首页 > 最新文献

Solid state nuclear magnetic resonance最新文献

英文 中文
NMR crystallography of amino acids 氨基酸的核磁共振晶体学
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2024-02-19 DOI: 10.1016/j.ssnmr.2024.101921
Ema Chaloupecká , Václav Tyrpekl , Kateřina Bártová , Yusuke Nishiyama , Martin Dračínský

The development of NMR crystallography methods requires a reliable database of chemical shifts measured for systems with known crystal structure. We measured and assigned carbon and hydrogen chemical shifts of twenty solid natural amino acids of known polymorphic structure, meticulously determined using powder X-ray diffraction. We then correlated the experimental data with DFT-calculated isotropic shieldings. The small size of the unit cell of most amino acids allowed for advanced computations using various families of DFT functionals, including generalized gradient approximation (GGA), meta-GGA and hybrid DFT functionals. We tested several combinations of functionals for geometry optimizations and NMR calculations. For carbon shieldings, the widely used GGA functional PBE performed very well, although an improvement could be achieved by adding shielding corrections calculated for isolated molecules using a hybrid functional. For hydrogen nuclei, we observed the best performance for NMR calculations carried out with structures optimized at the hybrid DFT level. The high fidelity of the calculations made it possible to assign additional signals that could not be assigned based on experiments alone, for example signals of two non-equivalent molecules in the unit cell of some of the amino acids.

核磁共振晶体学方法的发展需要一个可靠的数据库,其中包含对已知晶体结构的系统所测量的化学位移。我们利用粉末 X 射线衍射法对二十种已知多晶型结构的固态天然氨基酸进行了测量并分配了碳和氢的化学位移。然后,我们将实验数据与 DFT 计算的各向同性屏蔽相关联。由于大多数氨基酸的单胞尺寸较小,因此可以使用不同系列的 DFT 函数(包括广义梯度近似 (GGA)、元 GGA 和混合 DFT 函数)进行高级计算。我们测试了用于几何优化和 NMR 计算的几种函数组合。在碳屏蔽方面,广泛使用的 GGA 函数 PBE 表现非常出色,不过如果加入使用混合函数为孤立分子计算的屏蔽修正,效果会更好。对于氢核,我们观察到使用混合 DFT 水平优化的结构进行 NMR 计算的性能最佳。计算的高保真度使我们有可能分配到仅靠实验无法分配的额外信号,例如某些氨基酸单胞中两个非等价分子的信号。
{"title":"NMR crystallography of amino acids","authors":"Ema Chaloupecká ,&nbsp;Václav Tyrpekl ,&nbsp;Kateřina Bártová ,&nbsp;Yusuke Nishiyama ,&nbsp;Martin Dračínský","doi":"10.1016/j.ssnmr.2024.101921","DOIUrl":"10.1016/j.ssnmr.2024.101921","url":null,"abstract":"<div><p>The development of NMR crystallography methods requires a reliable database of chemical shifts measured for systems with known crystal structure. We measured and assigned carbon and hydrogen chemical shifts of twenty solid natural amino acids of known polymorphic structure, meticulously determined using powder X-ray diffraction. We then correlated the experimental data with DFT-calculated isotropic shieldings. The small size of the unit cell of most amino acids allowed for advanced computations using various families of DFT functionals, including generalized gradient approximation (GGA), <em>meta</em>-GGA and hybrid DFT functionals. We tested several combinations of functionals for geometry optimizations and NMR calculations. For carbon shieldings, the widely used GGA functional PBE performed very well, although an improvement could be achieved by adding shielding corrections calculated for isolated molecules using a hybrid functional. For hydrogen nuclei, we observed the best performance for NMR calculations carried out with structures optimized at the hybrid DFT level. The high fidelity of the calculations made it possible to assign additional signals that could not be assigned based on experiments alone, for example signals of two non-equivalent molecules in the unit cell of some of the amino acids.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139916929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of in situ high resolution NMR: Proof-of-principle for a new (spinning) cylindrical mini-pellet approach applied to a Lithium ion battery 原位高分辨率核磁共振的开发:应用于锂离子电池的新型(旋转)圆柱形微型颗粒方法的原理验证
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2023-12-18 DOI: 10.1016/j.ssnmr.2023.101914
Irshad Mohammad , Musa Ali Cambaz , Ago Samoson , Maximilian Fichtner , Raiker Witter

Solid-state nuclear magnetic resonance (ssNMR) spectroscopy is a powerful technique for characterizing the local structure and dynamics of battery and other materials. It has been widely used to investigate bulk electrode compounds, electrolytes, and interfaces. Beside common ex situ investigations, in situ and operando techniques have gained considerable importance for understanding the reaction mechanisms and cell degradation of electrochemical cells.

Herein, we present the recent development of in situ magic angle spinning (MAS) NMR methodologies to study batteries with high spectral resolution, setting into context possible advances on this topic. A mini cylindrical cell type insert for 4 mm MAS rotors is introduced here, being demonstrated on a Li/VO2F electrochemical system, allowing the acquisition of high-resolution 7Li MAS NMR spectra, spinning the electrochemical cell up to 15 kHz.

固态核磁共振(ssNMR)光谱是表征电池和其他材料局部结构和动态的一种强大技术。它已被广泛用于研究块状电极化合物、电解质和界面。除了常见的原位研究外,原位和操作技术对于了解电化学电池的反应机制和电池降解也具有相当重要的意义。在此,我们介绍了以高光谱分辨率研究电池的原位魔角旋转(MAS)核磁共振方法的最新发展,并介绍了该课题可能取得的进展。本文介绍了一种适用于 4 毫米 MAS 转子的微型圆柱形电池插件,并在锂/VO2F 电化学系统上进行了演示,允许在电化学电池旋转频率高达 15 千赫的情况下获取高分辨率的 7Li MAS NMR 光谱。
{"title":"Development of in situ high resolution NMR: Proof-of-principle for a new (spinning) cylindrical mini-pellet approach applied to a Lithium ion battery","authors":"Irshad Mohammad ,&nbsp;Musa Ali Cambaz ,&nbsp;Ago Samoson ,&nbsp;Maximilian Fichtner ,&nbsp;Raiker Witter","doi":"10.1016/j.ssnmr.2023.101914","DOIUrl":"10.1016/j.ssnmr.2023.101914","url":null,"abstract":"<div><p><span>Solid-state nuclear magnetic resonance (ssNMR) spectroscopy is a powerful technique for characterizing the local structure and dynamics of battery and other materials. It has been widely used to investigate bulk electrode compounds, electrolytes, and interfaces. Beside common </span><em>ex situ</em> investigations, <em>in situ</em> and <em>operando</em><span> techniques have gained considerable importance for understanding the reaction mechanisms and cell degradation of electrochemical cells.</span></p><p>Herein, we present the recent development of <em>in situ</em><span> magic angle spinning (MAS) NMR methodologies to study batteries with high spectral resolution, setting into context possible advances on this topic. A mini cylindrical cell type insert for 4 mm MAS rotors is introduced here, being demonstrated on a Li/VO</span><sub>2</sub>F electrochemical system, allowing the acquisition of high-resolution <sup>7</sup><span>Li MAS NMR spectra, spinning the electrochemical cell up to 15 kHz.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138740138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field-stepwise-swept solid-state 127I NMR of 1,4-diiodobenzene 1,4-二碘苯的场逐步扫描固态127I核磁共振。
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2023-12-01 DOI: 10.1016/j.ssnmr.2023.101905
Kazuhiko Yamada , Tatsuo Kaiho

Field-stepwise-swept solid-state 127I NMR experiments of 1,4-diiodobenzene, C6H4I2, applied to a Zeeman-perturbed NQR region, have been presented. A series of QCPMG measurements is performed at T = 90 K with resonant frequencies of 271 MHz in the range of magnetic fields from 2.5 T to zero with the interval of 12 mT. The spectral simulation, in which a numerical calculation involves the diagonalization of the combined Zeeman-quadrupolar Hamiltonian, provides quadrupole coupling constant (CQ) = 1863(5) MHz and the asymmetry parameter (ηQ) = 0.04(2). The 127I NQR spectrum is observed at T = 90 K, which is consistent in the above experimental results.

介绍了应用于塞曼微扰NQR区域的1,4-二碘苯C6H4I2的场逐步扫描固态127I核磁共振实验。在温度为90 K、谐振频率为271 MHz的条件下,在2.5 T至0的磁场范围内进行了一系列QCPMG测量,测量间隔为12 mT。光谱模拟的数值计算涉及zeeman -四极哈密顿量的对角化,得到四极耦合常数(CQ) = 1863(5) MHz,不对称参数(ηQ) = 0.04(2)。在T = 90 K时观测到127I NQR光谱,与上述实验结果一致。
{"title":"Field-stepwise-swept solid-state 127I NMR of 1,4-diiodobenzene","authors":"Kazuhiko Yamada ,&nbsp;Tatsuo Kaiho","doi":"10.1016/j.ssnmr.2023.101905","DOIUrl":"10.1016/j.ssnmr.2023.101905","url":null,"abstract":"<div><p>Field-stepwise-swept solid-state <sup>127</sup>I NMR experiments of 1,4-diiodobenzene, C<sub>6</sub>H<sub>4</sub>I<sub>2</sub>, applied to a Zeeman-perturbed NQR region, have been presented. A series of QCPMG measurements is performed at <em>T</em><span> = 90 K with resonant frequencies of 271 MHz in the range of magnetic fields from 2.5 T to zero with the interval of 12 mT. The spectral simulation<span>, in which a numerical calculation involves the diagonalization of the combined Zeeman-quadrupolar Hamiltonian, provides quadrupole coupling constant (</span></span><em>C</em><sub>Q</sub>) = 1863(5) MHz and the asymmetry parameter (η<sub>Q</sub>) = 0.04(2). The <sup>127</sup><span>I NQR spectrum is observed at </span><em>T</em> = 90 K, which is consistent in the above experimental results.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138499382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetics of 1H →31P NMR cross-polarization and dynamics in a layered crystalline α-Sn(IV) phosphate α-Sn(IV)磷酸层状晶体的1H→31P核磁共振交叉极化动力学及动力学
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2023-10-01 DOI: 10.1016/j.ssnmr.2023.101898
Vladimir I. Bakhmutov, Douglas W. Elliott, Hong-Cai Zhou

The proton-phosphorus (H–P) cross-polarization (CP) is effective in Sn(HPO4)2·H2O despite of the presence of paramagnetic ion impurities. Polarization constants TH-P and 1H T times are measured in static Sn(HPO4)2·H2O by the kinetic variable-temperature H–P CP experiments. The temperature dependence of the 1H T times is interpreted in terms of proton movements in the interlayer space occurring between the phosphate groups without participation of the water molecules. The process requires an activation energy of 8.7 ± 0.7 kcal/mol. The MAS effect on the 1H T times is shown and discussed.

在Sn(HPO4)2·H2O中,尽管存在顺磁离子杂质,质子-磷(H-P)交叉极化(CP)仍然有效。用动态变温hp CP实验测量了静态Sn(HPO4)2·H2O的极化常数TH-P和1H T1ρ次。1H T1ρ时间的温度依赖性被解释为在没有水分子参与的情况下发生在磷酸基团之间的层间空间中的质子运动。该过程需要8.7±0.7 kcal/mol的活化能。给出并讨论了MAS对1H T1ρ时间的影响。
{"title":"Kinetics of 1H →31P NMR cross-polarization and dynamics in a layered crystalline α-Sn(IV) phosphate","authors":"Vladimir I. Bakhmutov,&nbsp;Douglas W. Elliott,&nbsp;Hong-Cai Zhou","doi":"10.1016/j.ssnmr.2023.101898","DOIUrl":"https://doi.org/10.1016/j.ssnmr.2023.101898","url":null,"abstract":"<div><p>The proton-phosphorus (H–P) cross-polarization (CP) is effective in Sn(HPO<sub>4</sub>)<sub>2</sub>·H<sub>2</sub>O despite of the presence of paramagnetic ion impurities. Polarization constants T<sub>H-P</sub> and <sup>1</sup>H T<sub>1ρ</sub> times are measured in static Sn(HPO<sub>4</sub>)<sub>2</sub>·H<sub>2</sub>O by the kinetic variable-temperature H–P CP experiments. The temperature dependence of the <sup>1</sup>H T<sub>1ρ</sub><span> times is interpreted in terms of proton movements in the interlayer space occurring between the phosphate groups<span><span> without participation of the water molecules. The process requires an activation energy of 8.7 ± 0.7 kcal/mol. The </span>MAS effect on the </span></span><sup>1</sup>H T<sub>1ρ</sub> times is shown and discussed.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49857793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid-state NMR of organic molecules: Characterising solid-state form 有机分子的固态核磁共振:表征固态形式
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2023-08-01 DOI: 10.1016/j.ssnmr.2023.101876
Steven P. Brown, Yongchao Su
{"title":"Solid-state NMR of organic molecules: Characterising solid-state form","authors":"Steven P. Brown,&nbsp;Yongchao Su","doi":"10.1016/j.ssnmr.2023.101876","DOIUrl":"10.1016/j.ssnmr.2023.101876","url":null,"abstract":"","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9975590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High resolution solid-state NMR on the desktop 高分辨率固态核磁共振在桌面上
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2023-08-01 DOI: 10.1016/j.ssnmr.2023.101884
Ke Xu , Fettah Aldudak , Oliver Pecher , Marco Braun , Andreas Neuberger , Holger Foysi , Jörn Schmedt auf der Günne

High-resolution low-field nuclear magnetic resonance (NMR) spectroscopy has found wide application for characterization of liquid compounds because of the low maintenance cost of modern permanent magnets. Solid-state NMR so far is limited to low-resolution measurements of static powders, because of the limited space available in this type of magnet. Magic-angle sample spinning and low-magnetic fields are an attractive combination to achieve high spectral resolution especially for paramagnetic solids. Here we show that magic angle spinning modules can be miniaturized using 3D printing techniques so that high-resolution solid-state NMR in permanent magnets becomes possible. The suggested conical rotor design was developed using finite element calculations and provides sample spinning frequencies higher than 20 kHz. The setup was tested on various diamagnetic and paramagnetic compounds including paramagnetic battery materials. The only comparable experiments in low-cost magnets known so far, had been done in the early times of magic angle spinning using electromagnets at much lower sample spinning frequency. Our results demonstrate that high-resolution low-field magic-angle-spinning NMR does not require expensive superconducting magnets and that high-resolution solid-state NMR spectra of paramagnetic compounds are feasible. Generally, this could introduce low-field solid-state NMR for abundant nuclei standard as a routine analytical tool.

由于现代永磁体的低维护成本,高分辨率低场核磁共振(NMR)光谱在液体化合物的表征中得到了广泛的应用。到目前为止,固态核磁共振仅限于静态粉末的低分辨率测量,因为这种类型的磁铁的可用空间有限。魔角旋转和低磁场是一种有吸引力的组合,以实现高光谱分辨率,特别是对顺磁性固体。在这里,我们展示了魔角旋转模块可以使用3D打印技术小型化,从而使永磁体中的高分辨率固态核磁共振成为可能。采用有限元方法设计了锥形转子,并提供了高于20 kHz的旋转频率。该装置在各种抗磁性和顺磁性化合物上进行了测试,包括顺磁性电池材料。迄今为止,已知的唯一可与之相比的低成本磁体实验,是在魔角旋转的早期进行的,使用的是电磁铁,旋转频率要低得多。我们的研究结果表明,高分辨率低场魔角旋转核磁共振不需要昂贵的超导磁体,并且顺磁性化合物的高分辨率固态核磁共振谱是可行的。一般来说,这可以引入低场固体核磁共振作为常规的分析工具。
{"title":"High resolution solid-state NMR on the desktop","authors":"Ke Xu ,&nbsp;Fettah Aldudak ,&nbsp;Oliver Pecher ,&nbsp;Marco Braun ,&nbsp;Andreas Neuberger ,&nbsp;Holger Foysi ,&nbsp;Jörn Schmedt auf der Günne","doi":"10.1016/j.ssnmr.2023.101884","DOIUrl":"10.1016/j.ssnmr.2023.101884","url":null,"abstract":"<div><p><span>High-resolution low-field nuclear magnetic resonance (NMR) spectroscopy has found wide application for characterization of liquid compounds because of the low maintenance cost of modern permanent magnets. Solid-state NMR so far is limited to low-resolution measurements of static powders, because of the limited space available in this type of magnet. Magic-angle sample spinning and low-magnetic fields are an attractive combination to achieve high spectral resolution especially for paramagnetic solids. Here we show that magic angle spinning<span> modules can be miniaturized using 3D printing techniques so that high-resolution solid-state NMR in permanent magnets becomes possible. The suggested conical rotor design was developed using </span></span>finite element<span><span> calculations and provides sample spinning frequencies higher than 20 kHz. The setup was tested on various diamagnetic and paramagnetic compounds including paramagnetic battery materials. The only comparable experiments in low-cost magnets known so far, had been done in the early times of magic angle spinning using electromagnets at much lower sample spinning frequency. Our results demonstrate that high-resolution low-field magic-angle-spinning NMR does not require expensive </span>superconducting magnets and that high-resolution solid-state NMR spectra of paramagnetic compounds are feasible. Generally, this could introduce low-field solid-state NMR for abundant nuclei standard as a routine analytical tool.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9982675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remembering Shimon Vega: Special issue on solid-state and DNP NMR 纪念Shimon Vega:固态和DNP NMR特刊
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2023-08-01 DOI: 10.1016/j.ssnmr.2023.101885
G. Goobes, P.K. Madhu, A. Goldbourt
{"title":"Remembering Shimon Vega: Special issue on solid-state and DNP NMR","authors":"G. Goobes,&nbsp;P.K. Madhu,&nbsp;A. Goldbourt","doi":"10.1016/j.ssnmr.2023.101885","DOIUrl":"10.1016/j.ssnmr.2023.101885","url":null,"abstract":"","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9988512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin diffusion in the Phosphorus-31 NMR relaxation in a layered crystalline α-Sn(IV) phosphate contaminated by paramagnetic impurities 顺磁杂质污染层状α-Sn(IV)磷酸盐中磷-31核磁共振弛豫的自旋扩散
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2023-08-01 DOI: 10.1016/j.ssnmr.2023.101875
Vladimir I. Bakhmutov , Douglas W. Elliott , Nattamai Bhuvanesh , Hong-Cai Zhou

The study of a layered crystalline Sn(IV) phosphate by solid-state NMR has demonstrated that the 31P T1 relaxation of phosphate groups, dependent on spinning rate is completely controlled by the limited spin diffusion to paramagnetic ions found by EPR. The spin-diffusion constant, D(SD), was estimated as 2.04 10−14 cm2s−1. The conclusion was supported by the 31P T1 time measurements in zirconium phosphate 11, also showing paramagnetic ions and in diamagnetic compound (NH4)2HPO4.

通过固态NMR对层状晶体磷酸锡(IV)的研究表明,磷酸基团的31P T1弛豫取决于纺丝速率,完全由EPR发现的顺磁离子的有限自旋扩散控制。自旋扩散常数D(SD)估计为2.04 10−14 cm2s−1。这一结论得到了磷酸锆1–1中31P T1时间测量的支持,也显示了顺磁性离子和抗磁性化合物(NH4)2HPO4。
{"title":"Spin diffusion in the Phosphorus-31 NMR relaxation in a layered crystalline α-Sn(IV) phosphate contaminated by paramagnetic impurities","authors":"Vladimir I. Bakhmutov ,&nbsp;Douglas W. Elliott ,&nbsp;Nattamai Bhuvanesh ,&nbsp;Hong-Cai Zhou","doi":"10.1016/j.ssnmr.2023.101875","DOIUrl":"10.1016/j.ssnmr.2023.101875","url":null,"abstract":"<div><p>The study of a layered crystalline Sn(IV) phosphate by solid-state NMR has demonstrated that the <sup>31</sup>P T<sub>1</sub><span><span> relaxation of phosphate groups, dependent on spinning rate is completely controlled by the limited </span>spin diffusion<span> to paramagnetic ions found by EPR. The spin-diffusion constant, D(SD), was estimated as 2.04 10</span></span><sup>−14</sup> cm<sup>2</sup>s<sup>−1</sup>. The conclusion was supported by the <sup>31</sup>P T<sub>1</sub><span> time measurements in zirconium phosphate </span><strong>1</strong>–<strong>1</strong><span>, also showing paramagnetic ions and in diamagnetic compound (NH</span><sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10038540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Corrigendum to “Implanted-ion β NMR: A new probe for nanoscience” [Solid State Nucl. Magn. Reson. 68-69 (2015) 1–12] “植入离子βNMR:纳米科学的新探针”勘误表[Solid State Nucl.Magn.Reson.68-69(2015)1-12]
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2023-08-01 DOI: 10.1016/j.ssnmr.2023.101886
W.A. MacFarlane
{"title":"Corrigendum to “Implanted-ion β NMR: A new probe for nanoscience” [Solid State Nucl. Magn. Reson. 68-69 (2015) 1–12]","authors":"W.A. MacFarlane","doi":"10.1016/j.ssnmr.2023.101886","DOIUrl":"10.1016/j.ssnmr.2023.101886","url":null,"abstract":"","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9983841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating particle size effects on NMR spectra of ions diffusing in porous carbons through a mesoscopic model 通过介观模型研究离子在多孔碳中扩散的粒度对核磁共振谱的影响
IF 3.2 3区 化学 Q1 Physics and Astronomy Pub Date : 2023-08-01 DOI: 10.1016/j.ssnmr.2023.101883
Anagha Sasikumar , Céline Merlet

Characterizing ion adsorption and diffusion in porous carbons is essential to understand the performance of such materials in a range of key technologies such as energy storage and capacitive deionisation. Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique to get insights in these systems thanks to its ability to distinguish between bulk and adsorbed species and to its sensitivity to dynamic phenomena. Nevertheless, a clear interpretation of the experimental results is sometimes rendered difficult by the various factors affecting NMR spectra. A mesoscopic model to predict NMR spectra of ions diffusing in carbon particles is adapted to include dynamic exchange between the intra-particle space and the bulk electrolyte surrounding the particle. A systematic study of the particle size effect on the NMR spectra for different distributions of magnetic environments in the porous carbons is conducted. The model demonstrates the importance of considering a range of magnetic environments, instead of a single chemical shift value corresponding to adsorbed species, and of including a range of exchange rates (between in and out of the particle), instead of a single timescale, to predict realistic NMR spectra. Depending on the pore size distribution of the carbon particle and the ratio between bulk and adsorbed species, both the NMR linewidth and peak positions can be largely influenced by the particle size.

表征离子在多孔碳中的吸附和扩散对于理解此类材料在诸如储能和电容去离子等一系列关键技术中的性能至关重要。核磁共振(NMR)光谱学是一种强大的技术,可以深入了解这些系统,这要归功于它能够区分大块和吸附物质,以及它对动态现象的敏感性。然而,由于影响核磁共振光谱的各种因素,对实验结果的清晰解释有时变得困难。采用介观模型预测离子在碳颗粒中扩散的核磁共振谱,以适应颗粒内空间与颗粒周围的大块电解质之间的动态交换。系统地研究了多孔碳中不同磁环境分布对粒径对核磁共振谱的影响。该模型证明了考虑一系列磁环境的重要性,而不是与吸附物质相对应的单一化学位移值,以及包括一系列交换率(在粒子内外之间),而不是单一的时间尺度,以预测现实的核磁共振波谱。根据碳颗粒的孔径分布和体积与吸附物质的比值,核磁共振谱线宽和峰位都受颗粒大小的影响较大。
{"title":"Investigating particle size effects on NMR spectra of ions diffusing in porous carbons through a mesoscopic model","authors":"Anagha Sasikumar ,&nbsp;Céline Merlet","doi":"10.1016/j.ssnmr.2023.101883","DOIUrl":"10.1016/j.ssnmr.2023.101883","url":null,"abstract":"<div><p><span><span>Characterizing ion adsorption and diffusion in porous carbons is essential to understand the performance of such materials in a range of key technologies such as energy storage and capacitive deionisation. Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique to get insights in these systems thanks to its ability to distinguish between bulk and adsorbed species and to its sensitivity to dynamic phenomena. Nevertheless, a clear interpretation of the experimental results is sometimes rendered difficult by the various factors affecting </span>NMR spectra<span>. A mesoscopic model to predict NMR spectra of ions diffusing in carbon particles is adapted to include dynamic exchange between the intra-particle space and the bulk electrolyte surrounding the particle. A systematic study of the particle size effect on the NMR spectra for different distributions of magnetic environments in the porous carbons is conducted. The model demonstrates the importance of considering a range of magnetic environments, instead of a single chemical shift value corresponding to adsorbed species, and of including a range of exchange rates (between in and out of the particle), instead of a single timescale, to predict realistic NMR spectra. Depending on the </span></span>pore size distribution<span> of the carbon particle and the ratio between bulk and adsorbed species, both the NMR linewidth and peak positions can be largely influenced by the particle size.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9984738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Solid state nuclear magnetic resonance
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1