首页 > 最新文献

steel research international最新文献

英文 中文
Application of High‐ and Low‐Reactivity Cokes in Hydrogen‐Rich Blast Furnaces 高活性和低活性焦炭在富氢高炉中的应用
IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-09 DOI: 10.1002/srin.202400445
Chao Li, Xingye Ma, Jinfeng Bai, Gang Wang, Yang Liu, Yuesi Sui, Xiangyun Zhong, Guozhong Xu, Shiyong Wu
The effects of two cokes with different reactivity on the lump ore's metallurgical properties and coke's solution loss are investigated under the high‐temperature load reduction. The work used an improved test device for softening‐melting and dropping characteristics of iron ores in both CO2 and CO2H2O atmospheres. The deterioration behavior of highly reactive cokes is expounded under hydrogen‐rich conditions. High‐reactivity cokes under hydrogen‐rich conditions are more favorable for enhancing the breathability of charge and the penetration of the coke layer. However, it increased the thickness of the softening zone. High‐reactivity cokes had obvious internal and external reaction gradients. The solution loss reaction mostly occurred on the surface, with selectivity. The longitudinal stacking height, layer number, and order degree in the carbon structure decreases after the reaction. The carbon‐structure difference weakens between the shell and core. The enhancement of coke's reactivity, however, results in the significant loss of coke powders on its surface. Unreduced FeO and refractory Fe2SiO4 are more likely to appear in the droplets, which is not conducive to the reduction of Fe and the generation of slag crust in the furnace. The difficulty in separating lump ores and cokes is aggravated, and more iron‐containing charge remain in the furnace.
研究了在高温减载条件下,两种不同反应活性的焦炭对块状矿石冶金特性和焦炭溶解损失的影响。这项工作使用了一种改进的试验装置,用于测试铁矿石在 CO2 和 CO2H2O 两种气氛下的软化-熔化和熔滴特性。阐述了高活性焦炭在富氢条件下的劣化行为。富氢条件下的高活性焦炭更有利于提高炉料的透气性和焦炭层的渗透性。但是,它增加了软化区的厚度。高活性焦炭具有明显的内外反应梯度。溶液流失反应主要发生在表面,具有选择性。反应后,碳结构的纵向堆积高度、层数和有序度降低。外壳和内核之间的碳结构差异减弱。然而,焦炭反应活性的增强导致其表面焦炭粉末的大量流失。液滴中更容易出现未还原的 FeO 和难熔的 Fe2SiO4,不利于铁的还原和炉内渣壳的生成。块矿和焦炭分离的难度加大,炉内残留的含铁炉料增多。
{"title":"Application of High‐ and Low‐Reactivity Cokes in Hydrogen‐Rich Blast Furnaces","authors":"Chao Li, Xingye Ma, Jinfeng Bai, Gang Wang, Yang Liu, Yuesi Sui, Xiangyun Zhong, Guozhong Xu, Shiyong Wu","doi":"10.1002/srin.202400445","DOIUrl":"https://doi.org/10.1002/srin.202400445","url":null,"abstract":"The effects of two cokes with different reactivity on the lump ore's metallurgical properties and coke's solution loss are investigated under the high‐temperature load reduction. The work used an improved test device for softening‐melting and dropping characteristics of iron ores in both CO<jats:sub>2</jats:sub> and CO<jats:sub>2</jats:sub>H<jats:sub>2</jats:sub>O atmospheres. The deterioration behavior of highly reactive cokes is expounded under hydrogen‐rich conditions. High‐reactivity cokes under hydrogen‐rich conditions are more favorable for enhancing the breathability of charge and the penetration of the coke layer. However, it increased the thickness of the softening zone. High‐reactivity cokes had obvious internal and external reaction gradients. The solution loss reaction mostly occurred on the surface, with selectivity. The longitudinal stacking height, layer number, and order degree in the carbon structure decreases after the reaction. The carbon‐structure difference weakens between the shell and core. The enhancement of coke's reactivity, however, results in the significant loss of coke powders on its surface. Unreduced FeO and refractory Fe<jats:sub>2</jats:sub>SiO<jats:sub>4</jats:sub> are more likely to appear in the droplets, which is not conducive to the reduction of Fe and the generation of slag crust in the furnace. The difficulty in separating lump ores and cokes is aggravated, and more iron‐containing charge remain in the furnace.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ Observation of Microstructure and Precipitate Phase Transformation during the Solidification of Mg‐Containing GH3625 Alloy at Different Cooling Rates 不同冷却速率下含镁 GH3625 合金凝固过程中显微组织和沉淀相变的现场观察
IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-09 DOI: 10.1002/srin.202400301
Yu Zhang, Wei Gong, Pengfei Wang, Xingtong Li
In practical applications, intermetallic compounds like Laves phase and metal carbides adversely affect the performance of nickel‐based superalloys. Using a high‐temperature confocal laser scanning microscope, the solidification process of as‐cast GH3625 alloy containing Mg at different cooling rates (−20, −35, and −50 °C min−1) is studied. Fitting curves of the volume fraction of the solid phase with solidification temperature before and after Mg treatment are obtained. Trends of solid phase transformation rates with solidification temperature are determined. Differential scanning calorimetry is employed to analyze and statistically evaluate the melting temperature range and enthalpy of each phase during the melting process. Experimental results demonstrate that Mg treatment significantly accelerates the alloy solidification at the cooling rates of −20 and −35 °C min−1, while reducing the area of residual liquid phase at the same solidification temperature, disrupting the Laves/NbC eutectic relationship, and regularizing NbC morphology, transitioning its distribution from aggregation to dispersion. After Mg treatment, the precipitation of the Laves phase is significantly reduced. As a result, the influence mechanism of Mg treatment on the phase transformation and microstructure of GH3625 is clarified based on homogeneous nucleation theory.
在实际应用中,拉维斯相和金属碳化物等金属间化合物会对镍基超级合金的性能产生不利影响。利用高温共焦激光扫描显微镜,研究了含镁铸件 GH3625 合金在不同冷却速率(-20、-35 和 -50 °C min-1)下的凝固过程。得到了镁处理前后固相体积分数随凝固温度变化的拟合曲线。确定了固相转化率随凝固温度的变化趋势。采用差示扫描量热法对熔化过程中各相的熔化温度范围和焓进行了分析和统计评估。实验结果表明,在冷却速度为 -20 和 -35 °C min-1 时,镁处理显著加速了合金凝固,同时减少了相同凝固温度下的残余液相面积,破坏了 Laves/NbC 共晶关系,并使 NbC 形态规则化,使其分布从聚集过渡到分散。镁处理后,Laves 相的析出明显减少。因此,基于均相成核理论,阐明了镁处理对 GH3625 相变和微观结构的影响机制。
{"title":"In Situ Observation of Microstructure and Precipitate Phase Transformation during the Solidification of Mg‐Containing GH3625 Alloy at Different Cooling Rates","authors":"Yu Zhang, Wei Gong, Pengfei Wang, Xingtong Li","doi":"10.1002/srin.202400301","DOIUrl":"https://doi.org/10.1002/srin.202400301","url":null,"abstract":"In practical applications, intermetallic compounds like Laves phase and metal carbides adversely affect the performance of nickel‐based superalloys. Using a high‐temperature confocal laser scanning microscope, the solidification process of as‐cast GH3625 alloy containing Mg at different cooling rates (−20, −35, and −50 °C min<jats:sup>−1</jats:sup>) is studied. Fitting curves of the volume fraction of the solid phase with solidification temperature before and after Mg treatment are obtained. Trends of solid phase transformation rates with solidification temperature are determined. Differential scanning calorimetry is employed to analyze and statistically evaluate the melting temperature range and enthalpy of each phase during the melting process. Experimental results demonstrate that Mg treatment significantly accelerates the alloy solidification at the cooling rates of −20 and −35 °C min<jats:sup>−1</jats:sup>, while reducing the area of residual liquid phase at the same solidification temperature, disrupting the Laves/NbC eutectic relationship, and regularizing NbC morphology, transitioning its distribution from aggregation to dispersion. After Mg treatment, the precipitation of the Laves phase is significantly reduced. As a result, the influence mechanism of Mg treatment on the phase transformation and microstructure of GH3625 is clarified based on homogeneous nucleation theory.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of CrMnNi Steel Powders Obtained via Gas Atomization 通过气体雾化技术获得的铬锰镍钢粉的表征
IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-09 DOI: 10.1002/srin.202400267
Anastasiia Sherstneva, Caroline Quitzke, Matheus R. Bellé, Marco Wendler, Olena Volkova
To obtain a successful product during additive manufacturing, the powder as a raw material must have the high quality. The purpose of this work is to investigate CrMnNi steel powders obtained by inert gas atomization with nickel content: 3, 6, and 9 wt% and to identify dependencies between the powder size and morphology, solidification structure, and change in chemical composition and thermophysical properties. Particle size distribution is measured by a laser scattering analyzer: d50 value are 82.02, 69.32, and 75.54 μm for powders with 3, 6, and 9 wt%, respectively. Surface tension (ST) measurements are made by maximum bubble pressure method: for steels with 3, 6, and 9 wt% at temperature 1500 °C, ST is 1.01, 1.07, and 1.15 mN m−1, respectively. It is found that the change in particle size affects the chemical composition, the content of the ferromagnetic phase and secondary dendritic arm‐spacing. Changes in the content of elements such as S, O, N, and Mn are determined, depending on the diameter of the particles. The influence of changes in content of S, O, and N on the thermophysical properties such as ST is investigated.
要在增材制造过程中获得成功的产品,作为原材料的粉末必须具有高质量。这项工作的目的是研究通过惰性气体雾化获得的镍含量为 3、6 和 9 wt% 的铬锰镍钢粉末,并确定粉末尺寸和形态、凝固结构以及变化之间的关系:3、6 和 9 wt% 的铬锰镍钢粉末,并确定粉末尺寸与形态、凝固结构以及化学成分和热物理性能变化之间的关系。使用激光散射分析仪测量了粒度分布:镍含量为 3、6 和 9 wt% 的粉末的 d50 值分别为 82.02、69.32 和 75.54 μm。采用最大气泡压力法测定了表面张力(ST):在温度为 1500 °C 的条件下,3、6 和 9 wt% 的钢材的 ST 值分别为 1.01、1.07 和 1.15 mN m-1。研究发现,粒度的变化会影响化学成分、铁磁相含量和二级树枝状臂间距。S、O、N 和 Mn 等元素含量的变化取决于颗粒的直径。研究了 S、O 和 N 含量的变化对 ST 等热物理性质的影响。
{"title":"Characterization of CrMnNi Steel Powders Obtained via Gas Atomization","authors":"Anastasiia Sherstneva, Caroline Quitzke, Matheus R. Bellé, Marco Wendler, Olena Volkova","doi":"10.1002/srin.202400267","DOIUrl":"https://doi.org/10.1002/srin.202400267","url":null,"abstract":"To obtain a successful product during additive manufacturing, the powder as a raw material must have the high quality. The purpose of this work is to investigate CrMnNi steel powders obtained by inert gas atomization with nickel content: 3, 6, and 9 wt% and to identify dependencies between the powder size and morphology, solidification structure, and change in chemical composition and thermophysical properties. Particle size distribution is measured by a laser scattering analyzer: d<jats:sub>50</jats:sub> value are 82.02, 69.32, and 75.54 μm for powders with 3, 6, and 9 wt%, respectively. Surface tension (ST) measurements are made by maximum bubble pressure method: for steels with 3, 6, and 9 wt% at temperature 1500 °C, ST is 1.01, 1.07, and 1.15 mN m<jats:sup>−1</jats:sup>, respectively. It is found that the change in particle size affects the chemical composition, the content of the ferromagnetic phase and secondary dendritic arm‐spacing. Changes in the content of elements such as S, O, N, and Mn are determined, depending on the diameter of the particles. The influence of changes in content of S, O, and N on the thermophysical properties such as ST is investigated.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Steel–Steel Laminates Manufactured via Accumulative Roll Bonding 通过累积轧制粘合制造的钢-钢层压板
IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-09 DOI: 10.1002/srin.202400472
Mikhail Seleznev, Jennifer Mantel, Matthias Schmidtchen, Ulrich Prahl, Horst Biermann, Anja Weidner
Accumulative roll bonding (ARB) is a repeated cladding process in which two or more sheets of material are joined together by rolling at temperatures below recrystallization. The present review is focused on ARB of high‐alloy steels, which, among other laminated metal composites (LMCs), deliver the highest mechanical properties. After a brief description of high‐strength steels, history, and state of the art of LMCs, the principal roll bonding mechanism is explained. Further, the methodology of ARB of steels and variable parameters (stacking, temperature, etc.) are discussed. Known examples of steel–steel laminates are summarized with respect to their rolling temperature and mechanical properties. Further, the main toughening mechanisms of steel‐based LMCs are listed. The most promising candidates of high‐alloy steel laminates are presented in more detail. The important deformation mechanisms of twinning‐ and transformation‐induced plasticity (TWIP and TRIP) high‐alloy steels are explained. Microstructural changes and layer bonding as well as mechanical properties and damage behavior of two‐ and four‐layered TRIP/TWIP steel laminates are illustrated, including some specific phenomena, such as deformation lenses. Finally, by summarizing the analyzed data on steel laminates, conclusions and outlook are formulated.
累积轧制粘接(ARB)是一种重复堆焊工艺,在低于再结晶的温度下,通过轧制将两片或多片材料连接在一起。本综述侧重于高合金钢的 ARB,在其他层压金属复合材料(LMC)中,高合金钢具有最高的机械性能。在简要介绍了高强度钢、历史和 LMC 技术现状之后,对主要的轧辊粘接机制进行了说明。此外,还讨论了钢的 ARB 方法和可变参数(堆叠、温度等)。根据轧制温度和机械性能总结了已知的钢-钢层压板实例。此外,还列出了钢基 LMC 的主要增韧机制。更详细地介绍了最有前途的候选高合金钢层压板。解释了孪晶和转变诱导塑性(TWIP 和 TRIP)高合金钢的重要变形机制。说明了双层和四层 TRIP/TWIP 钢层压板的微观结构变化、层结合以及机械性能和损伤行为,包括一些特殊现象,如变形透镜。最后,通过总结钢层压板的分析数据,提出了结论和展望。
{"title":"Steel–Steel Laminates Manufactured via Accumulative Roll Bonding","authors":"Mikhail Seleznev, Jennifer Mantel, Matthias Schmidtchen, Ulrich Prahl, Horst Biermann, Anja Weidner","doi":"10.1002/srin.202400472","DOIUrl":"https://doi.org/10.1002/srin.202400472","url":null,"abstract":"Accumulative roll bonding (ARB) is a repeated cladding process in which two or more sheets of material are joined together by rolling at temperatures below recrystallization. The present review is focused on ARB of high‐alloy steels, which, among other laminated metal composites (LMCs), deliver the highest mechanical properties. After a brief description of high‐strength steels, history, and state of the art of LMCs, the principal roll bonding mechanism is explained. Further, the methodology of ARB of steels and variable parameters (stacking, temperature, etc.) are discussed. Known examples of steel–steel laminates are summarized with respect to their rolling temperature and mechanical properties. Further, the main toughening mechanisms of steel‐based LMCs are listed. The most promising candidates of high‐alloy steel laminates are presented in more detail. The important deformation mechanisms of twinning‐ and transformation‐induced plasticity (TWIP and TRIP) high‐alloy steels are explained. Microstructural changes and layer bonding as well as mechanical properties and damage behavior of two‐ and four‐layered TRIP/TWIP steel laminates are illustrated, including some specific phenomena, such as deformation lenses. Finally, by summarizing the analyzed data on steel laminates, conclusions and outlook are formulated.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on Evolution Behavior of Carbides in Industrial‐Grade American Iron and Steel Institute M35 High‐Speed Steel Produced by Electroslag Remelting 电渣重熔法生产的工业级美国钢铁协会 M35 高速钢中碳化物的演变行为研究
IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-09 DOI: 10.1002/srin.202400292
Wei Liang, Jing Li, Jiahao Li, Jian Chai
In order to optimize the heating schedule before forging and improve the breaking and deformation effects of carbides in high‐speed steel, it is of great significance to study the transformation of M2C carbides at high temperatures. The evolution of carbides in the industrial‐grade American Iron and Steel Institute M35 steel produced by electroslag remelting (ESR) is analyzed and observed using thermodynamic calculations and experimental methods. The results indicate that the carbides in the ESR ingot are mainly MC and M2C, and the microstructures of M2C carbides with the highest volume fraction are lamellar and brain like. As the heating temperature increases and holding time prolongs, the lamellar M2C carbides gradually transform into MC and M6C carbides, accompanied by protrusion, dissolution, separation, and spheroidization of the microstructure, until significant coarsening occurs at 1180 °C for 90 min. The newly transformed carbides are embedded and stacked with each other, occupying the original position of M2C carbides. Based on the theories of Gibbs free energy and atomic diffusion, the evolution mechanism of M2C carbides is discussed. Ultimately, the appropriate heating schedule is proposed, and it is validated by combining the characteristics of carbides after forging.
为了优化锻造前的加热时间,改善碳化物在高速钢中的断裂和变形效果,研究 M2C 碳化物在高温下的转变具有重要意义。利用热力学计算和实验方法,分析和观察了电渣重熔(ESR)生产的工业级美国钢铁协会 M35 钢中碳化物的演变过程。结果表明,ESR 钢锭中的碳化物主要是 MC 和 M2C,其中体积分数最高的 M2C 碳化物的微观结构为片状和脑状。随着加热温度的升高和保温时间的延长,片状 M2C 碳化物逐渐转变为 MC 和 M6C 碳化物,并伴随着微观结构的突起、溶解、分离和球化,直至在 1180 ℃、保温 90 分钟时发生明显的粗化。新转化的碳化物相互嵌入和堆积,占据了 M2C 碳化物的原有位置。基于吉布斯自由能和原子扩散理论,讨论了 M2C 碳化物的演化机理。最后,提出了适当的加热时间表,并结合锻造后碳化物的特征进行了验证。
{"title":"Study on Evolution Behavior of Carbides in Industrial‐Grade American Iron and Steel Institute M35 High‐Speed Steel Produced by Electroslag Remelting","authors":"Wei Liang, Jing Li, Jiahao Li, Jian Chai","doi":"10.1002/srin.202400292","DOIUrl":"https://doi.org/10.1002/srin.202400292","url":null,"abstract":"In order to optimize the heating schedule before forging and improve the breaking and deformation effects of carbides in high‐speed steel, it is of great significance to study the transformation of M<jats:sub>2</jats:sub>C carbides at high temperatures. The evolution of carbides in the industrial‐grade American Iron and Steel Institute M35 steel produced by electroslag remelting (ESR) is analyzed and observed using thermodynamic calculations and experimental methods. The results indicate that the carbides in the ESR ingot are mainly MC and M<jats:sub>2</jats:sub>C, and the microstructures of M<jats:sub>2</jats:sub>C carbides with the highest volume fraction are lamellar and brain like. As the heating temperature increases and holding time prolongs, the lamellar M<jats:sub>2</jats:sub>C carbides gradually transform into MC and M<jats:sub>6</jats:sub>C carbides, accompanied by protrusion, dissolution, separation, and spheroidization of the microstructure, until significant coarsening occurs at 1180 °C for 90 min. The newly transformed carbides are embedded and stacked with each other, occupying the original position of M<jats:sub>2</jats:sub>C carbides. Based on the theories of Gibbs free energy and atomic diffusion, the evolution mechanism of M<jats:sub>2</jats:sub>C carbides is discussed. Ultimately, the appropriate heating schedule is proposed, and it is validated by combining the characteristics of carbides after forging.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of the Effect of Initial Plate Temperature in Jet Impingement Cooling Process 研究喷射撞击冷却过程中初始板温度的影响
IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-09 DOI: 10.1002/srin.202400359
Mohamed S. Gadala, Abdulrahman Gomaa, Fahad Aslam
The microstructure characteristics and the properties of rolled steels are significantly affected by the heat transfer and boiling phenomena occurring during the jet impingement cooling on run‐out tables (ROT). In this study, experiments are conducted using a full industrial‐scale ROT facility with rectangular plates made of low‐carbon stainless steel (type 316L). The plate is heated up to a temperature ranging from to , then rapidly impinged using a single circular water jet, and the temperature drop is captured using an infrared thermal camera (FLIR A615 25°–50 Hz type). The dissipated heat flux, estimated experimentally using a 2D inverse heat conduction analysis, ranges from 6.1 to 3.4 MW m−2 across different zones along the plate surface. The impact of different initial plate temperature on the boiling behavior is studied by developing a 2D‐computational fluid dynamics (CFD) model, and the results are closely aligned with the experimental findings. The results reveal that when estimating the heat flux from CFD simulations, the best accuracy is obtained when considering fluid temperature at a point close to the plate surface (about 1 μm above the surface). Furthermore, the maximum extracted heat flux (MHF) is significantly influenced by the initial temperature of the plate. Increasing the initial plate temperature from 500 to 900 °C led to an increase of 82% in the MHF in stagnation zone, and 137% increase in the parallel‐flow region. The CFD model presented in this study and the full calculation of the boiling curves numerically will pave the road for investigating various practical parameters in jet impingement cooling.
轧制钢的微观结构特征和性能会受到跳动台 (ROT) 上喷射撞击冷却过程中发生的传热和沸腾现象的显著影响。本研究使用全工业规模的 ROT 设备对低碳不锈钢(316L 型)矩形板进行了实验。先将板加热到至 ,然后使用单个圆形水射流快速撞击,并使用红外热像仪(FLIR A615 25°-50 Hz 型)捕捉温降。通过二维反向热传导分析实验估算出的散失热通量在 6.1 至 3.4 MW m-2 之间,分布在平板表面的不同区域。通过建立二维计算流体动力学(CFD)模型,研究了不同的板初始温度对沸腾行为的影响,结果与实验结果非常吻合。结果表明,从 CFD 模拟中估算热通量时,考虑靠近板表面点(表面上方约 1 μm)的流体温度可获得最佳精度。此外,最大提取热通量(MHF)受板的初始温度影响很大。将板的初始温度从 500°C 提高到 900°C,停滞区的 MHF 增加了 82%,平行流区域的 MHF 增加了 137%。本研究提出的 CFD 模型和沸腾曲线的完整数值计算将为研究喷射撞击冷却中的各种实用参数铺平道路。
{"title":"Study of the Effect of Initial Plate Temperature in Jet Impingement Cooling Process","authors":"Mohamed S. Gadala, Abdulrahman Gomaa, Fahad Aslam","doi":"10.1002/srin.202400359","DOIUrl":"https://doi.org/10.1002/srin.202400359","url":null,"abstract":"The microstructure characteristics and the properties of rolled steels are significantly affected by the heat transfer and boiling phenomena occurring during the jet impingement cooling on run‐out tables (ROT). In this study, experiments are conducted using a full industrial‐scale ROT facility with rectangular plates made of low‐carbon stainless steel (type 316L). The plate is heated up to a temperature ranging from to , then rapidly impinged using a single circular water jet, and the temperature drop is captured using an infrared thermal camera (FLIR A615 25°–50 Hz type). The dissipated heat flux, estimated experimentally using a 2D inverse heat conduction analysis, ranges from 6.1 to 3.4 MW m<jats:sup>−2</jats:sup> across different zones along the plate surface. The impact of different initial plate temperature on the boiling behavior is studied by developing a 2D‐computational fluid dynamics (CFD) model, and the results are closely aligned with the experimental findings. The results reveal that when estimating the heat flux from CFD simulations, the best accuracy is obtained when considering fluid temperature at a point close to the plate surface (about 1 μm above the surface). Furthermore, the maximum extracted heat flux (MHF) is significantly influenced by the initial temperature of the plate. Increasing the initial plate temperature from 500 to 900 °C led to an increase of 82% in the MHF in stagnation zone, and 137% increase in the parallel‐flow region. The CFD model presented in this study and the full calculation of the boiling curves numerically will pave the road for investigating various practical parameters in jet impingement cooling.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Trace Element B on the Microstructure and Mechanical Properties of 8Cr4Mo4V Bearing Steel 微量元素 B 对 8Cr4Mo4V 轴承钢微观结构和机械性能的影响
IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-09 DOI: 10.1002/srin.202400501
Xingfu Yu, Ze Wu, Tianci Hao, Yong Su, Ying Jia, Yinghua Wei
By means of salt‐bath austempering treatment, microstructure observation, X‐Ray diffraction analysis, microhardness measurement, and friction and wear performance tests for 8Cr4Mo4V steels with standard composition and with trace addition of 0.005% boron, the effect of boron on the phase composition and mechanical properties of the steel is studied. The results show that trace element boron greatly increases the content of needle‐like lower bainite in the quenched microstructure, promotes the dissolution of undissolved carbides, reduces the content of M/A island, but coarsens grains. After tempering, trace element B increases the amount of bainite generation, refines the lath martensite, and significantly promotes the precipitation of carbides, whose size is finer, and the distribution is more dispersed. In terms of mechanical properties, trace element B improves the hardness by promoting the precipitation of the second phase and refining the lath martensite, and the increase in the bainite content changes the wear mechanism and enhances the wear resistance.
通过对标准成分和微量添加 0.005% 硼的 8Cr4Mo4V 钢进行盐浴奥氏体回火处理、显微组织观察、X 射线衍射分析、显微硬度测量以及摩擦和磨损性能测试,研究了硼对钢的相组成和机械性能的影响。结果表明,微量元素硼大大增加了淬火显微组织中针状下贝氏体的含量,促进了未溶解碳化物的溶解,降低了 M/A 岛的含量,但使晶粒变得粗大。回火后,微量元素 B 增加了贝氏体的生成量,细化了板条马氏体,并显著促进了碳化物的析出,碳化物的尺寸更细,分布更分散。在机械性能方面,微量元素 B 通过促进第二相的析出和细化板条马氏体提高了硬度,贝氏体含量的增加改变了磨损机理,增强了耐磨性。
{"title":"Effect of Trace Element B on the Microstructure and Mechanical Properties of 8Cr4Mo4V Bearing Steel","authors":"Xingfu Yu, Ze Wu, Tianci Hao, Yong Su, Ying Jia, Yinghua Wei","doi":"10.1002/srin.202400501","DOIUrl":"https://doi.org/10.1002/srin.202400501","url":null,"abstract":"By means of salt‐bath austempering treatment, microstructure observation, X‐Ray diffraction analysis, microhardness measurement, and friction and wear performance tests for 8Cr4Mo4V steels with standard composition and with trace addition of 0.005% boron, the effect of boron on the phase composition and mechanical properties of the steel is studied. The results show that trace element boron greatly increases the content of needle‐like lower bainite in the quenched microstructure, promotes the dissolution of undissolved carbides, reduces the content of M/A island, but coarsens grains. After tempering, trace element B increases the amount of bainite generation, refines the lath martensite, and significantly promotes the precipitation of carbides, whose size is finer, and the distribution is more dispersed. In terms of mechanical properties, trace element B improves the hardness by promoting the precipitation of the second phase and refining the lath martensite, and the increase in the bainite content changes the wear mechanism and enhances the wear resistance.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Cerium Addition on Microstructure and Mechanical Properties of the Ductile Iron 添加铈对球墨铸铁微观结构和机械性能的影响
IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-09 DOI: 10.1002/srin.202400458
Zhongyan Xie, Yubao Liu, Ying Ren, Lifeng Zhang
The effect of the cerium addition on the microstructure and properties of the ductile iron is investigated. The ferrocerium is added to obtain ductile iron samples with cerium contents of 10–750 ppm. In the ductile iron with a cerium content of 60 ppm, the amount and the spheroidization rate of graphites are the highest. The tensile strength of the ductile iron is 488 MPa and the elongation rate reaches 20.17%. For the ductile iron with a high toughness demand, it is necessary to add 60 ppm Ce in the ductile iron to increase the number density and spheroidization rate of graphites. The formation of CeS inclusions effectively promotes the heterogeneous nucleation of graphites, increasing the amount of graphites. The stronger carbon diffusion during the eutectic process increases the ferrite formation in the ductile iron, leading to a lower tensile strength and a higher elongation rate. When the cerium content exceeds 460 ppm, the precipitated Ce2C3 significantly reduces the performance of the ductile iron.
研究了添加铈对球墨铸铁微观结构和性能的影响。通过添加铈铁,获得了铈含量为 10-750 ppm 的球墨铸铁样品。在铈含量为 60ppm 的球墨铸铁中,石墨的数量和球化率最高。球墨铸铁的抗拉强度为 488 兆帕,伸长率达到 20.17%。对于韧性要求较高的球墨铸铁,有必要在球墨铸铁中添加 60 ppm Ce,以提高石墨的数量密度和球化率。CeS 包裹体的形成可有效促进石墨的异质成核,增加石墨的数量。共晶过程中较强的碳扩散会增加球墨铸铁中铁素体的形成,从而导致较低的抗拉强度和较高的伸长率。当铈含量超过 460 ppm 时,析出的 Ce2C3 会显著降低球墨铸铁的性能。
{"title":"Effect of Cerium Addition on Microstructure and Mechanical Properties of the Ductile Iron","authors":"Zhongyan Xie, Yubao Liu, Ying Ren, Lifeng Zhang","doi":"10.1002/srin.202400458","DOIUrl":"https://doi.org/10.1002/srin.202400458","url":null,"abstract":"The effect of the cerium addition on the microstructure and properties of the ductile iron is investigated. The ferrocerium is added to obtain ductile iron samples with cerium contents of 10–750 ppm. In the ductile iron with a cerium content of 60 ppm, the amount and the spheroidization rate of graphites are the highest. The tensile strength of the ductile iron is 488 MPa and the elongation rate reaches 20.17%. For the ductile iron with a high toughness demand, it is necessary to add 60 ppm Ce in the ductile iron to increase the number density and spheroidization rate of graphites. The formation of CeS inclusions effectively promotes the heterogeneous nucleation of graphites, increasing the amount of graphites. The stronger carbon diffusion during the eutectic process increases the ferrite formation in the ductile iron, leading to a lower tensile strength and a higher elongation rate. When the cerium content exceeds 460 ppm, the precipitated Ce<jats:sub>2</jats:sub>C<jats:sub>3</jats:sub> significantly reduces the performance of the ductile iron.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Nb and La on Precipitates, Yield Strength and Toughness of FeCrAl Alloy Nb 和 La 对 FeCrAl 合金析出物、屈服强度和韧性的影响
IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-04 DOI: 10.1002/srin.202400553
Huai Zhang, Chengbin Shi, Yiwa Luo
FeCrAl alloy is considered a promising material for light water reactor fuel cladding due to its excellent elevated temperature oxidation resistance and radiation performance. The effects of 0.21 wt% Nb or 0.23 wt% La additions on the microstructure, second phase, yield strength and toughness of FeCrAl alloy are studied. The morphology and number fraction of inclusions in FeCrAl alloys are analyzed. The addition of 0.21 wt% Nb in FeCrAl alloy promotes the precipitation of nanoscale (Fe,Cr)2(Nb,Ti) Laves phase and refining grain size. The addition of La‐modified Al2O3 and MgO·Al2O3 inclusions to La2O3 and LaS, and La2O3 is favorable to promote the heterogeneous nucleation of α‐Fe. The fracture mode of the FeCrAl alloy with 0.21 wt% Nb or 0.23 wt% La transitions from dimple fracture and quasi‐cleavage fracture to dimple fracture, in comparison with Nb‐free or La‐free FeCrAl alloy. Nb and La additions improve the yield strength and toughness of FeCrAl alloy. The addition of Nb exhibits a more pronounced strengthening effect on FeCrAl alloy compared with the addition of La.
由于具有优异的高温抗氧化性和辐射性能,FeCrAl 合金被认为是一种很有前途的轻水反应堆燃料包壳材料。本文研究了添加 0.21 wt% Nb 或 0.23 wt% La 对 FeCrAl 合金微观结构、第二相、屈服强度和韧性的影响。分析了 FeCrAl 合金中夹杂物的形态和数量分数。在 FeCrAl 合金中添加 0.21 wt% 的 Nb 可促进纳米级 (Fe,Cr)2(Nb,Ti) Laves 相的析出并细化晶粒尺寸。在 La2O3 和 LaS 中加入 La 改性 Al2O3 和 MgO-Al2O3 包裹体,La2O3 有利于促进 α-Fe 的异质成核。与不含 Nb 或 La 的 FeCrAl 合金相比,含 0.21 wt% Nb 或 0.23 wt% La 的 FeCrAl 合金的断裂模式从凹陷断裂和准劈裂断裂转变为凹陷断裂。添加 Nb 和 La 可提高铁铬铝合金的屈服强度和韧性。与添加 La 相比,添加 Nb 对 FeCrAl 合金的强化效果更为明显。
{"title":"Effect of Nb and La on Precipitates, Yield Strength and Toughness of FeCrAl Alloy","authors":"Huai Zhang, Chengbin Shi, Yiwa Luo","doi":"10.1002/srin.202400553","DOIUrl":"https://doi.org/10.1002/srin.202400553","url":null,"abstract":"FeCrAl alloy is considered a promising material for light water reactor fuel cladding due to its excellent elevated temperature oxidation resistance and radiation performance. The effects of 0.21 wt% Nb or 0.23 wt% La additions on the microstructure, second phase, yield strength and toughness of FeCrAl alloy are studied. The morphology and number fraction of inclusions in FeCrAl alloys are analyzed. The addition of 0.21 wt% Nb in FeCrAl alloy promotes the precipitation of nanoscale (Fe,Cr)<jats:sub>2</jats:sub>(Nb,Ti) Laves phase and refining grain size. The addition of La‐modified Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and MgO·Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> inclusions to La<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and LaS, and La<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> is favorable to promote the heterogeneous nucleation of α‐Fe. The fracture mode of the FeCrAl alloy with 0.21 wt% Nb or 0.23 wt% La transitions from dimple fracture and quasi‐cleavage fracture to dimple fracture, in comparison with Nb‐free or La‐free FeCrAl alloy. Nb and La additions improve the yield strength and toughness of FeCrAl alloy. The addition of Nb exhibits a more pronounced strengthening effect on FeCrAl alloy compared with the addition of La.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition Behavior for the Oxidation of Si‐Doped Fe3O4: A Combined Ab Initio Molecular Dynamics and Experimental Study 掺杂硅的 Fe3O4 氧化抑制行为:Ab Initio 分子动力学与实验相结合的研究
IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Pub Date : 2024-09-04 DOI: 10.1002/srin.202300768
Yaozu Wang, Xurui Liu, Ren Wang, Huiqing Jiang, Lisi Lu, Kaifa Zhang, Kexin Jiao, Fangyu Guo
The magnetite oxidation process involves magnetite surface adsorption and O2 dissociation, and the presence of impurity elements such as silicon inevitably affects the magnetite surface adsorption process. To explore and analyze the surface adsorption and oxidation behaviors of silicon‐doped Fe3O4, thermogravimetric experiments and density functional theory methods are used to investigate the physicochemical properties of this material during magnetite oxidation. The results of experiments show that with the increase of SiO2 content, the peaks of the oxidation reaction gradually migrate to the high‐temperature region, the initial oxidation temperature of the mineral increases, and the average oxidation rate decreases. The results of calculations show that when the surface system is doped with Si atoms, the relaxation time of the adsorption and dissociation of oxygen on the surface is prolonged, and the presence of Si isomerization tends to stabilize the crystal lattice structure, reduce the migration of ions, and decrease the mineral's oxidizing properties.
磁铁矿氧化过程涉及磁铁矿表面吸附和 O2 解离,硅等杂质元素的存在不可避免地影响磁铁矿表面吸附过程。为了探索和分析掺硅 Fe3O4 的表面吸附和氧化行为,采用热重实验和密度泛函理论方法研究了该材料在磁铁矿氧化过程中的物理化学性质。实验结果表明,随着 SiO2 含量的增加,氧化反应的峰值逐渐向高温区迁移,矿物的初始氧化温度升高,平均氧化速率降低。计算结果表明,当表面体系掺杂 Si 原子时,氧在表面吸附和解离的弛豫时间延长,Si 异构的存在使晶格结构趋于稳定,离子迁移减少,矿物的氧化性降低。
{"title":"Inhibition Behavior for the Oxidation of Si‐Doped Fe3O4: A Combined Ab Initio Molecular Dynamics and Experimental Study","authors":"Yaozu Wang, Xurui Liu, Ren Wang, Huiqing Jiang, Lisi Lu, Kaifa Zhang, Kexin Jiao, Fangyu Guo","doi":"10.1002/srin.202300768","DOIUrl":"https://doi.org/10.1002/srin.202300768","url":null,"abstract":"The magnetite oxidation process involves magnetite surface adsorption and O<jats:sub>2</jats:sub> dissociation, and the presence of impurity elements such as silicon inevitably affects the magnetite surface adsorption process. To explore and analyze the surface adsorption and oxidation behaviors of silicon‐doped Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>, thermogravimetric experiments and density functional theory methods are used to investigate the physicochemical properties of this material during magnetite oxidation. The results of experiments show that with the increase of SiO<jats:sub>2</jats:sub> content, the peaks of the oxidation reaction gradually migrate to the high‐temperature region, the initial oxidation temperature of the mineral increases, and the average oxidation rate decreases. The results of calculations show that when the surface system is doped with Si atoms, the relaxation time of the adsorption and dissociation of oxygen on the surface is prolonged, and the presence of Si isomerization tends to stabilize the crystal lattice structure, reduce the migration of ions, and decrease the mineral's oxidizing properties.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
steel research international
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1