Yiming Duan, Shuai Chao, Xi Zhang, Junguo Li, Yaling Zhang, Chunhui Gu, Jiale He
As a byproduct of the steelmaking process, ladle slag has the potential to be used as an auxiliary cement material in the construction field. However, ladle slag generated after secondary refining is typically handled by air cooling and stacking, leading to the presence of the typical mineral phase mayenite (Ca12Al14O33, abbreviated as C12A7) in a crystalline form within the slag. This reduces its early hydration activity, which adversely affects the compressive strength of concrete and consequently lowers the resource utilization rate of ladle slag. Based on this, this article provides a comprehensive review of the generation process and composition of ladle slag. By discussing the hydration process and hydration products of the typical mineral phase C12A7 in ladle slag, as well as the mutual transformation of hydration products, it is shown that hydration products undergo transformation with increasing temperature. Compared to crystalline C12A7, amorphous, C12A7 exhibits excellent hydration activity. Building upon this, methods for amorphizing C12A7 are elucidated, wherein thermal activation or chemical activation is employed to alter the ordered arrangement of atoms within the crystal structure, thereby reducing the stability of the crystal structure to achieve amorphization of C12A7.
{"title":"The Hydration Activity Enhancement Method of Mayenite in Ladle Slag: A Review","authors":"Yiming Duan, Shuai Chao, Xi Zhang, Junguo Li, Yaling Zhang, Chunhui Gu, Jiale He","doi":"10.1002/srin.202400355","DOIUrl":"10.1002/srin.202400355","url":null,"abstract":"<p>As a byproduct of the steelmaking process, ladle slag has the potential to be used as an auxiliary cement material in the construction field. However, ladle slag generated after secondary refining is typically handled by air cooling and stacking, leading to the presence of the typical mineral phase mayenite (Ca<sub>12</sub>Al<sub>14</sub>O<sub>33</sub>, abbreviated as C<sub>12</sub>A<sub>7</sub>) in a crystalline form within the slag. This reduces its early hydration activity, which adversely affects the compressive strength of concrete and consequently lowers the resource utilization rate of ladle slag. Based on this, this article provides a comprehensive review of the generation process and composition of ladle slag. By discussing the hydration process and hydration products of the typical mineral phase C<sub>12</sub>A<sub>7</sub> in ladle slag, as well as the mutual transformation of hydration products, it is shown that hydration products undergo transformation with increasing temperature. Compared to crystalline C<sub>12</sub>A<sub>7</sub>, amorphous, C<sub>12</sub>A<sub>7</sub> exhibits excellent hydration activity. Building upon this, methods for amorphizing C<sub>12</sub>A<sub>7</sub> are elucidated, wherein thermal activation or chemical activation is employed to alter the ordered arrangement of atoms within the crystal structure, thereby reducing the stability of the crystal structure to achieve amorphization of C<sub>12</sub>A<sub>7</sub>.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"95 12","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongchao Ji, Wei Liu, Weimin Liu, Xiaomin Huang, Changzhe Song, Shengqiang Liu
The liner is affixed to the inner side of the ball mill cylinder to protect the cylinder. Through isothermal compression experiments, Arrhenius constitutive models, peak strain models, critical strain models, dynamic recrystallization dynamic models, and grain size models suitable for the forging process of Mn–Cr–Ni–Mo steel used in ball mill liners were established. By utilizing Deform software, a 3D thermo-force-structure coupling model for the hot forging process of ball mill liners was constructed, and the volume fraction of dynamic recrystallization and average grain size during forging was predicted. The response surface model was employed to investigate how process parameters interacted with each other and affected microstructure uniformity in ball mill liners. After optimization, the optimal parameters were determined: initial forging temperature at 1200 °C, forging speed at 30 mm s−1, and friction coefficient at 0.3. Subsequently, a hot forging experiment on ball mill liners was conducted using these optimized parameters; samples were analyzed through backscattered electron diffraction device experiments and microscopic tissue observations. Results demonstrated that microstructural changes observed during actual forging processes aligned with numerical simulation results—thus verifying both the accuracy of the Mn–Cr–Ni–Mo steel material model and numerical simulation method.
{"title":"Prediction of Microstructure Evolution in Ball Mill Liner Forging Process","authors":"Hongchao Ji, Wei Liu, Weimin Liu, Xiaomin Huang, Changzhe Song, Shengqiang Liu","doi":"10.1002/srin.202400479","DOIUrl":"10.1002/srin.202400479","url":null,"abstract":"<p>The liner is affixed to the inner side of the ball mill cylinder to protect the cylinder. Through isothermal compression experiments, Arrhenius constitutive models, peak strain models, critical strain models, dynamic recrystallization dynamic models, and grain size models suitable for the forging process of Mn–Cr–Ni–Mo steel used in ball mill liners were established. By utilizing Deform software, a 3D thermo-force-structure coupling model for the hot forging process of ball mill liners was constructed, and the volume fraction of dynamic recrystallization and average grain size during forging was predicted. The response surface model was employed to investigate how process parameters interacted with each other and affected microstructure uniformity in ball mill liners. After optimization, the optimal parameters were determined: initial forging temperature at 1200 °C, forging speed at 30 mm s<sup>−1</sup>, and friction coefficient at 0.3. Subsequently, a hot forging experiment on ball mill liners was conducted using these optimized parameters; samples were analyzed through backscattered electron diffraction device experiments and microscopic tissue observations. Results demonstrated that microstructural changes observed during actual forging processes aligned with numerical simulation results—thus verifying both the accuracy of the Mn–Cr–Ni–Mo steel material model and numerical simulation method.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"95 12","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao Li, Xingye Ma, Jinfeng Bai, Gang Wang, Yang Liu, Yuesi Sui, Xiangyun Zhong, Guozhong Xu, Shiyong Wu
The effects of two cokes with different reactivity on the lump ore's metallurgical properties and coke's solution loss are investigated under the high‐temperature load reduction. The work used an improved test device for softening‐melting and dropping characteristics of iron ores in both CO2 and CO2H2O atmospheres. The deterioration behavior of highly reactive cokes is expounded under hydrogen‐rich conditions. High‐reactivity cokes under hydrogen‐rich conditions are more favorable for enhancing the breathability of charge and the penetration of the coke layer. However, it increased the thickness of the softening zone. High‐reactivity cokes had obvious internal and external reaction gradients. The solution loss reaction mostly occurred on the surface, with selectivity. The longitudinal stacking height, layer number, and order degree in the carbon structure decreases after the reaction. The carbon‐structure difference weakens between the shell and core. The enhancement of coke's reactivity, however, results in the significant loss of coke powders on its surface. Unreduced FeO and refractory Fe2SiO4 are more likely to appear in the droplets, which is not conducive to the reduction of Fe and the generation of slag crust in the furnace. The difficulty in separating lump ores and cokes is aggravated, and more iron‐containing charge remain in the furnace.
研究了在高温减载条件下,两种不同反应活性的焦炭对块状矿石冶金特性和焦炭溶解损失的影响。这项工作使用了一种改进的试验装置,用于测试铁矿石在 CO2 和 CO2H2O 两种气氛下的软化-熔化和熔滴特性。阐述了高活性焦炭在富氢条件下的劣化行为。富氢条件下的高活性焦炭更有利于提高炉料的透气性和焦炭层的渗透性。但是,它增加了软化区的厚度。高活性焦炭具有明显的内外反应梯度。溶液流失反应主要发生在表面,具有选择性。反应后,碳结构的纵向堆积高度、层数和有序度降低。外壳和内核之间的碳结构差异减弱。然而,焦炭反应活性的增强导致其表面焦炭粉末的大量流失。液滴中更容易出现未还原的 FeO 和难熔的 Fe2SiO4,不利于铁的还原和炉内渣壳的生成。块矿和焦炭分离的难度加大,炉内残留的含铁炉料增多。
{"title":"Application of High‐ and Low‐Reactivity Cokes in Hydrogen‐Rich Blast Furnaces","authors":"Chao Li, Xingye Ma, Jinfeng Bai, Gang Wang, Yang Liu, Yuesi Sui, Xiangyun Zhong, Guozhong Xu, Shiyong Wu","doi":"10.1002/srin.202400445","DOIUrl":"https://doi.org/10.1002/srin.202400445","url":null,"abstract":"The effects of two cokes with different reactivity on the lump ore's metallurgical properties and coke's solution loss are investigated under the high‐temperature load reduction. The work used an improved test device for softening‐melting and dropping characteristics of iron ores in both CO<jats:sub>2</jats:sub> and CO<jats:sub>2</jats:sub>H<jats:sub>2</jats:sub>O atmospheres. The deterioration behavior of highly reactive cokes is expounded under hydrogen‐rich conditions. High‐reactivity cokes under hydrogen‐rich conditions are more favorable for enhancing the breathability of charge and the penetration of the coke layer. However, it increased the thickness of the softening zone. High‐reactivity cokes had obvious internal and external reaction gradients. The solution loss reaction mostly occurred on the surface, with selectivity. The longitudinal stacking height, layer number, and order degree in the carbon structure decreases after the reaction. The carbon‐structure difference weakens between the shell and core. The enhancement of coke's reactivity, however, results in the significant loss of coke powders on its surface. Unreduced FeO and refractory Fe<jats:sub>2</jats:sub>SiO<jats:sub>4</jats:sub> are more likely to appear in the droplets, which is not conducive to the reduction of Fe and the generation of slag crust in the furnace. The difficulty in separating lump ores and cokes is aggravated, and more iron‐containing charge remain in the furnace.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"8 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anastasiia Sherstneva, Caroline Quitzke, Matheus R. Bellé, Marco Wendler, Olena Volkova
To obtain a successful product during additive manufacturing, the powder as a raw material must have the high quality. The purpose of this work is to investigate CrMnNi steel powders obtained by inert gas atomization with nickel content: 3, 6, and 9 wt% and to identify dependencies between the powder size and morphology, solidification structure, and change in chemical composition and thermophysical properties. Particle size distribution is measured by a laser scattering analyzer: d50 value are 82.02, 69.32, and 75.54 μm for powders with 3, 6, and 9 wt%, respectively. Surface tension (ST) measurements are made by maximum bubble pressure method: for steels with 3, 6, and 9 wt% at temperature 1500 °C, ST is 1.01, 1.07, and 1.15 mN m−1, respectively. It is found that the change in particle size affects the chemical composition, the content of the ferromagnetic phase and secondary dendritic arm‐spacing. Changes in the content of elements such as S, O, N, and Mn are determined, depending on the diameter of the particles. The influence of changes in content of S, O, and N on the thermophysical properties such as ST is investigated.
{"title":"Characterization of CrMnNi Steel Powders Obtained via Gas Atomization","authors":"Anastasiia Sherstneva, Caroline Quitzke, Matheus R. Bellé, Marco Wendler, Olena Volkova","doi":"10.1002/srin.202400267","DOIUrl":"https://doi.org/10.1002/srin.202400267","url":null,"abstract":"To obtain a successful product during additive manufacturing, the powder as a raw material must have the high quality. The purpose of this work is to investigate CrMnNi steel powders obtained by inert gas atomization with nickel content: 3, 6, and 9 wt% and to identify dependencies between the powder size and morphology, solidification structure, and change in chemical composition and thermophysical properties. Particle size distribution is measured by a laser scattering analyzer: d<jats:sub>50</jats:sub> value are 82.02, 69.32, and 75.54 μm for powders with 3, 6, and 9 wt%, respectively. Surface tension (ST) measurements are made by maximum bubble pressure method: for steels with 3, 6, and 9 wt% at temperature 1500 °C, ST is 1.01, 1.07, and 1.15 mN m<jats:sup>−1</jats:sup>, respectively. It is found that the change in particle size affects the chemical composition, the content of the ferromagnetic phase and secondary dendritic arm‐spacing. Changes in the content of elements such as S, O, N, and Mn are determined, depending on the diameter of the particles. The influence of changes in content of S, O, and N on the thermophysical properties such as ST is investigated.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"36 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In practical applications, intermetallic compounds like Laves phase and metal carbides adversely affect the performance of nickel-based superalloys. Using a high-temperature confocal laser scanning microscope, the solidification process of as-cast GH3625 alloy containing Mg at different cooling rates (−20, −35, and −50 °C min−1) is studied. Fitting curves of the volume fraction of the solid phase with solidification temperature before and after Mg treatment are obtained. Trends of solid phase transformation rates with solidification temperature are determined. Differential scanning calorimetry is employed to analyze and statistically evaluate the melting temperature range and enthalpy of each phase during the melting process. Experimental results demonstrate that Mg treatment significantly accelerates the alloy solidification at the cooling rates of −20 and −35 °C min−1, while reducing the area of residual liquid phase at the same solidification temperature, disrupting the Laves/NbC eutectic relationship, and regularizing NbC morphology, transitioning its distribution from aggregation to dispersion. After Mg treatment, the precipitation of the Laves phase is significantly reduced. As a result, the influence mechanism of Mg treatment on the phase transformation and microstructure of GH3625 is clarified based on homogeneous nucleation theory.
在实际应用中,拉维斯相和金属碳化物等金属间化合物会对镍基超级合金的性能产生不利影响。利用高温共焦激光扫描显微镜,研究了含镁铸件 GH3625 合金在不同冷却速率(-20、-35 和 -50 °C min-1)下的凝固过程。得到了镁处理前后固相体积分数随凝固温度变化的拟合曲线。确定了固相转化率随凝固温度的变化趋势。采用差示扫描量热法对熔化过程中各相的熔化温度范围和焓进行了分析和统计评估。实验结果表明,在冷却速度为 -20 和 -35 °C min-1 时,镁处理显著加速了合金凝固,同时减少了相同凝固温度下的残余液相面积,破坏了 Laves/NbC 共晶关系,并使 NbC 形态规则化,使其分布从聚集过渡到分散。镁处理后,Laves 相的析出明显减少。因此,基于均相成核理论,阐明了镁处理对 GH3625 相变和微观结构的影响机制。
{"title":"In Situ Observation of Microstructure and Precipitate Phase Transformation during the Solidification of Mg-Containing GH3625 Alloy at Different Cooling Rates","authors":"Yu Zhang, Wei Gong, Pengfei Wang, Xingtong Li","doi":"10.1002/srin.202400301","DOIUrl":"10.1002/srin.202400301","url":null,"abstract":"<p>In practical applications, intermetallic compounds like Laves phase and metal carbides adversely affect the performance of nickel-based superalloys. Using a high-temperature confocal laser scanning microscope, the solidification process of as-cast GH3625 alloy containing Mg at different cooling rates (−20, −35, and −50 °C min<sup>−1</sup>) is studied. Fitting curves of the volume fraction of the solid phase with solidification temperature before and after Mg treatment are obtained. Trends of solid phase transformation rates with solidification temperature are determined. Differential scanning calorimetry is employed to analyze and statistically evaluate the melting temperature range and enthalpy of each phase during the melting process. Experimental results demonstrate that Mg treatment significantly accelerates the alloy solidification at the cooling rates of −20 and −35 °C min<sup>−1</sup>, while reducing the area of residual liquid phase at the same solidification temperature, disrupting the Laves/NbC eutectic relationship, and regularizing NbC morphology, transitioning its distribution from aggregation to dispersion. After Mg treatment, the precipitation of the Laves phase is significantly reduced. As a result, the influence mechanism of Mg treatment on the phase transformation and microstructure of GH3625 is clarified based on homogeneous nucleation theory.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"95 12","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Accumulative roll bonding (ARB) is a repeated cladding process in which two or more sheets of material are joined together by rolling at temperatures below recrystallization. The present review is focused on ARB of high‐alloy steels, which, among other laminated metal composites (LMCs), deliver the highest mechanical properties. After a brief description of high‐strength steels, history, and state of the art of LMCs, the principal roll bonding mechanism is explained. Further, the methodology of ARB of steels and variable parameters (stacking, temperature, etc.) are discussed. Known examples of steel–steel laminates are summarized with respect to their rolling temperature and mechanical properties. Further, the main toughening mechanisms of steel‐based LMCs are listed. The most promising candidates of high‐alloy steel laminates are presented in more detail. The important deformation mechanisms of twinning‐ and transformation‐induced plasticity (TWIP and TRIP) high‐alloy steels are explained. Microstructural changes and layer bonding as well as mechanical properties and damage behavior of two‐ and four‐layered TRIP/TWIP steel laminates are illustrated, including some specific phenomena, such as deformation lenses. Finally, by summarizing the analyzed data on steel laminates, conclusions and outlook are formulated.
{"title":"Steel–Steel Laminates Manufactured via Accumulative Roll Bonding","authors":"Mikhail Seleznev, Jennifer Mantel, Matthias Schmidtchen, Ulrich Prahl, Horst Biermann, Anja Weidner","doi":"10.1002/srin.202400472","DOIUrl":"https://doi.org/10.1002/srin.202400472","url":null,"abstract":"Accumulative roll bonding (ARB) is a repeated cladding process in which two or more sheets of material are joined together by rolling at temperatures below recrystallization. The present review is focused on ARB of high‐alloy steels, which, among other laminated metal composites (LMCs), deliver the highest mechanical properties. After a brief description of high‐strength steels, history, and state of the art of LMCs, the principal roll bonding mechanism is explained. Further, the methodology of ARB of steels and variable parameters (stacking, temperature, etc.) are discussed. Known examples of steel–steel laminates are summarized with respect to their rolling temperature and mechanical properties. Further, the main toughening mechanisms of steel‐based LMCs are listed. The most promising candidates of high‐alloy steel laminates are presented in more detail. The important deformation mechanisms of twinning‐ and transformation‐induced plasticity (TWIP and TRIP) high‐alloy steels are explained. Microstructural changes and layer bonding as well as mechanical properties and damage behavior of two‐ and four‐layered TRIP/TWIP steel laminates are illustrated, including some specific phenomena, such as deformation lenses. Finally, by summarizing the analyzed data on steel laminates, conclusions and outlook are formulated.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"308 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to optimize the heating schedule before forging and improve the breaking and deformation effects of carbides in high-speed steel, it is of great significance to study the transformation of M2C carbides at high temperatures. The evolution of carbides in the industrial-grade American Iron and Steel Institute M35 steel produced by electroslag remelting (ESR) is analyzed and observed using thermodynamic calculations and experimental methods. The results indicate that the carbides in the ESR ingot are mainly MC and M2C, and the microstructures of M2C carbides with the highest volume fraction are lamellar and brain like. As the heating temperature increases and holding time prolongs, the lamellar M2C carbides gradually transform into MC and M6C carbides, accompanied by protrusion, dissolution, separation, and spheroidization of the microstructure, until significant coarsening occurs at 1180 °C for 90 min. The newly transformed carbides are embedded and stacked with each other, occupying the original position of M2C carbides. Based on the theories of Gibbs free energy and atomic diffusion, the evolution mechanism of M2C carbides is discussed. Ultimately, the appropriate heating schedule is proposed, and it is validated by combining the characteristics of carbides after forging.
{"title":"Study on Evolution Behavior of Carbides in Industrial-Grade American Iron and Steel Institute M35 High-Speed Steel Produced by Electroslag Remelting","authors":"Wei Liang, Jing Li, Jiahao Li, Jian Chai","doi":"10.1002/srin.202400292","DOIUrl":"10.1002/srin.202400292","url":null,"abstract":"<p>In order to optimize the heating schedule before forging and improve the breaking and deformation effects of carbides in high-speed steel, it is of great significance to study the transformation of M<sub>2</sub>C carbides at high temperatures. The evolution of carbides in the industrial-grade American Iron and Steel Institute M35 steel produced by electroslag remelting (ESR) is analyzed and observed using thermodynamic calculations and experimental methods. The results indicate that the carbides in the ESR ingot are mainly MC and M<sub>2</sub>C, and the microstructures of M<sub>2</sub>C carbides with the highest volume fraction are lamellar and brain like. As the heating temperature increases and holding time prolongs, the lamellar M<sub>2</sub>C carbides gradually transform into MC and M<sub>6</sub>C carbides, accompanied by protrusion, dissolution, separation, and spheroidization of the microstructure, until significant coarsening occurs at 1180 °C for 90 min. The newly transformed carbides are embedded and stacked with each other, occupying the original position of M<sub>2</sub>C carbides. Based on the theories of Gibbs free energy and atomic diffusion, the evolution mechanism of M<sub>2</sub>C carbides is discussed. Ultimately, the appropriate heating schedule is proposed, and it is validated by combining the characteristics of carbides after forging.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"95 12","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The microstructure characteristics and the properties of rolled steels are significantly affected by the heat transfer and boiling phenomena occurring during the jet impingement cooling on run-out tables (ROT). In this study, experiments are conducted using a full industrial-scale ROT facility with rectangular plates made of low-carbon stainless steel (type 316L). The plate is heated up to a temperature ranging from