首页 > 最新文献

Solid state nuclear magnetic resonance最新文献

英文 中文
High resolution solid state NMR in paramagnetic metal-organic frameworks 顺磁性金属-有机骨架的高分辨率固态核磁共振
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2022-08-01 DOI: 10.1016/j.ssnmr.2022.101811
C.A. Klug , M.W. Swift , J.B. Miller , J.L. Lyons , A. Albert , M. Laskoski , C.M. Hangarter

We study the metal-organic framework (MOF) ZIF-67 with 1H and 13C nuclear magnetic resonance (NMR). In addition to the usual orbital chemical shifts, we observe spinning sideband manifolds in the NMR spectrum due to hyperfine interactions of the paramagnetic cobalt with 1H and 13C. Both orbital and paramagnetic chemical shifts are in good agreement with values calculated from first principles, allowing high-confidence assignment of the observed peaks to specific sites within the MOF. Our measured resonance shifts, line shapes, and spin lattice relaxation rates are also consistent with calculated values. We show that molecules in the pores of the MOF can exhibit high-resolution NMR spectra with fast spin lattice relaxation rates due to dipole-dipole couplings to the Co2+ nodes in the ZIF-67 lattice, showcasing NMR spectroscopy as a powerful tool for identification and characterization of “guests” that may be hosted by the MOF in electrochemical and catalytic applications.

利用1H和13C核磁共振(NMR)对金属有机骨架(MOF) ZIF-67进行了研究。除了通常的轨道化学位移外,我们还在核磁共振光谱中观察到由于顺磁性钴与1H和13C的超精细相互作用而产生的自旋边带流形。轨道和顺磁化学位移都与第一性原理计算的值很好地吻合,从而可以高可信度地将观测到的峰分配到MOF内的特定位置。我们测量的共振位移、线形和自旋晶格弛豫率也与计算值一致。我们发现,由于与ZIF-67晶格中的Co2+节点的偶极子-偶极子耦合,MOF孔隙中的分子可以表现出高分辨率的核磁共振波谱,具有快速的自旋晶格弛化速率,这表明核磁共振波谱是识别和表征电化学和催化应用中可能由MOF宿主的“客人”的有力工具。
{"title":"High resolution solid state NMR in paramagnetic metal-organic frameworks","authors":"C.A. Klug ,&nbsp;M.W. Swift ,&nbsp;J.B. Miller ,&nbsp;J.L. Lyons ,&nbsp;A. Albert ,&nbsp;M. Laskoski ,&nbsp;C.M. Hangarter","doi":"10.1016/j.ssnmr.2022.101811","DOIUrl":"10.1016/j.ssnmr.2022.101811","url":null,"abstract":"<div><p>We study the metal-organic framework (MOF) ZIF-67 with <sup>1</sup>H and <sup>13</sup>C nuclear magnetic resonance (NMR). In addition to the usual orbital chemical shifts, we observe spinning sideband manifolds in the NMR spectrum due to hyperfine interactions of the paramagnetic cobalt with <sup>1</sup>H and <sup>13</sup>C. Both orbital and paramagnetic chemical shifts are in good agreement with values calculated from first principles, allowing high-confidence assignment of the observed peaks to specific sites within the MOF. Our measured resonance shifts, line shapes, and spin lattice relaxation rates are also consistent with calculated values. We show that molecules in the pores of the MOF can exhibit high-resolution NMR spectra with fast spin lattice relaxation rates due to dipole-dipole couplings to the Co<sup>2+</sup> nodes in the ZIF-67 lattice, showcasing NMR spectroscopy as a powerful tool for identification and characterization of “guests” that may be hosted by the MOF in electrochemical and catalytic applications.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"120 ","pages":"Article 101811"},"PeriodicalIF":3.2,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926204022000406/pdfft?md5=c4eb532d7f6257a0c6aa6ce21befe8f8&pid=1-s2.0-S0926204022000406-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40484908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Probing adsorption of water and DMF in UiO-66(Zr) using solid-state NMR 固体核磁共振探测UiO-66(Zr)对水和DMF的吸附
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2022-08-01 DOI: 10.1016/j.ssnmr.2022.101797
Florian Venel, Christophe Volkringer, Olivier Lafon, Frédérique Pourpoint
{"title":"Probing adsorption of water and DMF in UiO-66(Zr) using solid-state NMR","authors":"Florian Venel,&nbsp;Christophe Volkringer,&nbsp;Olivier Lafon,&nbsp;Frédérique Pourpoint","doi":"10.1016/j.ssnmr.2022.101797","DOIUrl":"10.1016/j.ssnmr.2022.101797","url":null,"abstract":"","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"120 ","pages":"Article 101797"},"PeriodicalIF":3.2,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40395949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Long single pulse NQR for broad resonance lines 宽共振线的长单脉冲NQR
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2022-08-01 DOI: 10.1016/j.ssnmr.2022.101810
T.C.L. Ly, R. Yong, D.G. Miljak

This paper describes the experimental application of long single pulses to strongly inhomogeneously broadened NQR spectral lines, where the pulse length significantly exceeds the transverse relaxation time. A63Cu NQR resonance in the mineral covellite (CuS) was used as an exemplar for study in this specific regime, which was motivated by the requirement to obtain useful signals in very large volume applications having radiofrequency power limitations. In this study, signal transients that followed the application of the long single pulses were measured over a large range of radiofrequency field strength and pulse width. The results indicate effective generation of signal amplitudes. This is in contrast to previously reported studies involving long pulses applied to relatively narrow resonances. The results are found to be well described by simulations of the modified Bloch equations.

本文描述了长单脉冲在强非均匀加宽NQR谱线上的实验应用,其中脉冲长度明显超过横向弛豫时间。该研究以矿物钴岩中A63Cu NQR共振为例进行了研究,其动机是在具有射频功率限制的非常大体积应用中获得有用信号的需求。在本研究中,在较大范围的射频场强和脉冲宽度范围内测量了长单脉冲应用后的信号瞬态。结果表明,有效地产生了信号幅度。这与先前报道的涉及将长脉冲应用于相对较窄共振的研究形成对比。对修正后的布洛赫方程进行了仿真,结果得到了很好的描述。
{"title":"Long single pulse NQR for broad resonance lines","authors":"T.C.L. Ly,&nbsp;R. Yong,&nbsp;D.G. Miljak","doi":"10.1016/j.ssnmr.2022.101810","DOIUrl":"10.1016/j.ssnmr.2022.101810","url":null,"abstract":"<div><p><span>This paper describes the experimental application of long single pulses to strongly inhomogeneously broadened NQR spectral lines, where the pulse length significantly exceeds the transverse relaxation time. A</span><sup>63</sup><span>Cu NQR resonance in the mineral covellite<span> (CuS) was used as an exemplar for study in this specific regime, which was motivated by the requirement to obtain useful signals in very large volume applications having radiofrequency power limitations. In this study, signal transients that followed the application of the long single pulses were measured over a large range of radiofrequency field<span> strength and pulse width. The results indicate effective generation of signal amplitudes. This is in contrast to previously reported studies involving long pulses applied to relatively narrow resonances. The results are found to be well described by simulations of the modified Bloch equations.</span></span></span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"120 ","pages":"Article 101810"},"PeriodicalIF":3.2,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40521991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magic angle spinning dynamic nuclear polarization solid-state NMR spectroscopy of γ-irradiated molecular organic solids γ辐照有机分子固体的魔角自旋动态核极化固体核磁共振谱
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2022-06-01 DOI: 10.1016/j.ssnmr.2022.101785
Scott L. Carnahan , Yunhua Chen , James F. Wishart , Joseph W. Lubach , Aaron J. Rossini

In the past 15 years, magic angle spinning (MAS) dynamic nuclear polarization (DNP) has emerged as a method to increase the sensitivity of high-resolution solid-state NMR spectroscopy experiments. Recently, γ-irradiation has been used to generate significant concentrations of homogeneously distributed free radicals in a variety of solids, including quartz, glucose, and cellulose. Both γ-irradiated quartz and glucose previously showed significant MAS DNP enhancements. Here, γ-irradiation is applied to twelve small organic molecules to test the applicability of γ-irradiation as a general method of creating stable free radicals for MAS DNP experiments on organic solids and pharmaceuticals. Radical concentrations in the range of 0.25 ​mM–10 ​mM were observed in irradiated glucose, histidine, malic acid, and malonic acid, and significant 1H DNP enhancements of 32, 130, 19, and 11 were obtained, respectively, as measured by 1H→13C CPMAS experiments. However, concentrations of free radicals below 0.05 ​mM were generally observed in organic molecules containing aromatic rings, preventing sizeable DNP enhancements. DNP sensitivity gains for several of the irradiated compounds exceed that which can be obtained with the relayed DNP approach that uses exogeneous polarizing agent solutions and impregnation procedures. In several cases, significant 1H DNP enhancements were realized at room temperature. This study demonstrates that in many cases γ-irradiation is a viable alternative to addition of stable exogenous radicals for DNP experiments on organic solids.

在过去的15年中,魔角旋转(MAS)动态核极化(DNP)作为一种提高高分辨率固体核磁共振光谱实验灵敏度的方法出现了。最近,γ辐照已被用于在各种固体中产生显著浓度的均匀分布的自由基,包括石英、葡萄糖和纤维素。γ辐照石英和葡萄糖先前都显示出显著的MAS DNP增强。本研究将γ-辐照应用于12个小有机分子,以测试γ-辐照作为产生稳定自由基的一般方法在有机固体和药物的MAS DNP实验中的适用性。辐照葡萄糖、组氨酸、苹果酸和丙二酸的自由基浓度在0.25 mM - 10 mM范围内,1H→13C CPMAS实验测得1H DNP分别显著增强32、130、19和11。然而,在含有芳香环的有机分子中,自由基浓度通常低于0.05 mM,这阻碍了DNP的显著增强。几种辐照化合物的DNP灵敏度增益超过了使用外相极化剂溶液和浸渍程序的中继DNP方法所能获得的灵敏度增益。在一些情况下,在室温下实现了显著的1H DNP增强。本研究表明,在许多情况下,在有机固体上进行DNP实验时,γ辐照是一种可行的选择,而不是添加稳定的外源自由基。
{"title":"Magic angle spinning dynamic nuclear polarization solid-state NMR spectroscopy of γ-irradiated molecular organic solids","authors":"Scott L. Carnahan ,&nbsp;Yunhua Chen ,&nbsp;James F. Wishart ,&nbsp;Joseph W. Lubach ,&nbsp;Aaron J. Rossini","doi":"10.1016/j.ssnmr.2022.101785","DOIUrl":"10.1016/j.ssnmr.2022.101785","url":null,"abstract":"<div><p><span><span>In the past 15 years, magic angle spinning<span> (MAS) dynamic nuclear polarization<span><span> (DNP) has emerged as a method to increase the sensitivity of high-resolution solid-state NMR spectroscopy experiments. Recently, γ-irradiation has been used to generate significant concentrations of homogeneously distributed free radicals in a variety of solids, including quartz, glucose, and </span>cellulose. Both γ-irradiated quartz and glucose previously showed significant MAS DNP enhancements. Here, γ-irradiation is applied to twelve small organic molecules to test the applicability of γ-irradiation as a general method of creating stable free radicals for MAS DNP experiments on organic solids and pharmaceuticals. Radical concentrations in the range of 0.25 ​mM–10 ​mM were observed in irradiated glucose, </span></span></span>histidine<span>, malic acid<span>, and malonic acid, and significant </span></span></span><sup>1</sup>H DNP enhancements of 32, 130, 19, and 11 were obtained, respectively, as measured by <sup>1</sup>H→<sup>13</sup><span>C CPMAS experiments. However, concentrations of free radicals below 0.05 ​mM were generally observed in organic molecules containing aromatic rings, preventing sizeable DNP enhancements. DNP sensitivity gains for several of the irradiated compounds exceed that which can be obtained with the relayed DNP approach that uses exogeneous polarizing agent solutions and impregnation procedures. In several cases, significant </span><sup>1</sup><span>H DNP enhancements were realized at room temperature. This study demonstrates that in many cases γ-irradiation is a viable alternative to addition of stable exogenous radicals for DNP experiments on organic solids.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"119 ","pages":"Article 101785"},"PeriodicalIF":3.2,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45272824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Multinuclear solid-state NMR: Unveiling the local structure of defective MOF MIL-120 多核固体核磁共振:揭示缺陷MIL-120的局部结构
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2022-06-01 DOI: 10.1016/j.ssnmr.2022.101793
Wanli Zhang , Shoushun Chen , Victor V. Terskikh , Bryan E.G. Lucier , Yining Huang

Metal-organic frameworks (MOFs) are emerging materials with many current and potential applications due to their unique properties. One critical feature is that the physical and chemical properties of MOFs are tunable. One of the methods for tuning MOF properties is to introduce defects by design for desired applications. Characterization of MOF defects is important, but very challenging due to the local nature and short-range ordering. In this work, we have introduced the ordered vacancies (the defects) in the form of the coordinatively unsaturated sites (CUSs) into the framework of MOF MIL-120(Al). The creation of ordered vacancies is achieved by replacing one quarter of the BTEC (1,2,4,5-benzenetetracarboxylate) with BDC (benzene-1,4-dicarboxylate) linkers. Both parent and defective MOFs were characterized by multinuclear solid-state NMR spectroscopy. 1H MAS NMR is used to characterize the hydrogen bonding in these MOFs, whereas 13C CP MAS NMR confirms unambiguously that the BDC is incorporated into the framework. One-dimensional 27Al MAS NMR provides direct evidence of the coordinatively unsaturated Al sites (the defects). Furthermore, 27Al 3QMAS experiments at 21.1 ​T allow direct identification of one penta-coordinated and three chemically inequivalent octahedral Al sites in the defective MIL-120(Al). Two of the above-mentioned octahedral Al sites are in the domain which appears defect-free. The third octahedral Al site is near the defective site. This work clearly demonstrates the power of solid-state NMR spectroscopy for characterization of defective MOFs.

金属有机骨架(MOFs)是一种新兴材料,由于其独特的性能,具有广泛的应用前景。mof的一个关键特征是其物理和化学性质是可调的。调整MOF特性的方法之一是通过设计引入缺陷以满足所需的应用。MOF缺陷的表征是很重要的,但由于局部性质和短程有序,非常具有挑战性。在这项工作中,我们将协调不饱和位(CUSs)形式的有序空位(缺陷)引入MOF MIL-120(Al)的框架中。通过用BDC(苯-1,4-二羧酸酯)连接剂取代四分之一的BTEC(1,2,4,5-苯四羧酸酯)来实现有序空位的产生。母mof和缺陷mof都用多核固体核磁共振光谱进行了表征。1H MAS NMR用于表征这些mof中的氢键,而13C CP MAS NMR明确证实BDC被纳入框架。一维27Al MAS NMR提供了配位不饱和Al位(缺陷)的直接证据。此外,21.1 T的27Al 3QMAS实验允许在缺陷MIL-120(Al)中直接识别一个五配位和三个化学不平等的八面体Al位点。上述八面体Al中有两个位点处于无缺陷的区域。第三个八面体Al位点在缺陷位点附近。这项工作清楚地证明了固态核磁共振光谱表征缺陷mof的能力。
{"title":"Multinuclear solid-state NMR: Unveiling the local structure of defective MOF MIL-120","authors":"Wanli Zhang ,&nbsp;Shoushun Chen ,&nbsp;Victor V. Terskikh ,&nbsp;Bryan E.G. Lucier ,&nbsp;Yining Huang","doi":"10.1016/j.ssnmr.2022.101793","DOIUrl":"10.1016/j.ssnmr.2022.101793","url":null,"abstract":"<div><p>Metal-organic frameworks (MOFs) are emerging materials with many current and potential applications due to their unique properties. One critical feature is that the physical and chemical properties of MOFs are tunable. One of the methods for tuning MOF properties is to introduce defects by design for desired applications. Characterization of MOF defects is important, but very challenging due to the local nature and short-range ordering. In this work, we have introduced the ordered vacancies (the defects) in the form of the coordinatively unsaturated sites (CUSs) into the framework of MOF MIL-120(Al). The creation of ordered vacancies is achieved by replacing one quarter of the BTEC (1,2,4,5-benzenetetracarboxylate) with BDC (benzene-1,4-dicarboxylate) linkers. Both parent and defective MOFs were characterized by multinuclear solid-state NMR spectroscopy. <sup>1</sup><span>H MAS NMR is used to characterize the hydrogen bonding in these MOFs, whereas </span><sup>13</sup>C CP MAS NMR confirms unambiguously that the BDC is incorporated into the framework. One-dimensional <sup>27</sup>Al MAS NMR provides direct evidence of the coordinatively unsaturated Al sites (the defects). Furthermore, <sup>27</sup>Al 3QMAS experiments at 21.1 ​T allow direct identification of one penta-coordinated and three chemically inequivalent octahedral Al sites in the defective MIL-120(Al). Two of the above-mentioned octahedral Al sites are in the domain which appears defect-free. The third octahedral Al site is near the defective site. This work clearly demonstrates the power of solid-state NMR spectroscopy for characterization of defective MOFs.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"119 ","pages":"Article 101793"},"PeriodicalIF":3.2,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46298934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Complete resonance assignment of a pharmaceutical drug at natural isotopic abundance from DNP-Enhanced solid-state NMR 从dnp增强的固态核磁共振中获得天然同位素丰度的药物的完整共振分配
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2022-06-01 DOI: 10.1016/j.ssnmr.2022.101794
Renny Mathew , Ivan V. Sergeyev , Fabien Aussenac , Lydia Gkoura , Melanie Rosay , Maria Baias

Solid-state dynamic nuclear polarization enhanced magic angle spinning (DNP-MAS) NMR measurements coupled with density functional theory (DFT) calculations enable the full resonance assignment of a complex pharmaceutical drug molecule without the need for isotopic enrichment. DNP dramatically enhances the NMR signals, thereby making possible previously intractable two-dimensional correlation NMR spectra at natural abundance. Using inputs from DFT calculations, herein we describe a significant improvement to the structure elucidation process for complex organic molecules. Further, we demonstrate that a series of two-dimensional correlation experiments, including 15N–13C TEDOR, 13C–13C INADEQUATE/SARCOSY, 19F–13C HETCOR, and 1H–13C HETCOR, can be obtained at natural isotopic abundance within reasonable experiment times, thus enabling a complete resonance assignment of sitagliptin, a pharmaceutical used for the treatment of type 2 diabetes.

固体动态核极化增强魔角旋转(DNP-MAS)核磁共振测量与密度泛函数理论(DFT)计算相结合,可以在不需要同位素富集的情况下实现复杂药物分子的全共振分配。DNP极大地增强了核磁共振信号,从而使以前难以处理的二维相关核磁共振谱在自然丰度上成为可能。使用从DFT计算的输入,在这里我们描述了复杂有机分子的结构解析过程的显著改进。此外,我们证明了一系列二维相关实验,包括15N-13C TEDOR, 13C-13C不充分/SARCOSY, 19F-13C HETCOR和1H-13C HETCOR,可以在合理的实验时间内以自然同位素丰度获得,从而实现西格列汀(用于治疗2型糖尿病的药物)的完整共振分配。
{"title":"Complete resonance assignment of a pharmaceutical drug at natural isotopic abundance from DNP-Enhanced solid-state NMR","authors":"Renny Mathew ,&nbsp;Ivan V. Sergeyev ,&nbsp;Fabien Aussenac ,&nbsp;Lydia Gkoura ,&nbsp;Melanie Rosay ,&nbsp;Maria Baias","doi":"10.1016/j.ssnmr.2022.101794","DOIUrl":"10.1016/j.ssnmr.2022.101794","url":null,"abstract":"<div><p>Solid-state dynamic nuclear polarization enhanced magic angle spinning (DNP-MAS) NMR measurements coupled with density functional theory (DFT) calculations enable the full resonance assignment of a complex pharmaceutical drug molecule without the need for isotopic enrichment. DNP dramatically enhances the NMR signals, thereby making possible previously intractable two-dimensional correlation NMR spectra at natural abundance. Using inputs from DFT calculations, herein we describe a significant improvement to the structure elucidation process for complex organic molecules. Further, we demonstrate that a series of two-dimensional correlation experiments, including <sup>15</sup>N–<sup>13</sup>C TEDOR, <sup>13</sup>C–<sup>13</sup>C INADEQUATE/SARCOSY, <sup>19</sup>F–<sup>13</sup>C HETCOR, and <sup>1</sup>H–<sup>13</sup>C HETCOR, can be obtained at natural isotopic abundance within reasonable experiment times, thus enabling a complete resonance assignment of sitagliptin, a pharmaceutical used for the treatment of type 2 diabetes.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"119 ","pages":"Article 101794"},"PeriodicalIF":3.2,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926204022000236/pdfft?md5=37edeb9b3fa6812c2fb544dd1320984c&pid=1-s2.0-S0926204022000236-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46931050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
To what extent do bond length and angle govern the 13C and 1H NMR response to weak CH⋯O hydrogen bonds? A case study of caffeine and theophylline cocrystals 键长和键角在多大程度上控制13C和1H核磁共振对弱CH⋯O氢键的响应?咖啡因和茶碱共晶的个案研究
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2022-06-01 DOI: 10.1016/j.ssnmr.2022.101795
Scott A. Southern , David L. Bryce

Weak hydrogen bonds are important structure-directing elements in supramolecular chemistry and biochemistry. We consider here weak CH⋯O hydrogen bonds in a series of cocrystals of theophylline and caffeine and assess to what extent the CH⋯O distance and angle govern the observed 13C and 1H isotropic chemical shifts. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations consistently predict a decrease in the 13C and 1H magnetic shielding constants upon hydrogen bond formation on the order of 2–5 ppm (13C) and 1–2 ppm (1H). These trends are reproduced using the machine-learning approach implemented in ShiftML. Experimental 13C and 1H chemical shifts obtained for powdered samples using one-dimensional NMR spectroscopy as well as heteronuclear correlation (HETCOR) spectroscopy correlate well with the GIPAW DFT results. However, the experimental 13C NMR response only correlates moderately well with the hydrogen bond length and angle, while the experimental 1H chemical shifts only show very weak correlations to these local structural elements. DFT computations on isolated imidazole-formaldehyde models show that the 13C and 1H chemical shifts generally decrease with the C⋯O distance but show no clear dependence on the CH⋯O angle. These results demonstrate that the 13C and 1H response to weak CH⋯O hydrogen bonding is influenced significantly by additional weak contacts within cocrystal heterodimeric units.

弱氢键是超分子化学和生物化学中重要的结构导向元素。我们在这里考虑茶碱和咖啡因的一系列共晶中的弱CH⋯O氢键,并评估CH⋯O距离和角度在多大程度上控制观察到的13C和1H各向同性化学位移。包括投影仪在内的增强波密度泛函理论(GIPAW DFT)计算一致预测,氢键形成后13C和1H磁屏蔽常数的下降幅度分别为2-5 ppm (13C)和1-2 ppm (1H)。使用ShiftML中实现的机器学习方法可以再现这些趋势。使用一维核磁共振光谱和异核相关(HETCOR)光谱获得的粉末样品的实验13C和1H化学位移与GIPAW DFT结果具有良好的相关性。然而,实验13C核磁共振响应仅与氢键长度和角度有较好的相关性,而实验1H化学位移与这些局部结构元素的相关性非常弱。对孤立咪唑-甲醛模型的DFT计算表明,13C和1H化学位移通常随着C⋯O距离的减小而减小,但对CH⋯O角没有明显的依赖性。这些结果表明,13C和1H对弱CH⋯O氢键的响应受到共晶异质二聚体单元内附加弱接触的显著影响。
{"title":"To what extent do bond length and angle govern the 13C and 1H NMR response to weak CH⋯O hydrogen bonds? A case study of caffeine and theophylline cocrystals","authors":"Scott A. Southern ,&nbsp;David L. Bryce","doi":"10.1016/j.ssnmr.2022.101795","DOIUrl":"10.1016/j.ssnmr.2022.101795","url":null,"abstract":"<div><p><span><span>Weak hydrogen bonds<span> are important structure-directing elements in supramolecular chemistry and biochemistry. We consider here weak CH⋯O hydrogen bonds in a series of cocrystals of </span></span>theophylline and caffeine and assess to what extent the CH⋯O distance and angle govern the observed </span><sup>13</sup>C and <sup>1</sup>H isotropic chemical shifts. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations consistently predict a decrease in the <sup>13</sup>C and <sup>1</sup><span>H magnetic shielding constants upon hydrogen bond formation on the order of 2–5 ppm (</span><sup>13</sup>C) and 1–2 ppm (<sup>1</sup>H). These trends are reproduced using the machine-learning approach implemented in ShiftML. Experimental <sup>13</sup>C and <sup>1</sup><span><span>H chemical shifts obtained for powdered samples using one-dimensional NMR spectroscopy as well as </span>heteronuclear correlation (HETCOR) spectroscopy correlate well with the GIPAW DFT results. However, the experimental </span><sup>13</sup>C NMR response only correlates moderately well with the hydrogen bond length and angle, while the experimental <sup>1</sup>H chemical shifts only show very weak correlations to these local structural elements. DFT computations on isolated imidazole-formaldehyde models show that the <sup>13</sup>C and <sup>1</sup>H chemical shifts generally decrease with the C⋯O distance but show no clear dependence on the CH⋯O angle. These results demonstrate that the <sup>13</sup>C and <sup>1</sup>H response to weak CH⋯O hydrogen bonding is influenced significantly by additional weak contacts within cocrystal heterodimeric units.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"119 ","pages":"Article 101795"},"PeriodicalIF":3.2,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48434460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Butane isomers mobility and framework dynamics in UiO-66 (Zr) MOF: Impact of the hydroxyl groups in zirconia cluster UiO-66 (Zr) MOF中丁烷异构体的迁移率和骨架动力学:氧化锆簇中羟基的影响
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2022-04-01 DOI: 10.1016/j.ssnmr.2022.101784
Alexander E. Khudozhitkov , Sergei S. Arzumanov , Daniil I. Kolokolov , Alexander G. Stepanov

UiO-66 (Zr) is a metal-organic framework (MOF) known for its thermal and chemical stability and wide range of adsorption-based applications. This MOF exhibits high separation selectivity for butane isomers. It has been earlier inferred that the separation performance of the material depends on the hydroxylation state of the zirconia cluster. In this contribution, we apply 2H solid-state NMR to characterize the dynamics of both the MOF organic framework itself and butane isomers in hydroxylated and dehydroxylated forms of UiO-66. It is established that the rate of π-flipping and the amplitude of the phenylene ring plane librations in the framework are higher for the dehydroxylated form. Self-diffusion coefficients of butane isomers have been estimated for both forms of UiO-66. The diffusivity is higher for n-butane in the dehydroxylated form, whereas the diffusion of isobutane is not affected by the presence of OH groups in the zirconia cluster of the MOF. Higher diffusivity of n-butane in dehydroxylated form is accounted for by the larger effective diameter of the window between the adjacent cages in this form, which arises from faster rotation and larger amplitude of framework linker libration. This rationalizes the higher efficiency of the dehydroxylated form of UiO-66(Zr) material for butane isomers separation.

UiO-66 (Zr)是一种金属有机骨架(MOF),以其热稳定性和化学稳定性以及广泛的吸附应用而闻名。该MOF对丁烷异构体具有较高的分离选择性。早先已经推断,材料的分离性能取决于氧化锆簇的羟基化状态。在这篇文章中,我们应用2H固态核磁共振来表征MOF有机框架本身和羟基化和去羟基化形式的UiO-66的丁烷异构体的动力学。结果表明,在脱羟基形式下,骨架内的π翻转速率和苯基环平面振动幅度较大。对两种形式的UiO-66的丁烷异构体的自扩散系数进行了估计。脱羟基形式的正丁烷的扩散率更高,而异丁烷的扩散不受MOF氧化锆簇中OH基团存在的影响。脱羟基形式下正丁烷的高扩散率是由于该形式下相邻笼间窗口的有效直径较大,这是由更快的旋转和更大的框架连接体振动幅度引起的。这使得UiO-66(Zr)材料的脱羟基形式分离丁烷异构体的效率更高。
{"title":"Butane isomers mobility and framework dynamics in UiO-66 (Zr) MOF: Impact of the hydroxyl groups in zirconia cluster","authors":"Alexander E. Khudozhitkov ,&nbsp;Sergei S. Arzumanov ,&nbsp;Daniil I. Kolokolov ,&nbsp;Alexander G. Stepanov","doi":"10.1016/j.ssnmr.2022.101784","DOIUrl":"10.1016/j.ssnmr.2022.101784","url":null,"abstract":"<div><p><span>UiO-66 (Zr) is a metal-organic framework (MOF) known for its thermal and chemical stability and wide range of adsorption-based applications. This MOF exhibits high separation selectivity for butane isomers. It has been earlier inferred that the separation performance of the material depends on the hydroxylation state of the zirconia cluster. In this contribution, we apply </span><sup>2</sup>H solid-state NMR to characterize the dynamics of both the MOF organic framework itself and butane isomers in hydroxylated and dehydroxylated forms of UiO-66. It is established that the rate of π-flipping and the amplitude of the phenylene ring plane librations in the framework are higher for the dehydroxylated form. Self-diffusion coefficients of butane isomers have been estimated for both forms of UiO-66. The diffusivity is higher for <em>n</em><span>-butane in the dehydroxylated form, whereas the diffusion of isobutane is not affected by the presence of OH groups in the zirconia cluster of the MOF. Higher diffusivity of </span><em>n</em>-butane in dehydroxylated form is accounted for by the larger effective diameter of the window between the adjacent cages in this form, which arises from faster rotation and larger amplitude of framework linker libration. This rationalizes the higher efficiency of the dehydroxylated form of UiO-66(Zr) material for butane isomers separation.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"118 ","pages":"Article 101784"},"PeriodicalIF":3.2,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45870397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Characterization of crystalline and amorphous forms of irbesartan by multi-nuclear solid-state NMR 厄贝沙坦晶体和非晶态的多核固体核磁共振表征
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2022-04-01 DOI: 10.1016/j.ssnmr.2022.101783
Marcin Skotnicki , Paul Hodgkinson

Irbesartan (IRB) is an antihypertensive drug which exhibits the rare phenomenon of desmotropy; its 1H- and 2H- tetrazole tautomers can be isolated as distinct crystalline forms. The crystalline forms of IRB are poorly soluble, hence the amorphous form is potentially of interest for its faster dissolution rate. The tautomeric form and the nature of hydrogen bonding in amorphous IRB are unknown. In this study, crystalline form A and amorphous form of irbesartan were studied using 13C, 15N and 1H solid-state NMR. Variable-temperature 13C SSMNR studies showed alkyl chain disorder in the crystalline form of IRB, which may explain the conflicting literature crystal structures of form A (the marketed form). 15N NMR indicates that the amorphous material contains an approximately 2:1 ratio of 1H- and 2H-tetrazole tautomers. Static 1H SSNMR and relaxation time measurements confirmed different molecular mobilities of the samples and provided molecular-level insight into the nature of the glass transition. SSNMR is shown to be a powerful technique to investigate the solid state of disordered active pharmaceutical ingredients.

厄贝沙坦(IRB)是一种降压药,具有罕见的血管硬化现象;它的1H-和2H-四唑互变异构体可以被分离成不同的晶体形式。晶体形式的IRB是难溶的,因此无定形是潜在的兴趣,因为它的溶解速度更快。非晶IRB中的互变异构形式和氢键性质尚不清楚。本研究采用13C、15N和1H固体核磁共振对厄贝沙坦的晶型A和非晶型进行了研究。变温13C SSMNR研究表明,IRB的结晶形式存在烷基链无序,这可能解释了文献中与之矛盾的A型(上市形式)晶体结构。15N核磁共振表明,非晶材料含有约2:1比例的1H-和2h -四唑互变异构体。静态1H SSNMR和弛豫时间测量证实了样品的不同分子迁移率,并为玻璃化转变的性质提供了分子水平的见解。SSNMR被证明是研究无序活性药物成分固体状态的有力技术。
{"title":"Characterization of crystalline and amorphous forms of irbesartan by multi-nuclear solid-state NMR","authors":"Marcin Skotnicki ,&nbsp;Paul Hodgkinson","doi":"10.1016/j.ssnmr.2022.101783","DOIUrl":"10.1016/j.ssnmr.2022.101783","url":null,"abstract":"<div><p><span>Irbesartan (IRB) is an antihypertensive drug which exhibits the rare phenomenon of desmotropy; its 1</span><em>H</em>- and 2<em>H</em><span><span>- tetrazole </span>tautomers<span> can be isolated as distinct crystalline forms. The crystalline forms of IRB are poorly soluble, hence the amorphous<span> form is potentially of interest for its faster dissolution rate. The tautomeric form and the nature of hydrogen bonding in amorphous IRB are unknown. In this study, crystalline form A and amorphous form of irbesartan were studied using </span></span></span><sup>13</sup>C, <sup>15</sup>N and <sup>1</sup>H solid-state NMR. Variable-temperature <sup>13</sup>C SSMNR studies showed alkyl chain disorder in the crystalline form of IRB, which may explain the conflicting literature crystal structures of form A (the marketed form). <sup>15</sup>N NMR indicates that the amorphous material contains an approximately 2:1 ratio of 1<em>H</em>- and 2<em>H</em>-tetrazole tautomers. Static <sup>1</sup><span>H SSNMR and relaxation time measurements confirmed different molecular mobilities of the samples and provided molecular-level insight into the nature of the glass transition. SSNMR is shown to be a powerful technique to investigate the solid state of disordered active pharmaceutical ingredients.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"118 ","pages":"Article 101783"},"PeriodicalIF":3.2,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49176733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Separating an overlapped 1H peak and identifying its 1H-1H correlations with the use of single-channel 1H solid-state NMR at fast MAS 分离重叠的1H峰,并在快速MAS下使用单通道1H固态核磁共振识别其1H-1H相关性
IF 3.2 3区 化学 Q4 CHEMISTRY, PHYSICAL Pub Date : 2022-02-01 DOI: 10.1016/j.ssnmr.2022.101774
Nghia Tuan Duong , Vipin Agarwal , Yusuke Nishiyama

Fast magic-angle spinning (≥60 ​kHz) technique has enabled the acquisition of high-resolution 1H NMR spectra of solid materials. However, the spectral interpretation is still difficult because the 1H peaks are overlapped due to the narrow chemical shift range and broad linewidths. An additional 13C or 14N or 1H dimension possibly addresses the issues of overlapped proton resonances, but it leads to the elongated experimental time. Herein, we introduce a single-channel 1H experiment to separate the overlapped 1H peak and identify its spatially proximal 1H–1H correlations. This sequence combines selective excitation, selective 1H–1H polarization transfer by selective recoupling of protons (SERP), and broadband 1H recoupling by back-to-back (BABA) recoupling sequences. The concept for 1H separation is based on (i) the selective excitation of a well-resolved 1H peak and (ii) the selective dipolar polarization transfer from this isolated 1H peak to one of the 1H peaks in the overlapped/poor resolution region by SERP and (iii) the detection of 1H–1H correlations from these two 1H peaks to other neighboring 1Hs by BABA. We demonstrated the applicability of this approach to identify overlapped peaks on two molecules, β-L-aspartyl-l-alanine and Pioglitazone.HCl. The sequence allows the clear observation of 1H–1H correlations from an overlapped 1H peak without an additional heteronuclear dimension and ensures efficient polarization transfers that leads to twelve fold reduction in experimental time compared to 14N edited experiments. The limitation and the conditions of applicability for this approach are discussed in detail.

快速魔角旋转(≥60 kHz)技术实现了固体材料高分辨率1H NMR光谱的采集。然而,光谱解释仍然很困难,因为化学位移范围窄,线宽宽,1H峰重叠。额外的13C或14N或1H维度可能解决质子共振重叠的问题,但它会导致实验时间延长。本文引入单通道1H实验,分离重叠1H峰,识别其空间近端1H - 1H相关性。该序列结合了选择性激发、选择性质子重耦合(SERP)的选择性1H - 1H极化转移和背靠背重耦合(BABA)序列的宽带1H重耦合。1H分离的概念是基于(i)选择性激发一个高分辨率的1H峰,(ii)选择性偶极极化从这个孤立的1H峰转移到重叠/低分辨率区域的一个1H峰,以及(iii) BABA检测这两个1H峰与其他相邻1H峰之间的1H - 1H相关性。我们证明了这种方法在确定β- l-天冬氨酸-l-丙氨酸和吡格列酮hcl两个分子重叠峰上的适用性。该序列允许从重叠的1H峰清晰地观察1H - 1H相关性,而无需额外的异核维度,并确保有效的极化转移,与14N编辑实验相比,实验时间减少了12倍。详细讨论了该方法的局限性和适用条件。
{"title":"Separating an overlapped 1H peak and identifying its 1H-1H correlations with the use of single-channel 1H solid-state NMR at fast MAS","authors":"Nghia Tuan Duong ,&nbsp;Vipin Agarwal ,&nbsp;Yusuke Nishiyama","doi":"10.1016/j.ssnmr.2022.101774","DOIUrl":"10.1016/j.ssnmr.2022.101774","url":null,"abstract":"<div><p>Fast magic-angle spinning (≥60 ​kHz) technique has enabled the acquisition of high-resolution <sup>1</sup>H NMR spectra of solid materials. However, the spectral interpretation is still difficult because the <sup>1</sup><span>H peaks are overlapped due to the narrow chemical shift range and broad linewidths. An additional </span><sup>13</sup>C or <sup>14</sup>N or <sup>1</sup>H dimension possibly addresses the issues of overlapped proton resonances, but it leads to the elongated experimental time. Herein, we introduce a single-channel <sup>1</sup>H experiment to separate the overlapped <sup>1</sup>H peak and identify its spatially proximal <sup>1</sup>H–<sup>1</sup><span>H correlations. This sequence combines selective excitation, selective </span><sup>1</sup>H–<sup>1</sup><span>H polarization transfer by selective recoupling of protons (SERP), and broadband </span><sup>1</sup>H recoupling by back-to-back (BABA) recoupling sequences. The concept for <sup>1</sup>H separation is based on (i) the selective excitation of a well-resolved <sup>1</sup>H peak and (ii) the selective dipolar polarization transfer from this isolated <sup>1</sup>H peak to one of the <sup>1</sup>H peaks in the overlapped/poor resolution region by SERP and (iii) the detection of <sup>1</sup>H–<sup>1</sup>H correlations from these two <sup>1</sup>H peaks to other neighboring <sup>1</sup>Hs by BABA. We demonstrated the applicability of this approach to identify overlapped peaks on two molecules, β-L-aspartyl-<span>l</span><span>-alanine and Pioglitazone.HCl. The sequence allows the clear observation of </span><sup>1</sup>H–<sup>1</sup>H correlations from an overlapped <sup>1</sup>H peak without an additional heteronuclear dimension and ensures efficient polarization transfers that leads to twelve fold reduction in experimental time compared to <sup>14</sup>N edited experiments. The limitation and the conditions of applicability for this approach are discussed in detail.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"117 ","pages":"Article 101774"},"PeriodicalIF":3.2,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39837922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Solid state nuclear magnetic resonance
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1