Pub Date : 2025-07-23DOI: 10.1016/j.sandf.2025.101658
E. Ajorlou, M. Ghayoomi
The accelerated changes in climate resulting in more frequent and disruptive floods necessitate broader perspectives of levee vulnerability assessment. This paper aims to advance levee vulnerability curves using global sensitivity analysis to identify critical inputs for developing multi-variable fragilities. This analysis is efficient and effective for skewed data such as extreme precipitation. The study categorizes inputs into geometry, precipitation, and soil characteristics, generating 30,000 scenarios for analysis. A transient unsaturated seepage analysis is conducted to examine different failure modes such as piping, erosion, and overflow, as well as erosion initiation and enlargement time and locations for each scenario. Results show that, in addition to the initial upstream water level and precipitation characteristics, soil properties—such as gravel and clay content, along with water retention parameters—are crucial for developing fragility curves across different soil types. Additionally, comparing fragility curves for historical data and future precipitation projections highlights the importance of integrating these projections into levee risk analysis for the next 30 years. As a practical implication, these fragility curves are applied to calculate failure probabilities for a levee case study. This research would support the integration of levee vulnerability assessments with social factors and stakeholder perspectives which also increases the applicability of fragility functions in flood risk mitigation.
{"title":"Levee vulnerability assessment using an integrated unsaturated transient seepage model, sensitivity analysis, and fragility curves","authors":"E. Ajorlou, M. Ghayoomi","doi":"10.1016/j.sandf.2025.101658","DOIUrl":"10.1016/j.sandf.2025.101658","url":null,"abstract":"<div><div>The accelerated changes in climate resulting in more frequent and disruptive floods necessitate broader perspectives of levee vulnerability assessment. This paper aims to advance levee vulnerability curves using global sensitivity analysis to identify critical inputs for developing multi-variable fragilities. This analysis is efficient and effective for skewed data such as extreme precipitation. The study categorizes inputs into geometry, precipitation, and soil characteristics, generating 30,000 scenarios for analysis. A transient unsaturated seepage analysis is conducted to examine different failure modes such as piping, erosion, and overflow, as well as erosion initiation and enlargement time and locations for each scenario. Results show that, in addition to the initial upstream water level and precipitation characteristics, soil properties—such as gravel and clay content, along with water retention parameters—are crucial for developing fragility curves across different soil types. Additionally, comparing fragility curves for historical data and future precipitation projections highlights the importance of integrating these projections into levee risk analysis for the next 30 years. As a practical implication, these fragility curves are applied to calculate failure probabilities for a levee case study. This research would support the integration of levee vulnerability assessments with social factors and stakeholder perspectives which also increases the applicability of fragility functions in flood risk mitigation.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 4","pages":"Article 101658"},"PeriodicalIF":3.3,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144694928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-21DOI: 10.1016/j.sandf.2025.101660
Bo Wang , Zhi-qiang Liu , Yu Bao
By using an improved DRS-1 high pressure direct shear test system, a series direct shear tests have been carried out under high normal stress and frozen-thawing conditions. Basic shear mechanical characteristics of the interface between the frozen soil and structure are summarized. Effects of normal stress and thawing temperature on the peak shear stress and the initial shear modulus are discussed. The results show that patterns of shear stress-displacement curve will transform gradually from strain softening to strain hardening as the thawing temperature increases. The peak shear strength of frozen soil-structure interface increases significantly with the increase of the normal stress, but decreases with the thawing temperature increases. High normal stress results in larger effective stress in the soil and hinders movement of soil particles on the interface. Increasing of the thawing temperature reduces the adfreezing force on the frozen soil-structure interface.
{"title":"Direct shear testing of frozen soil-structure interface under high normal stress and frozen-thawing conditions","authors":"Bo Wang , Zhi-qiang Liu , Yu Bao","doi":"10.1016/j.sandf.2025.101660","DOIUrl":"10.1016/j.sandf.2025.101660","url":null,"abstract":"<div><div>By using an improved DRS-1 high pressure direct shear test system, a series direct shear tests have been carried out under high normal stress and frozen-thawing conditions. Basic shear mechanical characteristics of the interface between the frozen soil and structure are summarized. Effects of normal stress and thawing temperature on the peak shear stress and the initial shear modulus are discussed. The results show that patterns of shear stress-displacement curve will transform gradually from strain softening to strain hardening as the thawing temperature increases. The peak shear strength of frozen soil-structure interface increases significantly with the increase of the normal stress, but decreases with the thawing temperature increases. High normal stress results in larger effective stress in the soil and hinders movement of soil particles on the interface. Increasing of the thawing temperature reduces the adfreezing force on the frozen soil-structure interface.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 4","pages":"Article 101660"},"PeriodicalIF":3.3,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144679368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-18DOI: 10.1016/j.sandf.2025.101661
Lihua Li , Jinlin Li , Zhiqi Zhan , Yilin Gui , Juqiang Liu
Geosynthetic-reinforced stone columns can significantly improve weak foundations. While previous studies have focused on the individual effects of vertical or horizontal reinforcement, the combined influence of both on stone column foundation performance remains poorly understood. Through physical model tests, this study investigated the effects of various reinforcement methods on the bearing capacity and deformation characteristics of stone column foundations, with a particular focus on the combined reinforcement in enhancing their performance, addressing this research gap. This study encompasses different enhancement lengths, horizontal reinforcement spacings, and combinations of reinforcement methods. Experimental results demonstrate that geosynthetics significantly limit radial deformation and improve the bearing capacity of stone column foundations. Notably, the bearing capacity increases with reduced reinforcement spacing and extended enhancement length. Among all the reinforcement types tested in this study, the full-length (L) vertical reinforcement demonstrated the most significant impact. Additionally, the study examines stress transfer and lateral stress distribution within the stone columns, revealing that as the load increases, the stress ratio at the stone column base and lateral stress rises, with lateral stress peaking at a depth of 2.5D from the surface. This behaviour aligns with the deformation patterns observed in the model tests.
{"title":"Experimental analysis of reinforcement methods for stone column foundations","authors":"Lihua Li , Jinlin Li , Zhiqi Zhan , Yilin Gui , Juqiang Liu","doi":"10.1016/j.sandf.2025.101661","DOIUrl":"10.1016/j.sandf.2025.101661","url":null,"abstract":"<div><div>Geosynthetic-reinforced stone columns can significantly improve weak foundations. While previous studies have focused on the individual effects of vertical or horizontal reinforcement, the combined influence of both on stone column foundation performance remains poorly understood. Through physical model tests, this study investigated the effects of various reinforcement methods on the bearing capacity and deformation characteristics of stone column foundations, with a particular focus on the combined reinforcement in enhancing their performance, addressing this research gap. This study encompasses different enhancement lengths, horizontal reinforcement spacings, and combinations of reinforcement methods. Experimental results demonstrate that geosynthetics significantly limit radial deformation and improve the bearing capacity of stone column foundations. Notably, the bearing capacity increases with reduced reinforcement spacing and extended enhancement length. Among all the reinforcement types tested in this study, the full-length (L) vertical reinforcement demonstrated the most significant impact. Additionally, the study examines stress transfer and lateral stress distribution within the stone columns, revealing that as the load increases, the stress ratio at the stone column base and lateral stress rises, with lateral stress peaking at a depth of 2.5D from the surface. This behaviour aligns with the deformation patterns observed in the model tests.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 4","pages":"Article 101661"},"PeriodicalIF":3.3,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144662699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-15DOI: 10.1016/j.sandf.2025.101654
Krishna Santhosh , Tadahiro Kishida , George Mylonakis
Embankment dams are critical elements of infrastructure and perform as a system by integrating various components such as foundation, core, shell, filter and spillway. To analyze their entire response, it is important to properly identify the dynamic characteristics of the overall system based on observations. This paper explores the dynamic response of dams using an analytical shear beam analysis under plane-strain conditions, considering the variation of shear modulus and cross-sectional area with height. The governing differential equation is first solved analytically using Bessel functions, and dynamic response parameters are derived for different natural modes. Transfer functions are then derived from the bedrock to the crest for different variations of shear modulus and levels of material damping. Using these analytical results, the study assesses the applicability of the shear beam analysis to 23 embankment dams in Japan, utilizing decades of recorded acceleration time histories to identify their dynamic response and shear wave profiles with height.
{"title":"Seismic response of embankment dams: Shear beam analysis vs field observations","authors":"Krishna Santhosh , Tadahiro Kishida , George Mylonakis","doi":"10.1016/j.sandf.2025.101654","DOIUrl":"10.1016/j.sandf.2025.101654","url":null,"abstract":"<div><div>Embankment dams are critical elements of infrastructure and perform as a system by integrating various components such as foundation, core, shell, filter and spillway. To analyze their entire response, it is important to properly identify the dynamic characteristics of the overall system based on observations. This paper explores the dynamic response of dams using an analytical shear beam analysis under plane-strain conditions, considering the variation of shear modulus and cross-sectional area with height. The governing differential equation is first solved analytically using Bessel functions, and dynamic response parameters are derived for different natural modes. Transfer functions are then derived from the bedrock to the crest for different variations of shear modulus and levels of material damping. Using these analytical results, the study assesses the applicability of the shear beam analysis to 23 embankment dams in Japan, utilizing decades of recorded acceleration time histories to identify their dynamic response and shear wave profiles with height.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 4","pages":"Article 101654"},"PeriodicalIF":3.3,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-15DOI: 10.1016/j.sandf.2025.101653
Ugur Safak Cavus , Murat Kilit
This study assesses the earthquake-induced failure risks of the upstream and downstream slopes of a concrete face dam (CFRD), which is under the influence of a nearby active fault, using the reliability-based analysis method. For this purpose, peak ground accelerations (PGAs) that may occur at the dam site were calculated probabilistically and their contribution to the sliding risks of dam slopes was determined in accordance with the conditional probability theorem. Upstream and downstream slopes of CFRDs are usually conventionally designed as 1.3–1.5H:1V and 1.3–1.6H:1V, respectively throughout the world. Such slope design is considered sufficient for almost every case. The findings of this study are fully applicable and very important for the structural design of all concrete-faced rockfill dams (CFRDs) worldwide. Since, the slope design of CFRDs is similar and usually traditionally (1.3–1.5H; 1V for upstream slope and 1.4–1.6H:1V for downstream slope). However, this study proves that only conventional upstream slope design (1.3–1.5H:1V) can be safe for even very high peak ground accelerations (PGAs) occurring due to a nearby active fault, but contrary to expectations, downstream slope of CFRDs cannot be sufficiently safe and maintain its slope sliding safety when PGAs reach high levels. When the critical PGA level is exceeded, the downstream slope carries the risk of losing its stability with high probability, as emphasized in this study. Therefore, this study provides a new design strategy and extremely important information for dam design engineers which is to design a rather flatter downstream slope such as 1 vertical to 1.8–2.0 horizontal or, instead, to design a downstream rockfill berm supporting conventional design if CFRDs are to be built in high seismic hazard potential areas or close to active faults. Suggested such type of designs will be economical and sufficiently safe.
{"title":"Reliability based seismic slope failure assessment of a high concrete face rockfill dam close to an active fault zone","authors":"Ugur Safak Cavus , Murat Kilit","doi":"10.1016/j.sandf.2025.101653","DOIUrl":"10.1016/j.sandf.2025.101653","url":null,"abstract":"<div><div>This study assesses the earthquake-induced failure risks of the upstream and downstream slopes of a concrete face dam (CFRD), which is under the influence of a nearby active fault, using the reliability-based analysis method. For this purpose, peak ground accelerations (PGAs) that may occur at the dam site were calculated probabilistically and their contribution to the sliding risks of dam slopes was determined in accordance with the conditional probability theorem. Upstream and downstream slopes of CFRDs are usually conventionally designed as 1.3–1.5H:1V and 1.3–1.6H:1V, respectively throughout the world. Such slope design is considered sufficient for almost every case. The findings of this study are fully applicable and very important for the structural design of all concrete-faced rockfill dams (CFRDs) worldwide. Since, the slope design of CFRDs is similar and usually traditionally (1.3–1.5H; 1V for upstream slope and 1.4–1.6H:1V for downstream slope). However, this study proves that only conventional upstream slope design (1.3–1.5H:1V) can be safe for even very high peak ground accelerations (PGAs) occurring due to a nearby active fault, but contrary to expectations, downstream slope of CFRDs cannot be sufficiently safe and maintain its slope sliding safety when PGAs reach high levels. When the critical PGA level is exceeded, the downstream slope carries the risk of losing its stability with high probability, as emphasized in this study. Therefore, this study provides a new design strategy and extremely important information for dam design engineers which is to design a rather flatter downstream slope such as 1 vertical to 1.8–2.0 horizontal or, instead, to design a downstream rockfill berm supporting conventional design if CFRDs are to be built in high seismic hazard potential areas or close to active faults. Suggested such type of designs will be economical and sufficiently safe.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 4","pages":"Article 101653"},"PeriodicalIF":3.3,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144633086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-14DOI: 10.1016/j.sandf.2025.101635
Riccardo Fanni , David Reid , Andy Fourie
Experimental results are presented in this technical paper to investigate the mechanisms of plane strain consolidation and drained shearing typical of below slope conditions. Five torsional shear hollow cylinder tests were conducted on a sandy silt gold tailings, where consolidation was performed under at-rest (K0) conditions, and by applying a horizontal shear stress, while maintaining plane strain conditions. The tests were carried out under drained simple shear conditions (strain controlled) on tailings specimens prepared in loose and dense states and along a constant shear stress drained stress path (stress controlled) on a loose specimen, using an automated computer-controlled testing procedure. The evolution of static stresses in the loose and dense specimens during principal stress rotation, while maintaining plane strain conditions, were examined. These tests provide valuable insights into the behavior of tailings under plane strain conditions, contributing to the calibration of numerical models for slope analysis and more broadly for plane strain problems.
{"title":"Behaviour of a sandy silt gold tailings under drained simple shear loading in a torsional shear hollow cylinder apparatus","authors":"Riccardo Fanni , David Reid , Andy Fourie","doi":"10.1016/j.sandf.2025.101635","DOIUrl":"10.1016/j.sandf.2025.101635","url":null,"abstract":"<div><div>Experimental results are presented in this technical paper to investigate the mechanisms of plane strain consolidation and drained shearing typical of below slope conditions. Five torsional shear hollow cylinder tests were conducted on a sandy silt gold tailings, where consolidation was performed under at-rest (<em>K<sub>0</sub></em>) conditions, and by applying a horizontal shear stress, while maintaining plane strain conditions. The tests were carried out under drained simple shear conditions (strain controlled) on tailings specimens prepared in loose and dense states and along a constant shear stress drained stress path (stress controlled) on a loose specimen, using an automated computer-controlled testing procedure. The evolution of static stresses in the loose and dense specimens during principal stress rotation, while maintaining plane strain conditions, were examined. These tests provide valuable insights into the behavior of tailings under plane strain conditions, contributing to the calibration of numerical models for slope analysis and more broadly for plane strain problems.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 4","pages":"Article 101635"},"PeriodicalIF":3.3,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144614046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-14DOI: 10.1016/j.sandf.2025.101652
Daichi Yokoyama , Masahide Otsubo , Reiko Kuwano
Ground cave-ins, which are the collapse and discontinuous subsidence of the ground surface, are thought to be caused by the expansion and upward movement of subsurface cavities due to fluctuations in the groundwater table or earthquakes. Compared to cohesive clays or plastic silts, cohesionless sands are more vulnerable to cavity formation and subsequent ground cave-ins. With recent technology, such as ground-penetrating radar, geometrical information on cavities, e.g., location and shape, can be detected. In practice, the soil cover thickness-to-cavity width ratio () is often used for risk assessments of cave-ins. However, it is questionable whether alone is sufficient for these risk assessments since the mechanical responses, such as the resistance of the remaining soil above the cavity, are not considered. For this reason, the aim of the present contribution is to understand the mechanism underlying the subsurface cavity stability by considering the force transfer around the cavity. Suction measurement, cavity retention, and needle penetration model tests were conducted using various coarse granular materials. The results revealed that suction is essential to preventing cavities from collapsing, and that suction is higher for smaller particles, particles with lower degrees of saturation, and particles with angular shapes and smoother surfaces. In addition to , the mechanical interlock from angularity or roughness contributes to cavity stability. Laboratory needle penetration tests revealed the existence of a force-transfer arch between the sound and weakened zones around a cavity, which is related to the cavity stability. Furthermore, the position of the arch is affected not only by , but also by the particle characteristics (e.g., friction angle) and cavity roof shape. Therefore, considering the material type and the shape of the cavity roof, along with , will lead to enhanced assessments of the cave-in potential of subsurface cavities.
{"title":"Shaping force-transfer arch to retain subsurface cavity in coarse sandy ground","authors":"Daichi Yokoyama , Masahide Otsubo , Reiko Kuwano","doi":"10.1016/j.sandf.2025.101652","DOIUrl":"10.1016/j.sandf.2025.101652","url":null,"abstract":"<div><div>Ground cave-ins, which are the collapse and discontinuous subsidence of the ground surface, are thought to be caused by the expansion and upward movement of subsurface cavities due to fluctuations in the groundwater table or earthquakes. Compared to cohesive clays or plastic silts, cohesionless sands are more vulnerable to cavity formation and subsequent ground cave-ins. With recent technology, such as ground-penetrating radar, geometrical information on cavities, <em>e.g.,</em> location and shape, can be detected. In practice, the soil cover thickness-to-cavity width ratio (<span><math><mrow><mi>H</mi><mo>/</mo><mi>B</mi></mrow></math></span>) is often used for risk assessments of cave-ins. However, it is questionable whether <span><math><mrow><mi>H</mi><mo>/</mo><mi>B</mi></mrow></math></span> alone is sufficient for these risk assessments since the mechanical responses, such as the resistance of the remaining soil above the cavity, are not considered. For this reason, the aim of the present contribution is to understand the mechanism underlying the subsurface cavity stability by considering the force transfer around the cavity. Suction measurement, cavity retention, and needle penetration model tests were conducted using various coarse granular materials. The results revealed that suction is essential to preventing cavities from collapsing, and that suction is higher for smaller particles, particles with lower degrees of saturation, and particles with angular shapes and smoother surfaces. In addition to <span><math><mrow><mi>H</mi><mo>/</mo><mi>B</mi></mrow></math></span>, the mechanical interlock from angularity or roughness contributes to cavity stability. Laboratory needle penetration tests revealed the existence of a force-transfer arch between the sound and weakened zones around a cavity, which is related to the cavity stability. Furthermore, the position of the arch is affected not only by <span><math><mrow><mi>H</mi><mo>/</mo><mi>B</mi></mrow></math></span>, but also by the particle characteristics (<em>e.g.,</em> friction angle) and cavity roof shape. Therefore, considering the material type and the shape of the cavity roof, along with <span><math><mrow><mi>H</mi><mo>/</mo><mi>B</mi></mrow></math></span>, will lead to enhanced assessments of the cave-in potential of subsurface cavities.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 4","pages":"Article 101652"},"PeriodicalIF":3.3,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144614047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-07DOI: 10.1016/j.sandf.2025.101651
Joyce Nakayenga , Toshiro Hata , Alexandra Clarà Saracho , Stuart Kenneth Haigh
Sporosarcina newyorkensis is an indigenous microbe found in sedimentary layers bearing methane hydrates in the oceans around Japan’s main islands. It can survive extremely cold temperatures and precipitate calcium carbonate (CaCO3). This has led to interest in applying the microbe in microbiologically induced calcium carbonate precipitation (MICP) to improve the properties of the surrounding sand and to facilitate the exploration of methane hydrates. Using the injection method, a large-scale laboratory experiment was conducted in this study on sand columns with a diameter of 60 cm and a height of 70 cm to evaluate the MICP performance of S. newyorkensis under high overburden pressures of 3.5 and 20 MPa. The results indicated that S. newyorkensis can precipitate CaCO3 at high overburden pressures and reduce the permeability of sand. The unconfined compressive strength and amount of precipitated CaCO3 were seen to decrease with the distance from the injection well, but they remained sufficient to distances of up to 20 cm. S. newyorkensis was also found to increase the pH level, which would further promote CaCO3 precipitation and, in turn, lower hydraulic conductivity and stabilize hydrate-bearing sand formations.
{"title":"Effects of high pressure on microbiologically induced calcium carbonate precipitation of methane hydrate-bearing sand layers","authors":"Joyce Nakayenga , Toshiro Hata , Alexandra Clarà Saracho , Stuart Kenneth Haigh","doi":"10.1016/j.sandf.2025.101651","DOIUrl":"10.1016/j.sandf.2025.101651","url":null,"abstract":"<div><div><em>Sporosarcina newyorkensis</em> is an indigenous microbe found in sedimentary layers bearing methane hydrates in the oceans around Japan’s main islands. It can survive extremely cold temperatures and precipitate calcium carbonate (CaCO<sub>3</sub>). This has led to interest in applying the microbe in microbiologically induced calcium carbonate precipitation (MICP) to improve the properties of the surrounding sand and to facilitate the exploration of methane hydrates. Using the injection method, a large-scale laboratory experiment was conducted in this study on sand columns with a diameter of 60 cm and a height of 70 cm to evaluate the MICP performance of <em>S. newyorkensis</em> under high overburden pressures of 3.5 and 20 MPa. The results indicated that <em>S. newyorkensis</em> can precipitate CaCO<sub>3</sub> at high overburden pressures and reduce the permeability of sand. The unconfined compressive strength and amount of precipitated CaCO<sub>3</sub> were seen to decrease with the distance from the injection well, but they remained sufficient to distances of up to 20 cm. <em>S. newyorkensis</em> was also found to increase the pH level, which would further promote CaCO<sub>3</sub> precipitation and, in turn, lower hydraulic conductivity and stabilize hydrate-bearing sand formations.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 4","pages":"Article 101651"},"PeriodicalIF":3.3,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144571888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-03DOI: 10.1016/j.sandf.2025.101600
Taichi Ishimaru , Motoyuki Suzuki , Asahi Komori
Suffusion is the detachment and migration of fine particles through voids connected by the matrices of coarse particles. Although water storage structures are known to be affected by fluctuations in seepage flow, due to fluctuations in the water storage levels brought about by rainfall and agricultural activities, the suffusion behavior when the hydraulic gradient is fluctuated is unclear. In this study, one-dimensional downward water-passing experiments with suffusion were performed using a cylindrical column device, and the changes in the amounts of the discharged water and soil particles, as well as the turbidity of the drainage over time, were examined. The behavior of suffusion was investigated from two viewpoints: the quantitative changes in the amount of discharged drainage and the amount of discharged soil particles due to the progress of suffusion, and the qualitative changes in the particle size composition of the discharged soil particles. A unique feature of this study was the tracing of the changes in the particle size composition of the discharged soil particles from the relationship between the turbidity and the concentration of drainage during suffusion. As a result, it was found that not only the amount of soil particles discharged by suffusion, but also the particle size composition of the discharged soil particles changed under both constant and fluctuated hydraulic gradient conditions.
{"title":"Suffusion behavior under fluctuated hydraulic gradient conditions focusing on amount and size of soil particles contained in drainage","authors":"Taichi Ishimaru , Motoyuki Suzuki , Asahi Komori","doi":"10.1016/j.sandf.2025.101600","DOIUrl":"10.1016/j.sandf.2025.101600","url":null,"abstract":"<div><div>Suffusion is the detachment and migration of fine particles through voids connected by the matrices of coarse particles. Although water storage structures are known to be affected by fluctuations in seepage flow, due to fluctuations in the water storage levels brought about by rainfall and agricultural activities, the suffusion behavior when the hydraulic gradient is fluctuated is unclear. In this study, one-dimensional downward water-passing experiments with suffusion were performed using a cylindrical column device, and the changes in the amounts of the discharged water and soil particles, as well as the turbidity of the drainage over time, were examined. The behavior of suffusion was investigated from two viewpoints: the quantitative changes in the amount of discharged drainage and the amount of discharged soil particles due to the progress of suffusion, and the qualitative changes in the particle size composition of the discharged soil particles. A unique feature of this study was the tracing of the changes in the particle size composition of the discharged soil particles from the relationship between the turbidity and the concentration of drainage during suffusion. As a result, it was found that not only the amount of soil particles discharged by suffusion, but also the particle size composition of the discharged soil particles changed under both constant and fluctuated hydraulic gradient conditions.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 4","pages":"Article 101600"},"PeriodicalIF":3.3,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144549030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-03DOI: 10.1016/j.sandf.2025.101602
Tingting Deng , Yongfeng Deng , Hang Liu , Fang Liu , Zhenshun Hong , Xueyu Geng
Solidification/stabilization of heavy metal contaminated soils often falls short of achieving the desired quality due to challenges in effectively controlling mixing uniformity. Optimization of mixing equipment and construction technology is a common way to improve mixing uniformity. However, optimizing mixing equipment has high cost, limited site applicability and limited effect on improving uniformity. To solve the problem, a combined solidification/stabilization - vacuum dewatering technique (SSVD) was proposed, which is to increase the water to binder ratio to make the binder and heavy metal contaminated soils mixed evenly and then immediately vacuum dewatering. Its efficiency was explored through both laboratory experiments and a pilot project. Because zinc is a well-known factor that decreases compressive strength and cementation speed, zinc contaminated soil was studied. The findings indicate that the vacuum dewatering successfully removes water from solidified soils during the initial 12 h of setting and hardening in the field, indicating the feasibility of more water incorporation to raise the mixing workability. Furthermore, it can enhance the microstructure to prevent the migration of pollutant, and extract the heavy metals from the solidified mass by the cation exchanges. After 28 days of curing, laboratory tests showed a 1.9-4.1 times’ increment in strength and a 1.7-17.8 times’ reduction in permeability after dewatering. In the field, these values increase by 1.8 times and decrease by 1.7 times, respectively. The Zn2+ observed diffusivity also decreases by 2.0 times after dewatering in the laboratory. Microstructure analysis reveals that the vacuum dewatering significantly reduces the porosity of the solidified matrix, thereby enhancing its integrity. The proposed technology holds potential for the application not only in the solidification/stabilization remediation but also in the soft ground improvement in term of the better workability and homogeneity, stronger densification and capsulation, and less pollutant retention and binder consumption.
{"title":"Integrated remediation through solidification and dewatering of contaminated soil from laboratory investigation to in-situ application","authors":"Tingting Deng , Yongfeng Deng , Hang Liu , Fang Liu , Zhenshun Hong , Xueyu Geng","doi":"10.1016/j.sandf.2025.101602","DOIUrl":"10.1016/j.sandf.2025.101602","url":null,"abstract":"<div><div>Solidification/stabilization of heavy metal contaminated soils often falls short of achieving the desired quality due to challenges in effectively controlling mixing uniformity. Optimization of mixing equipment and construction technology is a common way to improve mixing uniformity. However, optimizing mixing equipment has high cost, limited site applicability and limited effect on improving uniformity. To solve the problem, a combined solidification/stabilization - vacuum dewatering technique (SSVD) was proposed, which is to increase the water to binder ratio to make the binder and heavy metal contaminated soils mixed evenly and then immediately vacuum dewatering. Its efficiency was explored through both laboratory experiments and a pilot project. Because zinc is a well-known factor that decreases compressive strength and cementation speed, zinc contaminated soil was studied. The findings indicate that the vacuum dewatering successfully removes water from solidified soils during the initial 12 h of setting and hardening in the field, indicating the feasibility of more water incorporation to raise the mixing workability. Furthermore, it can enhance the microstructure to prevent the migration of pollutant, and extract the heavy metals from the solidified mass by the cation exchanges. After 28 days of curing, laboratory tests showed a 1.9-4.1 times’ increment in strength and a 1.7-17.8 times’ reduction in permeability after dewatering. In the field, these values increase by 1.8 times and decrease by 1.7 times, respectively. The Zn<sup>2+</sup> observed diffusivity also decreases by 2.0 times after dewatering in the laboratory. Microstructure analysis reveals that the vacuum dewatering significantly reduces the porosity of the solidified matrix, thereby enhancing its integrity. The proposed technology holds potential for the application not only in the solidification/stabilization remediation but also in the soft ground improvement in term of the better workability and homogeneity, stronger densification and capsulation, and less pollutant retention and binder consumption.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 4","pages":"Article 101602"},"PeriodicalIF":3.3,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144549031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}