706","DOIUrl":"https://doi.org/10.2139/ssrn.4790706","url":null,"abstract":"","PeriodicalId":21855,"journal":{"name":"SSRN Electronic Journal","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141705661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alternative Measures of Teachers' Value Added and Impact on Short and Long-Term Outcomes: Evidence from Random Assignment 教师附加值的其他衡量标准以及对短期和长期结果的影响:随机分配的证据
Pub Date : 2024-07-01 DOI: 10.2139/ssrn.4889207
Victor Lavy, Rigissa Megalokonomou
{"title":"Alternative Measures of Teachers' Value Added and Impact on Short and Long-Term Outcomes: Evidence from Random Assignment","authors":"Victor Lavy, Rigissa Megalokonomou","doi":"10.2139/ssrn.4889207","DOIUrl":"https://doi.org/10.2139/ssrn.4889207","url":null,"abstract":"","PeriodicalId":21855,"journal":{"name":"SSRN Electronic Journal","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141706709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Gas Trap: Outcompeting Coal vs. Renewables 天然气陷阱:煤炭与可再生能源的竞争
Pub Date : 2024-07-01 DOI: 10.3386/w32718
Bård Harstad, K. Holtsmark
{"title":"The Gas Trap: Outcompeting Coal vs. Renewables","authors":"Bård Harstad, K. Holtsmark","doi":"10.3386/w32718","DOIUrl":"https://doi.org/10.3386/w32718","url":null,"abstract":"","PeriodicalId":21855,"journal":{"name":"SSRN Electronic Journal","volume":"37 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141844394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macro and Micro of External Finance Premium and Monetary Policy Transmission 外部融资溢价和货币政策传导的宏观与微观
Pub Date : 2024-07-01 DOI: 10.2139/ssrn.4809337
Carlo Altavilla, Refet S. Gürkaynak, R. Quaedvlieg
{"title":"Macro and Micro of External Finance Premium and Monetary Policy Transmission","authors":"Carlo Altavilla, Refet S. Gürkaynak, R. Quaedvlieg","doi":"10.2139/ssrn.4809337","DOIUrl":"https://doi.org/10.2139/ssrn.4809337","url":null,"abstract":"","PeriodicalId":21855,"journal":{"name":"SSRN Electronic Journal","volume":"426 1‐2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverse Paths to College Success: The Impact of Massachusetts' Urban and Nonurban Charter Schools on College Trajectories 通往大学成功的不同道路:马萨诸塞州城市和非城市特许学校对大学轨迹的影响
Pub Date : 2024-07-01 DOI: 10.3386/w32732
Sarah R. Cohodes, Astrid Pineda
{"title":"Diverse Paths to College Success: The Impact of Massachusetts' Urban and Nonurban Charter Schools on College Trajectories","authors":"Sarah R. Cohodes, Astrid Pineda","doi":"10.3386/w32732","DOIUrl":"https://doi.org/10.3386/w32732","url":null,"abstract":"","PeriodicalId":21855,"journal":{"name":"SSRN Electronic Journal","volume":"91 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141844194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Determinants of Young Adult Outcomes: Impacts of Randomly Assigned Neighborhoods For Children in Military Families 青少年成果的决定因素:随机分配社区对军人家庭子女的影响
Pub Date : 2024-07-01 DOI: 10.3386/w32674
Laura Kawano, Bruce Sacerdote, William L. Skimmyhorn, Michael Stevens
{"title":"On the Determinants of Young Adult Outcomes: Impacts of Randomly Assigned Neighborhoods For Children in Military Families","authors":"Laura Kawano, Bruce Sacerdote, William L. Skimmyhorn, Michael Stevens","doi":"10.3386/w32674","DOIUrl":"https://doi.org/10.3386/w32674","url":null,"abstract":"","PeriodicalId":21855,"journal":{"name":"SSRN Electronic Journal","volume":"89 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141845135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
SSRN Electronic Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1