Pub Date : 2023-04-20DOI: 10.3390/soilsystems7020041
M. A. Habib, S. Islam, M. Haque, L. Hassan, Md. Zulfiker Ali, S. Nayak, M. Dar, Y. K. Gaihre
Adoption of the right rice variety and water-saving irrigation method could reduce greenhouse gas (GHG) emissions in lowland rice cultivation. A study was conducted at the research farm of Bangladesh Agricultural University, Mymensingh, Bangladesh, in 2019 during the Boro (dry) season to determine the impacts of different rice varieties (BRRI dhan29, BRRI dhan47, BRRI dhan69, Binadhan-8, Binadhan-10, and Binadhan-17) on methane (CH4) emissions under two irrigation methods, i.e., alternate wetting and drying (AWD) and continuous flooding (CF). The treatments were laid out in a split-plot design, considering water regime as the main plots and rice variety as the sub-plots. The emission rates of CH4 were determined by collecting air samples using the closed chamber technique and measuring the concentrations using a gas chromatograph. CH4 emission rates varied with the growth and development of the rice varieties. The lowest cumulative CH4 emission rate was observed in Binadhan-17, particularly under AWD irrigation. Across the rice varieties, AWD irrigation significantly reduced the cumulative CH4 emissions by about 35% compared with CF. No significant variation in rice yield was observed between AWD (5.38 t ha−1) and CF (5.16 t ha−1). This study suggests that the cultivation of Binadhan-17 under AWD irrigation could be effective at reducing the carbon footprint of lowland rice fields.
采用合适的水稻品种和节水灌溉方式可以减少水稻种植过程中温室气体的排放。2019年旱季,在孟加拉国农业大学研究农场开展了不同水稻品种(BRRI dhan29、BRRI dhan47、BRRI dhan69、Binadhan-8、Binadhan-10和Binadhan-17)在干湿交替(AWD)和连续淹水(CF)两种灌溉方式下对甲烷(CH4)排放的影响研究。处理采用分块设计,以水分状况为主要样区,以水稻品种为次要样区。采用密闭室法采集空气样品,采用气相色谱仪测定气体浓度,确定了CH4的排放速率。CH4排放速率随水稻品种的生长发育而变化。累积CH4排放率最低的是Binadhan-17,特别是在全灌条件下。在所有水稻品种中,与CF相比,AWD灌溉显著减少了约35%的CH4累积排放量。AWD (5.38 t ha - 1)和CF (5.16 t ha - 1)对水稻产量没有显著影响。本研究表明,在全轮灌溉条件下种植Binadhan-17可以有效减少低地稻田的碳足迹。
{"title":"Effects of Irrigation Regimes and Rice Varieties on Methane Emissions and Yield of Dry Season Rice in Bangladesh","authors":"M. A. Habib, S. Islam, M. Haque, L. Hassan, Md. Zulfiker Ali, S. Nayak, M. Dar, Y. K. Gaihre","doi":"10.3390/soilsystems7020041","DOIUrl":"https://doi.org/10.3390/soilsystems7020041","url":null,"abstract":"Adoption of the right rice variety and water-saving irrigation method could reduce greenhouse gas (GHG) emissions in lowland rice cultivation. A study was conducted at the research farm of Bangladesh Agricultural University, Mymensingh, Bangladesh, in 2019 during the Boro (dry) season to determine the impacts of different rice varieties (BRRI dhan29, BRRI dhan47, BRRI dhan69, Binadhan-8, Binadhan-10, and Binadhan-17) on methane (CH4) emissions under two irrigation methods, i.e., alternate wetting and drying (AWD) and continuous flooding (CF). The treatments were laid out in a split-plot design, considering water regime as the main plots and rice variety as the sub-plots. The emission rates of CH4 were determined by collecting air samples using the closed chamber technique and measuring the concentrations using a gas chromatograph. CH4 emission rates varied with the growth and development of the rice varieties. The lowest cumulative CH4 emission rate was observed in Binadhan-17, particularly under AWD irrigation. Across the rice varieties, AWD irrigation significantly reduced the cumulative CH4 emissions by about 35% compared with CF. No significant variation in rice yield was observed between AWD (5.38 t ha−1) and CF (5.16 t ha−1). This study suggests that the cultivation of Binadhan-17 under AWD irrigation could be effective at reducing the carbon footprint of lowland rice fields.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42064314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-19DOI: 10.3390/soilsystems7020040
Bernard Gagnon, N. Ziadi
Combined paper mill biosolids (PB) and forest-derived liming by-products improve soil properties, but their residual effects following several years of application have hardly been investigated. A 13-year (2009–2021) field study was initiated at Yamachiche, QC, Canada, to assess the residual effects of PB and liming materials on the properties of a loamy soil. The PB was applied during nine consecutive years (2000–2008) at 0, 30, 60, and 90 Mg wet·ha−1, whereas the 30 Mg PB·ha−1 rate also received one of three liming materials (calcitic lime, lime mud, wood ash) at 3 Mg wet·ha−1. No amendment was applied during residual years. Past liming materials continued to increase soil pH but their effect decreased over time; meanwhile, past PB applications caused a low increase in residual soil NO3-N. Soil total C, which represented 40% of added organic C when PB applications ceased, stabilized to 15% after six years. Soil Mehlich-3-extractable contents declined over the thirteen residual years to be not significant for P, K, and Cu, while they reached half the values of the application years for Zn and Cd. Conversely, Mehlich-3 Ca was little affected by time. Therefore, land PB and liming material applications benefited soil properties several years after their cessation.
{"title":"Paper Mill Biosolids and Forest-Derived Liming Materials Applied on Cropland: Residual Effects on Soil Properties and Metal Availability","authors":"Bernard Gagnon, N. Ziadi","doi":"10.3390/soilsystems7020040","DOIUrl":"https://doi.org/10.3390/soilsystems7020040","url":null,"abstract":"Combined paper mill biosolids (PB) and forest-derived liming by-products improve soil properties, but their residual effects following several years of application have hardly been investigated. A 13-year (2009–2021) field study was initiated at Yamachiche, QC, Canada, to assess the residual effects of PB and liming materials on the properties of a loamy soil. The PB was applied during nine consecutive years (2000–2008) at 0, 30, 60, and 90 Mg wet·ha−1, whereas the 30 Mg PB·ha−1 rate also received one of three liming materials (calcitic lime, lime mud, wood ash) at 3 Mg wet·ha−1. No amendment was applied during residual years. Past liming materials continued to increase soil pH but their effect decreased over time; meanwhile, past PB applications caused a low increase in residual soil NO3-N. Soil total C, which represented 40% of added organic C when PB applications ceased, stabilized to 15% after six years. Soil Mehlich-3-extractable contents declined over the thirteen residual years to be not significant for P, K, and Cu, while they reached half the values of the application years for Zn and Cd. Conversely, Mehlich-3 Ca was little affected by time. Therefore, land PB and liming material applications benefited soil properties several years after their cessation.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48098905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-18DOI: 10.3390/soilsystems7020039
R. Ouimet, N. Korboulewsky, I. Bilger
The use of forest biomass to produce energy is increasingly viewed as a means to reduce fossil fuel consumption and mitigate global warming. However, the impact of such practices on soils in the long term is not well known. We revisited forest plots that were subjected to either whole-tree (WTH, n = 86) or stem-only (SOH, n = 110) harvesting 30 years ago in the boreal forest in Quebec, Canada. The objective of the present study was to find soil properties that could explain the lower soil C and N stocks at the sites subjected to WTH compared to SOH after 30 years. Compared to SOH, lower soil C and N stocks attributable to WTH occurred when soil particle content <20 µm was below 30%. The theoretical separation of soil organic matter into two fractions according to soil particle content <20 µm—a recalcitrant and a labile fraction—could explain the observed pattern of soil C and N differences between WTH and SOH. Imperfect or poor soil drainage conditions were also associated with lower soil C and N in WTH compared to SOH. Limiting additional biomass harvesting from these sites would help to preserve soil C and N from potential losses.
{"title":"Soil Texture Explains Soil Sensitivity to C and N Losses from Whole-Tree Harvesting in the Boreal Forest","authors":"R. Ouimet, N. Korboulewsky, I. Bilger","doi":"10.3390/soilsystems7020039","DOIUrl":"https://doi.org/10.3390/soilsystems7020039","url":null,"abstract":"The use of forest biomass to produce energy is increasingly viewed as a means to reduce fossil fuel consumption and mitigate global warming. However, the impact of such practices on soils in the long term is not well known. We revisited forest plots that were subjected to either whole-tree (WTH, n = 86) or stem-only (SOH, n = 110) harvesting 30 years ago in the boreal forest in Quebec, Canada. The objective of the present study was to find soil properties that could explain the lower soil C and N stocks at the sites subjected to WTH compared to SOH after 30 years. Compared to SOH, lower soil C and N stocks attributable to WTH occurred when soil particle content <20 µm was below 30%. The theoretical separation of soil organic matter into two fractions according to soil particle content <20 µm—a recalcitrant and a labile fraction—could explain the observed pattern of soil C and N differences between WTH and SOH. Imperfect or poor soil drainage conditions were also associated with lower soil C and N in WTH compared to SOH. Limiting additional biomass harvesting from these sites would help to preserve soil C and N from potential losses.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43005476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-17DOI: 10.3390/soilsystems7020038
Pasquale Napoletano, Costantina Barbarisi, V. Maselli, D. Rippa, C. Arena, M. G. Volpe, C. Colombo, D. Fulgione, A. De Marco
The goals of the current research were to assess the immediate impact of invasive wild boar (Sus scrofa L.) in olive orchards of southern Italy. Over a one-year study, in grubbed and ungrubbed areas, we measured the seasonal changes on the fast soil biological and chemical responses at depths of 0–15 cm and 15–40 cm, and several leaf and fruit characteristics. The impact factor, IFG, was used to quantify the effects of wild boar on individual soil parameters. Grubbing induced an increase in the soil moisture at both depths. Soil pH, organic matter, and C/N ratio were higher in grubbed soils at 0–15 cm and lower at 15–40 cm compared to ungrubbed soils. These trends were reflected in the higher microbial community biomass and the inhibition of fungal fraction in grubbed topsoil, while an opposite tendency at 15–40 cm was found. Microbial biomass had the highest IFG in topsoil (94%) and metabolic quotient (85%) at a 15–40 cm depth. Microbial stress condition and C loss were found in grubbed soil at both depths. Furthermore, these soils were also shown to be of lower quality than ungrubbed soils, especially at 0–15 cm (SQI = 0.40 vs. 0.50, respectively). A stronger negative impact of wild boar grubbing was observed in the Autumn/Winter and for fruit polyphenol content.
{"title":"Quantifying the Immediate Response of Soil to Wild Boar (Sus scrofa L.) Grubbing in Mediterranean Olive Orchards","authors":"Pasquale Napoletano, Costantina Barbarisi, V. Maselli, D. Rippa, C. Arena, M. G. Volpe, C. Colombo, D. Fulgione, A. De Marco","doi":"10.3390/soilsystems7020038","DOIUrl":"https://doi.org/10.3390/soilsystems7020038","url":null,"abstract":"The goals of the current research were to assess the immediate impact of invasive wild boar (Sus scrofa L.) in olive orchards of southern Italy. Over a one-year study, in grubbed and ungrubbed areas, we measured the seasonal changes on the fast soil biological and chemical responses at depths of 0–15 cm and 15–40 cm, and several leaf and fruit characteristics. The impact factor, IFG, was used to quantify the effects of wild boar on individual soil parameters. Grubbing induced an increase in the soil moisture at both depths. Soil pH, organic matter, and C/N ratio were higher in grubbed soils at 0–15 cm and lower at 15–40 cm compared to ungrubbed soils. These trends were reflected in the higher microbial community biomass and the inhibition of fungal fraction in grubbed topsoil, while an opposite tendency at 15–40 cm was found. Microbial biomass had the highest IFG in topsoil (94%) and metabolic quotient (85%) at a 15–40 cm depth. Microbial stress condition and C loss were found in grubbed soil at both depths. Furthermore, these soils were also shown to be of lower quality than ungrubbed soils, especially at 0–15 cm (SQI = 0.40 vs. 0.50, respectively). A stronger negative impact of wild boar grubbing was observed in the Autumn/Winter and for fruit polyphenol content.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44185798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-17DOI: 10.3390/soilsystems7020037
Akram R. Ben Ali, F. Holguin, M. Shukla
The phospholipid fatty acid method was used to determine the shifts in microbial biomass due to irrigation with reverse-osmosis (RO) concentrate (or highly saline reject water) and brackish groundwater (BGW). In this greenhouse study, RO concentrate and BGW were applied to irrigate pecan trees for 8 months for two consecutive seasons. The objectives of the study were to (i) evaluate how irrigation with RO concentrate and BGW impacts soil microbial composition in pecan rhizospheres using microbial phospholipid fatty acid (PLFA) biomarkers as indicators, and (ii) evaluate its implications on soil health. Three treatments of RO concentrate (EC = 8.0 dS/m), BGW (EC = 4.0 dS/m), and the city of Las Cruces’s water (EC = 0.8 dS/m) as a control were used to irrigate pecan trees. EC, pH, and organic matter (OM%) content of the soil samples were measured, and PLFA biomarkers for the microbial community were determined. Na-, Cl-, and K-ion concentrations were 26.16, 32.54, and 5.93 meq/L in 2017 and 25.44, 24.26, and 5.49 meq/L in 2018, respectively, in RO irrigation pots. For two seasons, gram-positive bacteria were dominant, while gram-negative bacteria were not detected in the second season. PLFA biomarkers of fungi were found among all three treatments in the first season; however, they appeared only with BGW in the second season. Actinomycetes were recorded in the first season while they were not seen in the second season. Increases in soil salinity and microbial shifts could have important implications for soil health. Irrigating with RO and BGW shifted the soil microbial composition; therefore, long-term irrigation with BGW and RO concentrate would be deleterious for pecan production and soil health.
{"title":"Soil Microbial Composition and Soil Health of Reverse-Osmosis-Concentrate and Brackish-Groundwater Irrigated Soils in Southern New Mexico","authors":"Akram R. Ben Ali, F. Holguin, M. Shukla","doi":"10.3390/soilsystems7020037","DOIUrl":"https://doi.org/10.3390/soilsystems7020037","url":null,"abstract":"The phospholipid fatty acid method was used to determine the shifts in microbial biomass due to irrigation with reverse-osmosis (RO) concentrate (or highly saline reject water) and brackish groundwater (BGW). In this greenhouse study, RO concentrate and BGW were applied to irrigate pecan trees for 8 months for two consecutive seasons. The objectives of the study were to (i) evaluate how irrigation with RO concentrate and BGW impacts soil microbial composition in pecan rhizospheres using microbial phospholipid fatty acid (PLFA) biomarkers as indicators, and (ii) evaluate its implications on soil health. Three treatments of RO concentrate (EC = 8.0 dS/m), BGW (EC = 4.0 dS/m), and the city of Las Cruces’s water (EC = 0.8 dS/m) as a control were used to irrigate pecan trees. EC, pH, and organic matter (OM%) content of the soil samples were measured, and PLFA biomarkers for the microbial community were determined. Na-, Cl-, and K-ion concentrations were 26.16, 32.54, and 5.93 meq/L in 2017 and 25.44, 24.26, and 5.49 meq/L in 2018, respectively, in RO irrigation pots. For two seasons, gram-positive bacteria were dominant, while gram-negative bacteria were not detected in the second season. PLFA biomarkers of fungi were found among all three treatments in the first season; however, they appeared only with BGW in the second season. Actinomycetes were recorded in the first season while they were not seen in the second season. Increases in soil salinity and microbial shifts could have important implications for soil health. Irrigating with RO and BGW shifted the soil microbial composition; therefore, long-term irrigation with BGW and RO concentrate would be deleterious for pecan production and soil health.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47328803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-13DOI: 10.3390/soilsystems7020036
S. Inamdar, S. Kaushal, Robert Brian Tetrick, Larry Trout, R. Rowland, Dennis Genito, H. Bais
Soil health is not explicitly included in current stream and floodplain restorations. This may be one of the many reasons that stream restorations are not achieving their full restoration and ecological benefits. The lack of design and implementation procedures for providing healthy soils and the absence of specific soil metrics for evaluation are some of the reasons for the non-inclusion of soil health in floodplain restorations. Here, we have brought together a team of researchers and practitioners to provide a blueprint for the inclusion of soil health in floodplain restorations, with a specific emphasis on approaches that may be easily accessible for practitioners. We describe the challenges posed by current restoration procedures for physical, chemical, and biological soil conditions. The top ten soil metrics that could be easily measured and could be leveraged by practitioners to assess floodplain soil conditions before and after restorations were identified and selected. The best design and construction practices for improving soil health on floodplains are presented. We also recommend that the current crediting approaches and regulatory mechanisms for stream restorations be updated to incentivize soil health. The inclusion of soil health will help us attain the ecological services and functional uplift goals that are being targeted by environmental agencies and the restoration community.
{"title":"More Than Dirt: Soil Health Needs to Be Emphasized in Stream and Floodplain Restorations","authors":"S. Inamdar, S. Kaushal, Robert Brian Tetrick, Larry Trout, R. Rowland, Dennis Genito, H. Bais","doi":"10.3390/soilsystems7020036","DOIUrl":"https://doi.org/10.3390/soilsystems7020036","url":null,"abstract":"Soil health is not explicitly included in current stream and floodplain restorations. This may be one of the many reasons that stream restorations are not achieving their full restoration and ecological benefits. The lack of design and implementation procedures for providing healthy soils and the absence of specific soil metrics for evaluation are some of the reasons for the non-inclusion of soil health in floodplain restorations. Here, we have brought together a team of researchers and practitioners to provide a blueprint for the inclusion of soil health in floodplain restorations, with a specific emphasis on approaches that may be easily accessible for practitioners. We describe the challenges posed by current restoration procedures for physical, chemical, and biological soil conditions. The top ten soil metrics that could be easily measured and could be leveraged by practitioners to assess floodplain soil conditions before and after restorations were identified and selected. The best design and construction practices for improving soil health on floodplains are presented. We also recommend that the current crediting approaches and regulatory mechanisms for stream restorations be updated to incentivize soil health. The inclusion of soil health will help us attain the ecological services and functional uplift goals that are being targeted by environmental agencies and the restoration community.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45759643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-12DOI: 10.3390/soilsystems7020035
Serge Wiltshire, Sarah Grobe, B. Beckage
Soil process models such as RothC typically assume soil organic carbon (SOC) is in equilibrium at the beginning of each simulation run. This is not likely to be true in the real world, since recalcitrant SOC pools (notably, humified material) take many decades to re-stabilize after a land use change. The equilibrium assumption stems from a spinup method in which the model is run under a single land use until all SOC pools stabilize. To overcome this, we demonstrate an alternative spinup procedure that accounts for historical land use changes. The “steady-state” and “historical” spinup methods both impute unknown C inputs such that the modeled SOC matches empirical measurements at the beginning of the simulation and set initial SOC fractions. Holding all other parameters equal, we evaluated how each spinup affects SOC projections in simulations of agricultural land use change in the U.S. state of Vermont. We found that projected SOC trajectories for all land use scenarios are sensitive to the spinup procedure. These differences are due to disparities in imputed below-ground plant-derived carbon between the two procedures. Compared to the steady-state, imputed C in the historical spinup is higher for land uses that increase SOC (e.g., adoption of regenerative practices) and lower for land uses that decrease SOC (e.g., a transition from pasture to crops), due to the time window within which land use changes are assumed to have occurred. The novel historical spinup procedure captures important dynamics commonly missing in previous studies, representing an advancement in soil process modeling.
{"title":"A Historically Driven Spinup Procedure for Soil Carbon Modeling","authors":"Serge Wiltshire, Sarah Grobe, B. Beckage","doi":"10.3390/soilsystems7020035","DOIUrl":"https://doi.org/10.3390/soilsystems7020035","url":null,"abstract":"Soil process models such as RothC typically assume soil organic carbon (SOC) is in equilibrium at the beginning of each simulation run. This is not likely to be true in the real world, since recalcitrant SOC pools (notably, humified material) take many decades to re-stabilize after a land use change. The equilibrium assumption stems from a spinup method in which the model is run under a single land use until all SOC pools stabilize. To overcome this, we demonstrate an alternative spinup procedure that accounts for historical land use changes. The “steady-state” and “historical” spinup methods both impute unknown C inputs such that the modeled SOC matches empirical measurements at the beginning of the simulation and set initial SOC fractions. Holding all other parameters equal, we evaluated how each spinup affects SOC projections in simulations of agricultural land use change in the U.S. state of Vermont. We found that projected SOC trajectories for all land use scenarios are sensitive to the spinup procedure. These differences are due to disparities in imputed below-ground plant-derived carbon between the two procedures. Compared to the steady-state, imputed C in the historical spinup is higher for land uses that increase SOC (e.g., adoption of regenerative practices) and lower for land uses that decrease SOC (e.g., a transition from pasture to crops), due to the time window within which land use changes are assumed to have occurred. The novel historical spinup procedure captures important dynamics commonly missing in previous studies, representing an advancement in soil process modeling.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42396801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-10DOI: 10.3390/soilsystems7020034
Aasma Parveen, Muhammad Mahran Aslam, Rashid Iqbal, Muhammad Ali, Muhammad Kamran, M. Alwahibi, M. Akram, Mohamed S. Elshikh
Climate changes and poor soil nutrient profiles in sub-tropics are determinant factors to estimate crop productivity. This study aims to evaluate the impact of phytohormones, e.g., indole acetic acid (IAA) and gibberellic acid (GA3), on mung bean yield, seed nutritional profile, and soil N availability in the sub-tropical region of Pakistan. The mung bean plants were treated with three levels (0, 30, and 60 mg L−1) of IAA and GA3 individually and/or in combination using a hydraulic sprayer. The amendments were applied in the flowering stage (approximately 25 days after germination) in a randomized complete block design. The results revealed that the 60 mg L−1 concentration of IAA and GA3 led to significant changes in the growth and yield traits compared to non-treated plants. For example, GA3 positively influenced the biological yield (35.0%), total carbohydrate (7.0%), protein (16.0%), and nitrogen (14.0%) contents in mung bean seeds, compared to the control (CK). Additionally, the combined foliar treatment of IAA and GA3 (IAA2 + GA2) displayed a much stronger influence on yield attributes, such as the number of pods by 66.0%, pods’ weights by 142.0%, and seed yield by 106.5%, compared with the CK. Mung bean plants showed a significant improvement in leaf photosynthetic pigments under a higher level (60 mg L−1) of sole and combined treatments of IAA and GA3. Moreover, except abscisic acid, the endogenous concentration of IAA, GA3, and zeatin was enhanced by 193.0%, 67.0%, and 175.0% after the combined application of IAA and GA3 (IAA2 + GA2) compared to the CK treatment. In addition, soil N availability was increased by 72.8% under the IAA2 treatment and 61.5% under IAA2 + GA2, respectively, compared with the control plot. It was concluded that the combined treatment of IAA and GA3 (IAA2 + GA2) followed by the sole application of GA3 and IAA at a 60 mg L−1 concentration were most effective treatments to improve the morpho-physiology and nutrient profile of mung beans; however, the underlying molecular mechanisms need to be explored further.
{"title":"Effect of Natural Phytohormones on Growth, Nutritional Status, and Yield of Mung Bean (Vigna radiata L.) and N Availability in Sandy-Loam Soil of Sub-Tropics","authors":"Aasma Parveen, Muhammad Mahran Aslam, Rashid Iqbal, Muhammad Ali, Muhammad Kamran, M. Alwahibi, M. Akram, Mohamed S. Elshikh","doi":"10.3390/soilsystems7020034","DOIUrl":"https://doi.org/10.3390/soilsystems7020034","url":null,"abstract":"Climate changes and poor soil nutrient profiles in sub-tropics are determinant factors to estimate crop productivity. This study aims to evaluate the impact of phytohormones, e.g., indole acetic acid (IAA) and gibberellic acid (GA3), on mung bean yield, seed nutritional profile, and soil N availability in the sub-tropical region of Pakistan. The mung bean plants were treated with three levels (0, 30, and 60 mg L−1) of IAA and GA3 individually and/or in combination using a hydraulic sprayer. The amendments were applied in the flowering stage (approximately 25 days after germination) in a randomized complete block design. The results revealed that the 60 mg L−1 concentration of IAA and GA3 led to significant changes in the growth and yield traits compared to non-treated plants. For example, GA3 positively influenced the biological yield (35.0%), total carbohydrate (7.0%), protein (16.0%), and nitrogen (14.0%) contents in mung bean seeds, compared to the control (CK). Additionally, the combined foliar treatment of IAA and GA3 (IAA2 + GA2) displayed a much stronger influence on yield attributes, such as the number of pods by 66.0%, pods’ weights by 142.0%, and seed yield by 106.5%, compared with the CK. Mung bean plants showed a significant improvement in leaf photosynthetic pigments under a higher level (60 mg L−1) of sole and combined treatments of IAA and GA3. Moreover, except abscisic acid, the endogenous concentration of IAA, GA3, and zeatin was enhanced by 193.0%, 67.0%, and 175.0% after the combined application of IAA and GA3 (IAA2 + GA2) compared to the CK treatment. In addition, soil N availability was increased by 72.8% under the IAA2 treatment and 61.5% under IAA2 + GA2, respectively, compared with the control plot. It was concluded that the combined treatment of IAA and GA3 (IAA2 + GA2) followed by the sole application of GA3 and IAA at a 60 mg L−1 concentration were most effective treatments to improve the morpho-physiology and nutrient profile of mung beans; however, the underlying molecular mechanisms need to be explored further.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42068235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-08DOI: 10.3390/soilsystems7020033
Youssouf El Jarjini, Moad Morarech, V. Vallès, Abdessamad Touiouine, M. Touzani, Y. Arjdal, Abdoul Azize Barry, L. Barbiero
The salinity of estuarine areas in arid or semi-arid environments can reach high values, conditioning the distribution of vegetation and soil surface characteristics. While many studies focused on the prediction of soil salinity as a function of numerous parameters, few attempted to explain the role of salinity and its distribution within the soil profile in the pattern of landscape units. In a wadi estuary in northern Morocco, landscape units derived from satellite imagery and naturalistic environmental analysis are compared with a systematic survey of salinity by means of apparent electrical conductivity (Eca) measurements. The comparison is based on the allocation of measurement points to an area of the estuary from Eca measurements alone, using linear discriminant analysis and four machine learning methods. The results show that between 57 and 66% of the points are well-classified, highlighting that salinity is a major factor in the discrimination of estuary zones. The distribution of salinity is mainly the result of the interaction between capillary rise and flooding by the tides and the wadi. The location of the misclassified points is analysed and discussed, as well as the possible causes of the confusions.
{"title":"Surface Formations Salinity Survey in an Estuarine Area of Northern Morocco, by Crossing Satellite Imagery, Discriminant Analysis, and Machine Learning","authors":"Youssouf El Jarjini, Moad Morarech, V. Vallès, Abdessamad Touiouine, M. Touzani, Y. Arjdal, Abdoul Azize Barry, L. Barbiero","doi":"10.3390/soilsystems7020033","DOIUrl":"https://doi.org/10.3390/soilsystems7020033","url":null,"abstract":"The salinity of estuarine areas in arid or semi-arid environments can reach high values, conditioning the distribution of vegetation and soil surface characteristics. While many studies focused on the prediction of soil salinity as a function of numerous parameters, few attempted to explain the role of salinity and its distribution within the soil profile in the pattern of landscape units. In a wadi estuary in northern Morocco, landscape units derived from satellite imagery and naturalistic environmental analysis are compared with a systematic survey of salinity by means of apparent electrical conductivity (Eca) measurements. The comparison is based on the allocation of measurement points to an area of the estuary from Eca measurements alone, using linear discriminant analysis and four machine learning methods. The results show that between 57 and 66% of the points are well-classified, highlighting that salinity is a major factor in the discrimination of estuary zones. The distribution of salinity is mainly the result of the interaction between capillary rise and flooding by the tides and the wadi. The location of the misclassified points is analysed and discussed, as well as the possible causes of the confusions.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46375682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-06DOI: 10.3390/soilsystems7020032
Ouafa Othmani, K. Khanchoul, Sana Boubehziz, H. Bouguerra, Abderraouf Benslama, J. Navarro-Pedreño
Soil erodibility is one of the most crucial factors used to estimate soil erosion by applying modeling techniques. Soil data from soil maps are commonly used to create maps of soil erodibility for soil conservation planning. This study analyzed the spatial variability of soil erodibility by using a digital elevation model (DTM) and surface soil sample data at the Rhirane catchment (Algeria). A total of 132 soil samples were collected of up to 20 cm in depth. The spatial distributions of the K-value and soil physical properties (permeability, organic matter, and texture) were used to elaborate ordinary Kriging interpolation maps. Results showed that mean values of soil organic matter content were statistically different between Chromic Cambisols (M = 3.4%) vs. Calcic Cambisols (M = 2.2%). The analysis of variance of the organic matter provided a tool for identifying significant differences when comparing means between the soil types. The soil granulometry is mainly composed of silt and fine sand. The soil erodibility showed values varying between 0.012 and 0.077 with an average of 0.034, which was greater in soils with calcic horizons. Statistical evaluation by using Pearson’s correlation revealed positive correlations between erodibility and silt (0.63%), and negative correlations with sand (−0.16%), clay (−0.56%), organic matter (−0.32%), permeability (−0.41%), soil structure (−0.40%), and the soil stability index (−0.26%). The variability analysis of the K-factor showed moderate spatial dependency with the soil erodibility map indicating moderate to highly erodible risk in cropland and sparse grassland land uses. Overall, the study provides scientific support for soil conservation management and appropriate agricultural food practices for food supply.
{"title":"Spatial Variability of Soil Erodibility at the Rhirane Catchment Using Geostatistical Analysis","authors":"Ouafa Othmani, K. Khanchoul, Sana Boubehziz, H. Bouguerra, Abderraouf Benslama, J. Navarro-Pedreño","doi":"10.3390/soilsystems7020032","DOIUrl":"https://doi.org/10.3390/soilsystems7020032","url":null,"abstract":"Soil erodibility is one of the most crucial factors used to estimate soil erosion by applying modeling techniques. Soil data from soil maps are commonly used to create maps of soil erodibility for soil conservation planning. This study analyzed the spatial variability of soil erodibility by using a digital elevation model (DTM) and surface soil sample data at the Rhirane catchment (Algeria). A total of 132 soil samples were collected of up to 20 cm in depth. The spatial distributions of the K-value and soil physical properties (permeability, organic matter, and texture) were used to elaborate ordinary Kriging interpolation maps. Results showed that mean values of soil organic matter content were statistically different between Chromic Cambisols (M = 3.4%) vs. Calcic Cambisols (M = 2.2%). The analysis of variance of the organic matter provided a tool for identifying significant differences when comparing means between the soil types. The soil granulometry is mainly composed of silt and fine sand. The soil erodibility showed values varying between 0.012 and 0.077 with an average of 0.034, which was greater in soils with calcic horizons. Statistical evaluation by using Pearson’s correlation revealed positive correlations between erodibility and silt (0.63%), and negative correlations with sand (−0.16%), clay (−0.56%), organic matter (−0.32%), permeability (−0.41%), soil structure (−0.40%), and the soil stability index (−0.26%). The variability analysis of the K-factor showed moderate spatial dependency with the soil erodibility map indicating moderate to highly erodible risk in cropland and sparse grassland land uses. Overall, the study provides scientific support for soil conservation management and appropriate agricultural food practices for food supply.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43568092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}