首页 > 最新文献

Soils and Foundations最新文献

英文 中文
Rapid predictive method for the deterioration depth of cement solidified marine soft soil 水泥固化海洋软土劣化深度的快速预测方法
IF 3.3 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-08-01 DOI: 10.1016/j.sandf.2024.101494
Man Wang, Junjie Yang, Yalei Wu, Yuting Lu

The deterioration depth (D) is a relatively simple index used to evaluate the deterioration degree of solidified soil. Based on the equivalent relationship between the accelerated deterioration tests and the conventional deterioration tests and the power function form of the D prediction equation, a rapid prediction method is proposed in this study for predicting the D of cement solidified marine soft soil. Deterioration test results of the cement solidified marine soft soil showed that increases in the concentration of seawater accelerated the rate of cement soil deterioration. Deterioration test results of the cement solidified marine soft soil showed that increases in the concentration of seawater accelerated the rate of cement soil deterioration. Additionally, the D obtained from indoor and in-site conventional deterioration tests is almost the same. A rapid prediction method for the D of cement stabilized marine soft soil was established with the equivalent relationship between the accelerated and conventional deterioration tests and a power function form of the deterioration depth prediction equation. The predicted D and the development trend were more consistent with the results of the indoor and in-site conventional deterioration tests.

劣化深度(D)是用于评价固化土劣化程度的一个相对简单的指标。根据加速劣化试验与常规劣化试验之间的等效关系以及 D 预测方程的幂函数形式,本研究提出了一种快速预测水泥固结海相软土 D 的方法。水泥土固化海洋软土的劣化试验结果表明,海水浓度的增加加快了水泥土的劣化速度。水泥固化海洋软土的劣化测试结果表明,海水浓度增加会加快水泥土壤的劣化速度。此外,室内和现场常规劣化试验得出的 D 值几乎相同。利用加速劣化试验和常规劣化试验之间的等效关系以及劣化深度预测方程的幂函数形式,建立了水泥稳定海相软土 D 的快速预测方法。预测的 D 值和发展趋势与室内和现场常规劣化试验的结果更加一致。
{"title":"Rapid predictive method for the deterioration depth of cement solidified marine soft soil","authors":"Man Wang,&nbsp;Junjie Yang,&nbsp;Yalei Wu,&nbsp;Yuting Lu","doi":"10.1016/j.sandf.2024.101494","DOIUrl":"10.1016/j.sandf.2024.101494","url":null,"abstract":"<div><p>The deterioration depth (<em>D</em>) is a relatively simple index used to evaluate the deterioration degree of solidified soil. Based on the equivalent relationship between the accelerated deterioration tests and the conventional deterioration tests and the power function form of the <em>D</em> prediction equation, a rapid prediction method is proposed in this study for predicting the <em>D</em> of cement solidified marine soft soil. Deterioration test results of the cement solidified marine soft soil showed that increases in the concentration of seawater accelerated the rate of cement soil deterioration. Deterioration test results of the cement solidified marine soft soil showed that increases in the concentration of seawater accelerated the rate of cement soil deterioration. Additionally, the <em>D</em> obtained from indoor and in-site conventional deterioration tests is almost the same. A rapid prediction method for the <em>D</em> of cement stabilized marine soft soil was established with the equivalent relationship between the accelerated and conventional deterioration tests and a power function form of the deterioration depth prediction equation. The predicted <em>D</em> and the development trend were more consistent with the results of the indoor and in-site conventional deterioration tests.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 4","pages":"Article 101494"},"PeriodicalIF":3.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038080624000726/pdfft?md5=2185520f103f43965fa46356736964c1&pid=1-s2.0-S0038080624000726-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141953568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of ion concentration in pore water in compacted bentonite after infiltration by salt solutions 盐溶液渗透后压实膨润土孔隙水中离子浓度的研究
IF 3.3 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-07-06 DOI: 10.1016/j.sandf.2024.101467
Guodong Cai , Hailong Wang , Kunlin Ruan , Dachi Ito , Hideo Komine

The behavior of salt solutions infiltrated into compacted bentonite was investigated in this study, with particular attention paid to the ion concentration in the pore water, in order to improve the understanding of the bentonite behavior in geological disposal projects. A Japanese bentonite, Kunigel V1 (K_V1), was used to prepare specimens with a thickness of 2 mm and an initial dry density of 1.4 to 1.7 Mg/m3. For each density case, salt solutions (NaCl, KCl, and CaCl2) of different amounts (0 to 2 mol/L) were supplied to the specimens. After infiltration, the basal spacing (d001) and exchangeable cations of the montmorillonite in the bentonite and the leached cations from the bentonite were measured. Based on the test results, the ion concentration in the interlayer pore water of the montmorillonite or the interparticle pore water was discussed. The findings indicated that the infiltration capacities of the various salt solutions into the compacted K_V1 bentonite were in the order of KCl > CaCl2 > NaCl. The K_V1 specimen with the highest initial dry density exhibited the strongest resistance to salt solution infiltration. After the infiltration of the NaCl solution into the compacted K_V1 bentonite, the increased sodium ions mainly remained in the interparticle pores, leading to an increase in the sodium ion concentration in the interparticle pore water. During the infiltration of the KCl and CaCl2 solutions into the compacted K_V1 bentonite, the infiltrated potassium ions in the case of KC1 and the calcium ions in the case of CaCl2 tended to penetrate the interlayer pore preferentially, thereby displacing the exchangeable sodium ions. After most of the exchangeable sodium ions that had initially existed in the montmorillonite had been replaced, the infiltrated potassium or calcium ions remained in the interparticle pores.

本研究调查了盐溶液渗入压实膨润土的行为,尤其关注孔隙水中的离子浓度,以加深对地质处理项目中膨润土行为的理解。使用日本的 Kunigel V1(K_V1)膨润土制备厚度为 2 毫米、初始干密度为 1.4 至 1.7 兆克/立方米的试样。在每种密度情况下,向试样提供不同量(0 至 2 mol/L)的盐溶液(NaCl、KCl 和 CaCl2)。浸润后,测量膨润土中蒙脱石的基底间距(d001)和可交换阳离子以及从膨润土中浸出的阳离子。根据测试结果,讨论了蒙脱石层间孔隙水或颗粒间孔隙水的离子浓度。结果表明,各种盐溶液对压实的 K_V1 膨润土的渗透能力依次为 KCl > CaCl2 > NaCl。初始干密度最高的 K_V1 试样对盐溶液渗透的抵抗力最强。NaCl 溶液渗入压实的 K_V1 膨润土后,增加的钠离子主要停留在颗粒间孔隙中,导致颗粒间孔隙水中钠离子浓度增加。在 KCl 和 CaCl2 溶液渗入压密 K_V1 膨润土的过程中,渗入 KC1 的钾离子和 CaCl2 的钙离子倾向于优先渗入层间孔隙,从而取代了可交换的钠离子。在蒙脱石中最初存在的大部分可交换钠离子被置换后,渗入的钾离子或钙离子仍留在颗粒间孔隙中。
{"title":"Investigation of ion concentration in pore water in compacted bentonite after infiltration by salt solutions","authors":"Guodong Cai ,&nbsp;Hailong Wang ,&nbsp;Kunlin Ruan ,&nbsp;Dachi Ito ,&nbsp;Hideo Komine","doi":"10.1016/j.sandf.2024.101467","DOIUrl":"https://doi.org/10.1016/j.sandf.2024.101467","url":null,"abstract":"<div><p>The behavior of salt solutions infiltrated into compacted bentonite was investigated in this study, with particular attention paid to the ion concentration in the pore water, in order to improve the understanding of the bentonite behavior in geological disposal projects. A Japanese bentonite, Kunigel V1 (K_V1), was used to prepare specimens with a thickness of 2 mm and an initial dry density of 1.4 to 1.7 Mg/m<sup>3</sup>. For each density case, salt solutions (NaCl, KCl, and CaCl<sub>2</sub>) of different amounts (0 to 2 mol/L) were supplied to the specimens. After infiltration, the basal spacing (<em>d</em><sub>001</sub>) and exchangeable cations of the montmorillonite in the bentonite and the leached cations from the bentonite were measured. Based on the test results, the ion concentration in the interlayer pore water of the montmorillonite or the interparticle pore water was discussed. The findings indicated that the infiltration capacities of the various salt solutions into the compacted K_V1 bentonite were in the order of KCl &gt; CaCl<sub>2</sub> &gt; NaCl. The K_V1 specimen with the highest initial dry density exhibited the strongest resistance to salt solution infiltration. After the infiltration of the NaCl solution into the compacted K_V1 bentonite, the increased sodium ions mainly remained in the interparticle pores, leading to an increase in the sodium ion concentration in the interparticle pore water. During the infiltration of the KCl and CaCl<sub>2</sub> solutions into the compacted K_V1 bentonite, the infiltrated potassium ions in the case of KC1 and the calcium ions in the case of CaCl<sub>2</sub> tended to penetrate the interlayer pore preferentially, thereby displacing the exchangeable sodium ions. After most of the exchangeable sodium ions that had initially existed in the montmorillonite had been replaced, the infiltrated potassium or calcium ions remained in the interparticle pores.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 4","pages":"Article 101467"},"PeriodicalIF":3.3,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038080624000453/pdfft?md5=2c1b82adc6941e2ba4581fdf00db88df&pid=1-s2.0-S0038080624000453-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141582858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydro-mechanical response of volcanic ash on removal of fines: Shear stiffness to critical state mechanics 火山灰在去除细粒时的水力学响应:从剪切刚度到临界状态力学
IF 3.3 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-06-29 DOI: 10.1016/j.sandf.2024.101478
Sanjei Chitravel , Masahide Otsubo , Reiko Kuwano

Natural volcanic soils containing pumice particles are commonly found in Hokkaido, Japan, and this type of soil is prone to landslides, internal erosion, and liquefaction. Therefore, the purpose of this paper is to summarise the hydro-mechanical response of volcanic ash soil subjected to internal erosion using the modified erosion triaxial apparatus, based on the literature and additional investigations. The results of the study show that the rate of erosion and shear strain during the erosion process are influenced by initial density, stress state, and hydraulic gradient. Notably, anisotropic consolidation is experienced by specimens under seepage flow. Additionally, the removal of fines leads to a slight decrease in the grading state index. Moreover, suffosion increases the maximum shear modulus and Poisson’s ratio of the soil, while increasing seepage time stabilises the peak shear strength of eroded specimens. Furthermore, the critical state line does not change much with internal erosion. To sum up, this study offers valuable insights into the behaviour of volcanic ash soil subjected to internal erosion and provides an integrated interpretation of hydro-mechanical response of volcanic ash on removal of fines.

含有浮石颗粒的天然火山土壤在日本北海道很常见,这种土壤很容易发生滑坡、内部侵蚀和液化。因此,本文的目的是根据文献和补充调查,使用改进的侵蚀三轴仪器,总结火山灰土在受到内部侵蚀时的水力机械响应。研究结果表明,侵蚀速率和侵蚀过程中的剪切应变受初始密度、应力状态和水力梯度的影响。值得注意的是,试样在渗流作用下会出现各向异性固结。此外,细粒的去除会导致级配状态指数略有下降。此外,侵蚀会增加土壤的最大剪切模量和泊松比,而增加渗流时间则会稳定侵蚀试样的峰值剪切强度。此外,临界状态线随内部侵蚀的变化不大。总之,本研究为火山灰土受内侵蚀的行为提供了宝贵的见解,并对火山灰在去除细粒时的水力机械响应进行了综合解释。
{"title":"Hydro-mechanical response of volcanic ash on removal of fines: Shear stiffness to critical state mechanics","authors":"Sanjei Chitravel ,&nbsp;Masahide Otsubo ,&nbsp;Reiko Kuwano","doi":"10.1016/j.sandf.2024.101478","DOIUrl":"https://doi.org/10.1016/j.sandf.2024.101478","url":null,"abstract":"<div><p>Natural volcanic soils containing pumice particles are commonly found in Hokkaido, Japan, and this type of soil is prone to landslides, internal erosion, and liquefaction. Therefore, the purpose of this paper is to summarise the hydro-mechanical response of volcanic ash soil subjected to internal erosion using the modified erosion triaxial apparatus, based on the literature and additional investigations. The results of the study show that the rate of erosion and shear strain during the erosion process are influenced by initial density, stress state, and hydraulic gradient. Notably, anisotropic consolidation is experienced by specimens under seepage flow. Additionally, the removal of fines leads to a slight decrease in the grading state index. Moreover, suffosion increases the maximum shear modulus and Poisson’s ratio of the soil, while increasing seepage time stabilises the peak shear strength of eroded specimens. Furthermore, the critical state line does not change much with internal erosion. To sum up, this study offers valuable insights into the behaviour of volcanic ash soil subjected to internal erosion and provides an integrated interpretation of hydro-mechanical response of volcanic ash on removal of fines.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 4","pages":"Article 101478"},"PeriodicalIF":3.3,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038080624000568/pdfft?md5=81eb37c69b24c48ee20ad2becb086dbf&pid=1-s2.0-S0038080624000568-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141487257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of high capacity socketed H-piles with long rock socket 带长嵌岩的高承载力嵌岩工字桩的性能
IF 3.3 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-06-26 DOI: 10.1016/j.sandf.2024.101481
Arthur K.O. So

The pile capacity is commonly calculated by the engineers as the lesser of its structural capacity and the ultimate resistance of ground supporting it using a generalized equation irrespective of the shaft type, socket diameter, socket length, rock type and grout strength. This equation may be over-simplified and risky if the pile/grout/rock interaction is not considered. Based on the loading tests of 6 instrumented socketed piles with 4–6 m rock socket by others and 35 non-instrumented socketed H-piles with 5–34 m rock socket by the author, the load-transfer mechanism in long rock socket is found dependent not only on the mobilization of shear resistance in soil and rock layers, but also largely on the steel/grout bond behavior. A side resistance distribution factor αs is introduced as a simple and practical index to represent the load-transfer mechanism along the pile shaft and to the socket. It would increase with an increase in loading and pile length in soils, but decrease with an increase in socket length indicating that critical socket length does exist which is likely depending on the grout bond strength. Average bond stress reduces with increased socket length when the critical socket length is exceeded. Residual settlement is largely due to the slip and bond failure at the interface. Creep settlement is largely affected by the properties of grout mix and tends to increase with increased socket length.

工程师通常使用一个通用公式来计算桩的承载力,即桩的结构承载力与支撑桩的地层极限阻力中较小的数值,而与轴类型、承插口直径、承插口长度、岩石类型和灌浆强度无关。如果不考虑桩、灌浆料和岩石之间的相互作用,这个公式可能会过于简化,而且存在风险。根据他人对 6 根 4-6 米承插岩层的仪器承插桩和笔者对 35 根 5-34 米承插岩层的非仪器承插 H 型桩进行的加载试验,发现长承插岩层的荷载传递机制不仅取决于土层和岩层的抗剪能力,还在很大程度上取决于钢筋/灌浆的粘结行为。我们引入了侧阻力分布系数 αs 作为一个简单实用的指标,来表示沿桩轴和承插口的荷载传递机制。在土壤中,该系数会随着荷载和桩长的增加而增加,但会随着承台长度的增加而减少,这表明临界承台长度确实存在,这可能取决于灌浆粘结强度。当超过临界承台长度时,平均粘结应力会随着承台长度的增加而减小。残余沉降主要是由于界面处的滑移和粘结失效造成的。蠕变沉降主要受灌浆混合料特性的影响,并随着承插口长度的增加而增加。
{"title":"Performance of high capacity socketed H-piles with long rock socket","authors":"Arthur K.O. So","doi":"10.1016/j.sandf.2024.101481","DOIUrl":"https://doi.org/10.1016/j.sandf.2024.101481","url":null,"abstract":"<div><p>The pile capacity is commonly calculated by the engineers as the lesser of its structural capacity and the ultimate resistance of ground supporting it using a generalized equation irrespective of the shaft type, socket diameter, socket length, rock type and grout strength. This equation may be over-simplified and risky if the pile/grout/rock interaction is not considered. Based on the loading tests of 6 instrumented socketed piles with 4–6 m rock socket by others and 35 non-instrumented socketed H-piles with 5–34 m rock socket by the author, the load-transfer mechanism in long rock socket is found dependent not only on the mobilization of shear resistance in soil and rock layers, but also largely on the steel/grout bond behavior. A side resistance distribution factor α<sub>s</sub> is introduced as a simple and practical index to represent the load-transfer mechanism along the pile shaft and to the socket. It would increase with an increase in loading and pile length in soils, but decrease with an increase in socket length indicating that critical socket length does exist which is likely depending on the grout bond strength. Average bond stress reduces with increased socket length when the critical socket length is exceeded. Residual settlement is largely due to the slip and bond failure at the interface. Creep settlement is largely affected by the properties of grout mix and tends to increase with increased socket length.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 4","pages":"Article 101481"},"PeriodicalIF":3.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038080624000593/pdfft?md5=eb82393636865269cbeddb56927a5014&pid=1-s2.0-S0038080624000593-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141487259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of groundwater dynamics in rain-induced landslides: centrifuge and numerical study 雨水诱发的山体滑坡中地下水动力学的影响:离心机和数值研究
IF 3.3 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-06-24 DOI: 10.1016/j.sandf.2024.101482
S.H.S. Jayakody, Ryosuke Uzuoka, Kyohei Ueda

Landslides are a multifaceted phenomenon triggered by rainfall infiltration as a consequence of the decrease in effective stress upon the development of porewater pressure. Although many studies concentrated only on rainfall infiltration as the source of the primary hydrological regime, the impact of groundwater dynamics has been relatively underexplored owing to its elusive nature. Field investigations after the landslide incidents provide insight into the influence of groundwater dynamics and speculate its effect as a secondary hydrological regime is immense. Therefore, this paper uses centrifuge modeling and numerical simulations to study groundwater dynamics in rain-induced landslides. Instrumented model slopes made of silty sand were tested to examine the hypothesis of pre-existing groundwater flow levels and surcharged groundwater flow conditions in rain-induced landslides. It was observed that swiftly rising porewater pressure along the soil–bedrock interface triggered landslides more rapidly under high groundwater flow and immediate surcharged groundwater flow conditions. Deformation analysis confirmed that a voluminous landslide could be expected if the role of groundwater dynamics is higher. A two–dimensional coupled hydromechanical finite element simulation was performed to back–analyze the experimental results and to discuss the failure mechanism. Upon validation, numerical simulation emphasized how the failure was accelerated under low-intensity rainfall if high groundwater flow exists. Furthermore, the study identified that surcharged flow profoundly affects landslide initiation if the slope has a low pre-existing groundwater flow. The outcomes highlighted that groundwater dynamics should be an integral part of the temporal predictability of landslides as they can also govern the magnitude of landslides.

山体滑坡是降雨渗透引发的一种多层面现象,是孔隙水压力发展导致有效应力下降的结果。尽管许多研究仅关注降雨渗透作为主要水文机制的来源,但由于地下水动态的影响难以捉摸,因此对其研究相对不足。滑坡事件发生后的实地调查有助于深入了解地下水动力学的影响,并推测其作为次生水文系统的作用是巨大的。因此,本文利用离心机建模和数值模拟来研究雨水诱发滑坡中的地下水动力学。测试了由淤泥质砂土制成的仪器模型斜坡,以检验雨水诱发滑坡中预先存在的地下水流位和地下水流动条件的假设。结果表明,在地下水流量大和地下水立即充盈的条件下,沿土壤-岩石界面迅速上升的孔隙水压力会更快地引发滑坡。变形分析证实,如果地下水动力作用较强,预计会发生大体积滑坡。为了反向分析实验结果和讨论破坏机制,进行了二维耦合水力机械有限元模拟。经过验证,数值模拟强调了如果存在高地下水流,在低强度降雨情况下如何加速崩塌。此外,研究还发现,如果斜坡原有的地下水流量较低,则附加水流会对滑坡的发生产生深远影响。研究结果突出表明,地下水动态应成为山体滑坡时间可预测性的一个组成部分,因为地下水动态也会影响山体滑坡的规模。
{"title":"Effect of groundwater dynamics in rain-induced landslides: centrifuge and numerical study","authors":"S.H.S. Jayakody,&nbsp;Ryosuke Uzuoka,&nbsp;Kyohei Ueda","doi":"10.1016/j.sandf.2024.101482","DOIUrl":"https://doi.org/10.1016/j.sandf.2024.101482","url":null,"abstract":"<div><p>Landslides are a multifaceted phenomenon triggered by rainfall infiltration as a consequence of the decrease in effective stress upon the development of porewater pressure. Although many studies concentrated only on rainfall infiltration as the source of the primary hydrological regime, the impact of groundwater dynamics has been relatively underexplored owing to its elusive nature. Field investigations after the landslide incidents provide insight into the influence of groundwater dynamics and speculate its effect as a secondary hydrological regime is immense. Therefore, this paper uses centrifuge modeling and numerical simulations to study groundwater dynamics in rain-induced landslides. Instrumented model slopes made of silty sand were tested to examine the hypothesis of pre-existing groundwater flow levels and surcharged groundwater flow conditions in rain-induced landslides. It was observed that swiftly rising porewater pressure along the soil–bedrock interface triggered landslides more rapidly under high groundwater flow and immediate surcharged groundwater flow conditions. Deformation analysis confirmed that a voluminous landslide could be expected if the role of groundwater dynamics is higher. A two–dimensional coupled hydromechanical finite element simulation was performed to back–analyze the experimental results and to discuss the failure mechanism. Upon validation, numerical simulation emphasized how the failure was accelerated under low-intensity rainfall if high groundwater flow exists. Furthermore, the study identified that surcharged flow profoundly affects landslide initiation if the slope has a low pre-existing groundwater flow. The outcomes highlighted that groundwater dynamics should be an integral part of the temporal predictability of landslides as they can also govern the magnitude of landslides.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 4","pages":"Article 101482"},"PeriodicalIF":3.3,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S003808062400060X/pdfft?md5=d607c2820c4b16c095a2e3c825deb54b&pid=1-s2.0-S003808062400060X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141487258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of side and tip resistances for barrette piles using CYCU/Barrette/Side&Tip/64 使用 CYCU/Barrette/Side&Tip/64 评估发夹式桩的侧阻力和顶阻力
IF 3.7 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-06-01 DOI: 10.1016/j.sandf.2024.101477
Kok-Kwang Phoon , Suneelkumar Laveti , Yit-Jin Chen , Mary Abigail Jos

This study focuses on evaluating the side and tip resistances for barrette piles under compression loading. An extensive dataset from field load tests, designated as CYCU/Barrette/Side&Tip/64, was utilized for analysis. These data were categorized into drained and undrained soils, based on the predominant soil conditions along the pile shaft. In contrast, tip resistance depended on the soil (drained or undrained) or rock condition at the pile tip. Eight interpretation methods were employed to evaluate the measured side and tip resistances of each load test. The predicted side resistance was calculated using the classical α and β methods developed for more common piles such as drilled shafts. For the prediction of tip resistance, end-bearing capacity models for a drilled shaft resting on soil or socketed in rock are considered. Subsequently, a comparison was made between the measured and predicted capacities. Based on these analyses, it was observed that the measured side resistance is the main contributor to the overall capacity of barrette piles. The percentage of measured side resistance ranges from around 80% to 90%. In addition, the predicted side resistance calculated using the α and β methods is smaller than the measured side resistance interpreted using the L2 criterion. To reduce this prediction bias, the adhesion factor (α) and stress factors (K/Ko) for barrette piles were adjusted. For the tip resistance, the trend is opposite – predicted values are larger than the measured values for barrette piles resting on soil or socketed in rock. Another approach to correct for prediction bias called the generalized model factor is presented.

本研究的重点是评估压缩荷载作用下发夹桩的侧阻力和桩尖阻力。分析中使用了大量现场荷载试验数据集,这些数据集被命名为 CYCU/Barrette/Side&Tip/64。根据桩轴沿线的主要土壤条件,这些数据被分为排水土壤和不排水土壤。而桩尖阻力则取决于桩尖的土壤(排水或不排水)或岩石状况。我们采用了八种解释方法来评估每次荷载试验测得的侧阻力和桩尖阻力。预测侧阻力采用的是为钻井等更常见的桩而开发的经典 α 和 β 方法。在预测顶端阻力时,考虑了钻孔轴在土壤中或在岩石中的承载力模型。随后,对测量的承载力和预测的承载力进行了比较。根据这些分析,可以看出测量到的侧阻力是影响巴氏桩总承载力的主要因素。测得的侧阻力所占比例约为 80% 至 90%。此外,使用 α 和 β 方法计算的预测侧阻力小于使用 L2 标准解释的实测侧阻力。为了减小这种预测偏差,我们调整了发夹式桩的附着系数 (α)和应力系数 (K/Ko)。至于桩尖阻力,趋势则与此相反--对于静止在土壤上或插入岩石中的发夹式桩,预测值大于测量值。介绍了另一种纠正预测偏差的方法,称为广义模型系数。
{"title":"Evaluation of side and tip resistances for barrette piles using CYCU/Barrette/Side&Tip/64","authors":"Kok-Kwang Phoon ,&nbsp;Suneelkumar Laveti ,&nbsp;Yit-Jin Chen ,&nbsp;Mary Abigail Jos","doi":"10.1016/j.sandf.2024.101477","DOIUrl":"10.1016/j.sandf.2024.101477","url":null,"abstract":"<div><p>This study focuses on evaluating the side and tip resistances for barrette piles under compression loading. An extensive dataset from field load tests, designated as CYCU/Barrette/Side&amp;Tip/64, was utilized for analysis. These data were categorized into drained and undrained soils, based on the predominant soil conditions along the pile shaft. In contrast, tip resistance depended on the soil (drained or undrained) or rock condition at the pile tip. Eight interpretation methods were employed to evaluate the measured side and tip resistances of each load test. The predicted side resistance was calculated using the classical α and β methods developed for more common piles such as drilled shafts. For the prediction of tip resistance, end-bearing capacity models for a drilled shaft resting on soil or socketed in rock are considered. Subsequently, a comparison was made between the measured and predicted capacities. Based on these analyses, it was observed that the measured side resistance is the main contributor to the overall capacity of barrette piles. The percentage of measured side resistance ranges from around 80% to 90%. In addition, the predicted side resistance calculated using the α and β methods is smaller than the measured side resistance interpreted using the L<sub>2</sub> criterion. To reduce this prediction bias, the adhesion factor (α) and stress factors (K/K<sub>o</sub>) for barrette piles were adjusted. For the tip resistance, the trend is opposite – predicted values are larger than the measured values for barrette piles resting on soil or socketed in rock. Another approach to correct for prediction bias called the generalized model factor is presented.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 3","pages":"Article 101477"},"PeriodicalIF":3.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038080624000556/pdfft?md5=796d2d21b7539fb836d48ca2d9e82a38&pid=1-s2.0-S0038080624000556-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141231192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A method for estimating coefficient of lateral earth pressure based on cone penetration tests 基于锥入度试验的侧向土压力系数估算方法
IF 3.7 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-06-01 DOI: 10.1016/j.sandf.2024.101474
Donggun Nam, Qaisar Abbas, Junhwan Lee

The coefficient of lateral earth pressure at rest (K0) is a key state soil variable for the design of foundations and underground structures, characterizes in-situ stress state and soil condition. In this study, a method for the in-situ estimation of K0 using the cone penetration test (CPT) is proposed considering vertical and inclined cone resistances (qc). For this purpose, a series of laboratory CPTs in a soil chamber were conducted to obtain and characterize vertical and inclined qc values at various inclination angles (θ) and relative densities (DR). It was observed that the values of qc increased as θ increased, which was more pronounced at higher DR. Coupled Eulerian-Lagrangian (CEL) finite element analyses were performed to quantify the values of inclined qc at various cone penetration and soil conditions. Based on results from laboratory CPTs and CEL analyses, a CPT-based K0 correlation model was established, which was given as a function of vertical and inclined qc values. The model parameter for the proposed method was evaluated and quantified. The validity of the proposed method was confirmed from the comparison with case examples.

静止侧向土压力系数(K0)是地基和地下结构设计中的一个关键土壤状态变量,表征了原位应力状态和土壤条件。本研究提出了一种利用锥入度试验(CPT)原位估算 K0 的方法,考虑了垂直和倾斜锥阻力(qc)。为此,在一个土壤室中进行了一系列实验室 CPT,以获得并描述不同倾角 (θ) 和相对密度 (DR) 下的垂直和倾斜 qc 值。结果表明,qc 值随着 θ 的增大而增大,在 DR 较高时更为明显。进行了欧拉-拉格朗日(CEL)耦合有限元分析,以量化不同锥入度和土壤条件下的倾斜 qc 值。根据实验室 CPT 和 CEL 分析的结果,建立了基于 CPT 的 K0 相关模型,该模型是垂直和倾斜 qc 值的函数。对建议方法的模型参数进行了评估和量化。通过与实例的比较,确认了所建议方法的有效性。
{"title":"A method for estimating coefficient of lateral earth pressure based on cone penetration tests","authors":"Donggun Nam,&nbsp;Qaisar Abbas,&nbsp;Junhwan Lee","doi":"10.1016/j.sandf.2024.101474","DOIUrl":"10.1016/j.sandf.2024.101474","url":null,"abstract":"<div><p>The coefficient of lateral earth pressure at rest (K<sub>0</sub>) is a key state soil variable for the design of foundations and underground structures, characterizes in-situ stress state and soil condition. In this study, a method for the in-situ estimation of K<sub>0</sub> using the cone penetration test (CPT) is proposed considering vertical and inclined cone resistances (q<sub>c</sub>). For this purpose, a series of laboratory CPTs in a soil chamber were conducted to obtain and characterize vertical and inclined q<sub>c</sub> values at various inclination angles (θ) and relative densities (D<sub>R</sub>). It was observed that the values of q<sub>c</sub> increased as θ increased, which was more pronounced at higher D<sub>R</sub>. Coupled Eulerian-Lagrangian (CEL) finite element analyses were performed to quantify the values of inclined q<sub>c</sub> at various cone penetration and soil conditions. Based on results from laboratory CPTs and CEL analyses, a CPT-based K<sub>0</sub> correlation model was established, which was given as a function of vertical and inclined q<sub>c</sub> values. The model parameter for the proposed method was evaluated and quantified. The validity of the proposed method was confirmed from the comparison with case examples.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 3","pages":"Article 101474"},"PeriodicalIF":3.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038080624000520/pdfft?md5=6332fbc495ae3d617c0212322b941546&pid=1-s2.0-S0038080624000520-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141234659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of soil fabric anisotropy on the bearing capacity of geosynthetic-reinforced foundations under eccentric and inclined loadings 土层结构各向异性对偏心和倾斜荷载下土工合成材料加固地基承载力的影响
IF 3.7 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-06-01 DOI: 10.1016/j.sandf.2024.101479
Suraparb Keawsawasvong , Hessam Fathipour , Payam Zanganeh Ranjbar , Meghdad Payan , Pitthaya Jamsawang

This study aims to explore the significant impact of soil fabric anisotropy on the ultimate bearing capacity of eccentrically and obliquely loaded shallow foundations overlying a geosynthetic-reinforced granular deposit. For this purpose, the well-established lower bound theorems of limit analysis (LA) in conjunction with the finite elements (FE) formulations and second-order cone programming (SOCP) are exploited to perform the bearing capacity estimations. The consideration of the soil mass’s inherently anisotropic response in the granular layer involves the utilization of distinct internal friction angles in various directions. The lower bound FELA framework adopted in this study incorporates both the pull-out and tensile mechanisms of failure in the reinforcement layer. The marked contribution of soil inherent anisotropy to the impacts of ultimate tensile strength (Tu) and embedment depth (u) of the geosynthetic reinforcement on the failure mechanism, bearing capacity ratio (BCR), and failure envelope of the overlying obliquely/eccentrically strip footing is rigorously examined and discussed. It is generally concluded that for a given embedment depth, failure envelopes of the surface footing in both V-H and V-M planes shrink appreciably with the increase in the soil anisotropy ratio as well as the decrease in the geosynthetic ultimate tensile strength. Moreover, the influence of soil inherent anisotropy on the overall bearing capacity of shallow foundations is more evident in the case of using strong reinforcement compared to the weak geosynthetic. The findings of this investigation demonstrate that overlooking the soil inherently anisotropic behaviour in the numerical analysis of shallow foundations would give rise to undesirable non-conservative and precarious designs.

本研究旨在探讨土工织物各向异性对土工合成材料加固粒状沉积层上偏心和斜向加载浅层地基极限承载力的重要影响。为此,利用极限分析(LA)的成熟下限定理,结合有限元(FE)公式和二阶锥编程(SOCP)来进行承载力估算。考虑到土体在颗粒层中固有的各向异性响应,需要利用不同方向上的不同内摩擦角。本研究采用的下限 FELA 框架包含了加固层的拉出和拉伸两种破坏机制。土壤固有的各向异性对土工合成材料加固层的极限抗拉强度(Tu)和嵌入深度(u)对上覆斜向/偏心带状基脚的破坏机制、承载力比(BCR)和破坏包络的影响的显著贡献得到了严格的研究和讨论。总体结论是,对于给定的嵌入深度,随着土壤各向异性比的增加以及土工合成材料极限抗拉强度的降低,地表基脚在 V-H 和 V-M 平面上的破坏包络明显缩小。此外,与弱土工合成材料相比,在使用强加固材料的情况下,土壤固有各向异性对浅基础整体承载力的影响更为明显。研究结果表明,在对浅层地基进行数值分析时,如果忽略了土壤固有的各向异性行为,将会导致不理想的非保守和不稳定设计。
{"title":"Influence of soil fabric anisotropy on the bearing capacity of geosynthetic-reinforced foundations under eccentric and inclined loadings","authors":"Suraparb Keawsawasvong ,&nbsp;Hessam Fathipour ,&nbsp;Payam Zanganeh Ranjbar ,&nbsp;Meghdad Payan ,&nbsp;Pitthaya Jamsawang","doi":"10.1016/j.sandf.2024.101479","DOIUrl":"https://doi.org/10.1016/j.sandf.2024.101479","url":null,"abstract":"<div><p>This study aims to explore the significant impact of soil fabric anisotropy on the ultimate bearing capacity of eccentrically and obliquely loaded shallow foundations overlying a geosynthetic-reinforced granular deposit. For this purpose, the well-established lower bound theorems of limit analysis (LA) in conjunction with the finite elements (FE) formulations and second-order cone programming (SOCP) are exploited to perform the bearing capacity estimations. The consideration of the soil mass’s inherently anisotropic response in the granular layer involves the utilization of distinct internal friction angles in various directions. The lower bound FELA framework adopted in this study incorporates both the pull-out and tensile mechanisms of failure in the reinforcement layer. The marked contribution of soil inherent anisotropy to the impacts of ultimate tensile strength (<span><math><mrow><msub><mi>T</mi><mi>u</mi></msub></mrow></math></span>) and embedment depth (<span><math><mrow><mi>u</mi></mrow></math></span>) of the geosynthetic reinforcement on the failure mechanism, bearing capacity ratio (<em>BCR</em>), and failure envelope of the overlying obliquely/eccentrically strip footing is rigorously examined and discussed. It is generally concluded that for a given embedment depth, failure envelopes of the surface footing in both <span><math><mrow><mi>V</mi></mrow></math></span>-<span><math><mrow><mi>H</mi></mrow></math></span> and <span><math><mrow><mi>V</mi></mrow></math></span>-<span><math><mrow><mi>M</mi></mrow></math></span> planes shrink appreciably with the increase in the soil anisotropy ratio as well as the decrease in the geosynthetic ultimate tensile strength. Moreover, the influence of soil inherent anisotropy on the overall bearing capacity of shallow foundations is more evident in the case of using strong reinforcement compared to the weak geosynthetic. The findings of this investigation demonstrate that overlooking the soil inherently anisotropic behaviour in the numerical analysis of shallow foundations would give rise to undesirable non-conservative and precarious designs.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 3","pages":"Article 101479"},"PeriodicalIF":3.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S003808062400057X/pdfft?md5=5330ceea9a6760e700fe8c98f2b715c9&pid=1-s2.0-S003808062400057X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141289918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of the deformation characteristics of an inclined over-deep caisson based on the dynamic control method of uneven settlement 基于不均匀沉降动态控制方法的倾斜过深沉箱变形特征的演变
IF 3.7 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-05-23 DOI: 10.1016/j.sandf.2024.101476
Fei Yu , Kaiwen Tong , Jian Li , Zhangjun Dai , Shanxiong Chen

Taking a caisson foundation engineering of a railway across-river bridge as the case, the technical characteristics and key challenges of over-deep inclined caisson were described firstly. Subsequently, the main controlling factors of the uneven settlement were analyzed. In view of the difficulty in obtaining the parameters of disturbed grouting soil, as well as the large adjustment of subsequent construction loads, an uneven settlement method based on over-deep underwater lateral pressure test and high-pressure consolidation test was proposed. The proposed method was simulated by finite element method to analyze the variations of total settlement, differential settlement and inclined attitude of caisson foundation under different loading stages. The results showed that the difference in the thickness of the disturbed layer was the dominant factor of uneven settlement, finally controlling the inclination shape. Grouting reinforcement was conductive to improving the settlement of caisson foundation. The maximum total settlement, differential settlement and offset after reinforcement were reduced to 249.53 mm, 19.54 mm and 29.20 mm, respectively. The deformation mainly occurred in the loading stage before the platform construction, accounting for about 60 %. If it is considered to level the top surface, adjust the elevation and load center during the construction of platform, the incremental settlement, the north–south differential settlement and the offset of top surface corresponded to 94.26 mm, 10.31 mm and 17.52 mm, respectively. Finally, the reliability of above method was fully verified by comparing the measured data with calculated value. The results will provide certain ideas and methods for relevant engineering problems.

以某铁路跨河大桥的沉箱基础工程为例,首先阐述了超深倾斜沉箱的技术特点和主要难题。随后,分析了不均匀沉降的主要控制因素。针对扰动灌浆土参数获取困难、后续施工荷载调整大等问题,提出了基于超深水下侧压试验和高压固结试验的不均匀沉降方法。利用有限元法对所提出的方法进行了模拟,分析了不同加载阶段下沉箱地基的总沉降量、差异沉降量和倾斜姿态的变化。结果表明,扰动层厚度的差异是造成不均匀沉降的主要因素,并最终控制了倾斜形状。灌浆加固有利于改善沉箱地基的沉降。加固后的最大总沉降量、差异沉降量和偏移量分别减少到 249.53 毫米、19.54 毫米和 29.20 毫米。变形主要发生在平台施工前的加载阶段,约占 60%。如果考虑在平台施工过程中平整顶面、调整标高和荷载中心,则顶面的增量沉降、南北差异沉降和偏移分别为 94.26 mm、10.31 mm 和 17.52 mm。最后,通过实测数据与计算值的对比,充分验证了上述方法的可靠性。这些结果将为相关工程问题的解决提供一定的思路和方法。
{"title":"Evolution of the deformation characteristics of an inclined over-deep caisson based on the dynamic control method of uneven settlement","authors":"Fei Yu ,&nbsp;Kaiwen Tong ,&nbsp;Jian Li ,&nbsp;Zhangjun Dai ,&nbsp;Shanxiong Chen","doi":"10.1016/j.sandf.2024.101476","DOIUrl":"https://doi.org/10.1016/j.sandf.2024.101476","url":null,"abstract":"<div><p>Taking a caisson foundation engineering of a railway across-river bridge as the case, the technical characteristics and key challenges of over-deep inclined caisson were described firstly. Subsequently, the main controlling factors of the uneven settlement were analyzed. In view of the difficulty in obtaining the parameters of disturbed grouting soil, as well as the large adjustment of subsequent construction loads, an uneven settlement method based on over-deep underwater lateral pressure test and high-pressure consolidation test was proposed. The proposed method was simulated by finite element method to analyze the variations of total settlement, differential settlement and inclined attitude of caisson foundation under different loading stages. The results showed that the difference in the thickness of the disturbed layer was the dominant factor of uneven settlement, finally controlling the inclination shape. Grouting reinforcement was conductive to improving the settlement of caisson foundation. The maximum total settlement, differential settlement and offset after reinforcement were reduced to 249.53 mm, 19.54 mm and 29.20 mm, respectively. The deformation mainly occurred in the loading stage before the platform construction, accounting for about 60 %. If it is considered to level the top surface, adjust the elevation and load center during the construction of platform, the incremental settlement, the north–south differential settlement and the offset of top surface corresponded to 94.26 mm, 10.31 mm and 17.52 mm, respectively. Finally, the reliability of above method was fully verified by comparing the measured data with calculated value. The results will provide certain ideas and methods for relevant engineering problems.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 3","pages":"Article 101476"},"PeriodicalIF":3.7,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038080624000544/pdfft?md5=c5526b0cb643b3178f8ce8ee9183c9c6&pid=1-s2.0-S0038080624000544-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141089828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of creep strain from stress relaxation of sand in shear 根据砂在剪切状态下的应力松弛预测蠕变应变
IF 3.7 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL Pub Date : 2024-05-21 DOI: 10.1016/j.sandf.2024.101472
Kosit Jariyatatsakorn , Warat Kongkitkul , Fumio Tatsuoka

The creep (CP) strain and stress relaxation (SR) of a clean sand, KMUTT sand, exhibiting non-Isotach viscous properties were evaluated by consolidated-drained triaxial compression (CDTC) tests on air-dried specimens. The test results are analysed based on the nonlinear three-component (NTC) model. Consistent simple empirical equations were derived to predict the elapsed time and the irreversible strain when a given irreversible strain rate takes place during CP loading from those at the same irreversible strain rate during SR loading. Noting that short-term SR tests are much simpler to perform than long-term CP tests, particularly when using an ordinary displacement-controlled axial loading device, a simple empirical method consisting of these empirical equations was formulated to predict creep strain for a relatively long period from SR behaviour for a relatively short period. The creep strains predicted by this empirical method are well comparable with the test results and also with those simulated by the NTC model. It is argued that prediction by the empirical method is relevant in case it is not practical to perform the NTC model simulation.

通过对风干试样进行固结-排水三轴压缩(CDTC)试验,评估了具有非伊索塔赫粘性特性的洁净砂 KMUTT 砂的蠕变(CP)应变和应力松弛(SR)。试验结果根据非线性三分量(NTC)模型进行分析。得出了一致的简单经验方程,以预测在 CP 加载过程中发生给定不可逆应变率时的经过时间和不可逆应变,以及在 SR 加载过程中发生相同不可逆应变率时的经过时间和不可逆应变。注意到短期 SR 试验比长期 CP 试验简单得多,特别是在使用普通位移控制轴向加载装置的情况下,制定了一种由这些经验方程组成的简单经验方法,以根据相对较短时间内的 SR 行为预测相对较长时间内的蠕变应变。该经验方法预测的蠕变应变与试验结果以及 NTC 模型模拟的蠕变应变相当。在无法进行 NTC 模型模拟的情况下,使用经验方法进行预测是可行的。
{"title":"Prediction of creep strain from stress relaxation of sand in shear","authors":"Kosit Jariyatatsakorn ,&nbsp;Warat Kongkitkul ,&nbsp;Fumio Tatsuoka","doi":"10.1016/j.sandf.2024.101472","DOIUrl":"https://doi.org/10.1016/j.sandf.2024.101472","url":null,"abstract":"<div><p>The creep (CP) strain and stress relaxation (SR) of a clean sand, KMUTT sand, exhibiting non-Isotach viscous properties were evaluated by consolidated-drained triaxial compression (CDTC) tests on air-dried specimens. The test results are analysed based on the nonlinear three-component (NTC) model. Consistent simple empirical equations were derived to predict the elapsed time and the irreversible strain when a given irreversible strain rate takes place during CP loading from those at the same irreversible strain rate during SR loading. Noting that short-term SR tests are much simpler to perform than long-term CP tests, particularly when using an ordinary displacement-controlled axial loading device, a simple empirical method consisting of these empirical equations was formulated to predict creep strain for a relatively long period from SR behaviour for a relatively short period. The creep strains predicted by this empirical method are well comparable with the test results and also with those simulated by the NTC model. It is argued that prediction by the empirical method is relevant in case it is not practical to perform the NTC model simulation.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 3","pages":"Article 101472"},"PeriodicalIF":3.7,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038080624000507/pdfft?md5=69cada891bb2d0b0eca33b20915bbb2f&pid=1-s2.0-S0038080624000507-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141072945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Soils and Foundations
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1