Evaluation of seismic bearing capacity is to be vital for design of strip foundations in earthquake areas. Combining the upper bound theorem of limit analysis, the discrete technique is successfully extended in this study to investigate the seismic ultimate bearing capacity of shallow strip foundations on rock masses considering the Rayleigh waves, in which the nonlinear HB failure criterion is used to describe the constitutive relation of rock masses. The failure model of foundation soil is generated using the discretization method, a “point by point” technique. The variations of shear modulus G of rock masses and seismic acceleration varying with the depth are taken into consideration. The generalized tangential technique is employed to avoid the difficulty resulting from the nonlinear HB failure criterion. A linear corresponding to the Mohr–Coulomb failure criterion, tangent to the nonlinear Hoek–Brown failure criterion, is used to derive the objective function that is to be minimized. By comparing with the existing results, the present approach is verified. The widely parametric studies are made to investigate the effect of different parameters, e.g. shear modulus G, mi, GSI, , γ, D, VR, on the seismic bearing capacity of strip foundations. The present method provides a reference for strip foundations designed in earthquake areas.
Literature review revealed that effects of particle segregation and silt uniformity on the liquefaction resistance of sand–silt mixtures are not well understood. Therefore, cyclic direct simple shear tests were conducted to investigate effects of silt uniformity and stratified structures on the liquefaction resistance of sand–silt mixtures with 0%–40% fines content (FC). For all uniform sand–silt mixtures, as FC increased up to 20%, liquefaction resistance decreased, while it increased as FC increased from 20% to 40%. The liquefaction resistance of the samples with uniform silt only in the top and bottom layers was slightly higher than that of a uniform sample (USM), while the cyclic strength of the samples with silt concentrated in the middle layer was greater (up to 23%) than that of other nonuniform samples. USM exhibited the least liquefaction resistance. In addition, the number of silt layers (NoSLs) substantially affected the liquefaction resistance of stratified structures: as NoSLs increased from 1 to 3 layers, the cyclic resistance ratio was reduced by 20%, 10%, and 7% for FC values of 20%, 30%, and 40%, respectively. The liquefaction resistance of the stratified samples was greater than that of USM. To quantify the effect of silt uniformity and NoSLs, the nonuniformity index (NUI) was introduced herein; the calculated NUI values showed that the increase in liquefaction resistance was well correlated with the increase in the NUI.
Ground deformation on the Earth’s surface layer is strongly affected by the nonlinearity of geomaterials. However, the formation process of such deformation has yet to be described in a unified manner based on mechanics. The present study focuses on the normal faults in a submarine ground with highly developed soil skeleton structures and attempts to reproduce the process of normal fault formation associated with the tilting of a horizontally deposited submarine ground using an elastoplastic finite element simulation. The simulation was conducted using the soil–water coupled finite deformation analysis code GEOASIA, which incorporates an elastoplastic constitutive equation of the soil skeleton based on the modified Cam-clay model and the soil skeleton structure concept. The key findings are as follows:
1) Normal faults are formed from the ground surface to depth as shear bands, where shear strain is localized while exhibiting softening behavior with plastic volume compression.
2) Multiple normal faults are almost equally spaced and parallel to each other, with the inter-fault blocks rotating backward. The morphology of normal faults formed by the tilting of the ground shows domino-style characteristics.
3) The degree of the soil skeleton structure influences the formation of normal faults.
This study demonstrates that elastoplastic geomechanics can explain the formation process of ground deformation, which has usually been interpreted from the perspectives of geomorphology and geology.