Pub Date : 2024-06-06DOI: 10.1016/j.smaim.2024.05.002
Yang Zhang , Xiaobo Li , Chunling Liang , Jianjia Feng , Chuyi Yu , Weichi Jiang , Keneng Cai , Wanying Chen , Wenli Cai , Feng Zeng , Qin Xu , Peng Chen , Jianming Liang
Hyper-uric acid (UA)-induced kidney injury (HAKI) is caused by the deposition of excess blood UA into the kidneys. We confined molecules of uricase (URI), catalase (CAT), and curcumin (Cur) to a single structure (UC/Cur) while retaining their enzymatic activities via a cross-linking complexation reaction between tannic acid and FeCl3 for treating HAKI. Simultaneously, bovine serum albumin (BSA)-UC/Cur nanoparticles were successfully prepared by interlinking the disulfide bonds of BSA with the enzyme complex via Tris(2-carboxyethyl) phosphine(TCEP) to form sulfhydryl groups. BSA-UC/Cur significantly attenuated MSU-induced NLRP3 inflammasome pathway activation and apoptosis in NRK-52e cells by eliminating UA crystals and intracellular reactive oxygen species. More importantly, treatment with BSA-UC/Cur stabilized blood UA concentrations and lowered proximal tubular protein levels, mitochondrial swelling, and fibrotic areas, renducing the expression of matrix metalloproteinase (MMP)2, MMP9, and NLRP3 while, increasing the expression of tight-junction proteins ZO1 and occludin as well as that of TIMP-1, in HAKI model rats. In addition, BSA-UC/Cur nanoparticles reduced the subpopulation ratios of CD8+ T cells and M1 macrophages and increased those of M2 macrophages and Treg cells. Preliminary in-vivo trials showed that long-term intravenous treatment with BSA-UC/Cur is safe. Therefore, BSA-UC/Cur could be a potential nanotherapeutic agent for HAKI.
高尿酸(UA)诱导的肾损伤(HAKI)是由血液中过量的尿酸沉积到肾脏引起的。我们通过鞣酸与氯化铁的交联复合物反应,将尿酸酶(URI)、过氧化氢酶(CAT)和姜黄素(Cur)分子限制在单一结构(UC/Cur)中,同时保留其酶活性,用于治疗 HAKI。同时,通过三(2-羧乙基)膦(TCEP)将牛血清白蛋白(BSA)的二硫键与酶复合物交联形成巯基,成功制备了牛血清白蛋白-UC/Cur纳米颗粒。BSA-UC/Cur通过消除UA晶体和细胞内活性氧,明显减轻了MSU诱导的NLRP3炎性体通路激活和NRK-52e细胞的凋亡。更重要的是,BSA-UC/Cur 能稳定 HAKI 模型大鼠血液中 UA 的浓度,降低近端肾小管蛋白水平、线粒体肿胀和纤维化面积,减少基质金属蛋白酶(MMP)2、MMP9 和 NLRP3 的表达,同时增加紧密连接蛋白 ZO1 和 occludin 以及 TIMP-1 的表达。此外,BSA-UC/Cur 纳米粒子还降低了 CD8+ T 细胞和 M1 巨噬细胞的亚群比率,增加了 M2 巨噬细胞和 Treg 细胞的亚群比率。初步体内试验表明,长期静脉注射 BSA-UC/Cur 是安全的。因此,BSA-UC/Cur 可能是一种潜在的 HAKI 纳米治疗剂。
{"title":"Construction of an uricase/catalase/curcumin-co-loaded drug delivery system and its effect on hyper-uric acid-induced kidney injury","authors":"Yang Zhang , Xiaobo Li , Chunling Liang , Jianjia Feng , Chuyi Yu , Weichi Jiang , Keneng Cai , Wanying Chen , Wenli Cai , Feng Zeng , Qin Xu , Peng Chen , Jianming Liang","doi":"10.1016/j.smaim.2024.05.002","DOIUrl":"10.1016/j.smaim.2024.05.002","url":null,"abstract":"<div><p>Hyper-uric acid (UA)-induced kidney injury (HAKI) is caused by the deposition of excess blood UA into the kidneys. We confined molecules of uricase (URI), catalase (CAT), and curcumin (Cur) to a single structure (UC/Cur) while retaining their enzymatic activities via a cross-linking complexation reaction between tannic acid and FeCl<sub>3</sub> for treating HAKI. Simultaneously, bovine serum albumin (BSA)-UC/Cur nanoparticles were successfully prepared by interlinking the disulfide bonds of BSA with the enzyme complex via Tris(2-carboxyethyl) phosphine(TCEP) to form sulfhydryl groups. BSA-UC/Cur significantly attenuated MSU-induced NLRP3 inflammasome pathway activation and apoptosis in NRK-52e cells by eliminating UA crystals and intracellular reactive oxygen species. More importantly, treatment with BSA-UC/Cur stabilized blood UA concentrations and lowered proximal tubular protein levels, mitochondrial swelling, and fibrotic areas, renducing the expression of matrix metalloproteinase (MMP)2, MMP9, and NLRP3 while, increasing the expression of tight-junction proteins ZO1 and occludin as well as that of TIMP-1, in HAKI model rats. In addition, BSA-UC/Cur nanoparticles reduced the subpopulation ratios of CD8<sup>+</sup> T cells and M1 macrophages and increased those of M2 macrophages and Treg cells. Preliminary in-vivo trials showed that long-term intravenous treatment with BSA-UC/Cur is safe. Therefore, BSA-UC/Cur could be a potential nanotherapeutic agent for HAKI.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 3","pages":"Pages 321-335"},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000309/pdfft?md5=bc8ccf487b71dccaa694c54387ebf42d&pid=1-s2.0-S2590183424000309-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141403752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1016/j.smaim.2024.05.001
{"title":"Smart materials in medicine 5th anniversary","authors":"","doi":"10.1016/j.smaim.2024.05.001","DOIUrl":"10.1016/j.smaim.2024.05.001","url":null,"abstract":"","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 3","pages":"Page 336"},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000206/pdfft?md5=dea59be70eb58a316b21c04ee5e55613&pid=1-s2.0-S2590183424000206-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141051531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-10DOI: 10.1016/j.smaim.2024.04.001
Shuiying Zhang , Rui Li , Tong Jiang , Yihan Gao , Kai Zhong , Hong Cheng , Xin Chen , Shiying Li
Lung cancer has surpassed other types of cancer to become the primary cause of cancer-related deaths. Surgery stands as the foremost clinical treatment strategy available for tackling this condition, but it receives a low efficiency for most patients. In recent years, some adjuvant therapies are employed to improve the lung cancer treatment efficiency, such as chemotherapy, targeted therapy and immunotherapy. However, these strategies have not significantly increased overall survival of patients. Additionally, the random distribution of drugs will induce severe side effects. Nanomedicines have got great attentions to boost drug effect and reduce adverse reactions, including liposome-based nanoparticles, polymeric nanoparticles, inorganic nanoparticles, and exosomes. Importantly, nanomedicines contribute to improving drug bioavailability, stability and residency in target regions. Benefiting from the physiological characteristics of lung, the inhaled pulmonary delivery strategy in combination with nanomedicine will provide a non-invasive and effective strategy for treating lung cancer. Furthermore, the use of targeting ligands enables precise delivery of loaded drugs to lung cancer cells. Inhaled nanomedicine exhibits unique distribution and sustained release behaviors in the alveoli, amplifying the therapeutic effect and reducing side effects. This review aims to discuss various inhaled methods of delivering nanomedicine to treat lung cancer and also summarizes the clearance mechanism of nanomedicine in the lung. Overall, this review focuses on the application of different inhalable nanomedicines, which may inspire the development of more effective treatments against lung cancer.
{"title":"Inhalable nanomedicine for lung cancer treatment","authors":"Shuiying Zhang , Rui Li , Tong Jiang , Yihan Gao , Kai Zhong , Hong Cheng , Xin Chen , Shiying Li","doi":"10.1016/j.smaim.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.smaim.2024.04.001","url":null,"abstract":"<div><p>Lung cancer has surpassed other types of cancer to become the primary cause of cancer-related deaths. Surgery stands as the foremost clinical treatment strategy available for tackling this condition, but it receives a low efficiency for most patients. In recent years, some adjuvant therapies are employed to improve the lung cancer treatment efficiency, such as chemotherapy, targeted therapy and immunotherapy. However, these strategies have not significantly increased overall survival of patients. Additionally, the random distribution of drugs will induce severe side effects. Nanomedicines have got great attentions to boost drug effect and reduce adverse reactions, including liposome-based nanoparticles, polymeric nanoparticles, inorganic nanoparticles, and exosomes. Importantly, nanomedicines contribute to improving drug bioavailability, stability and residency in target regions. Benefiting from the physiological characteristics of lung, the inhaled pulmonary delivery strategy in combination with nanomedicine will provide a non-invasive and effective strategy for treating lung cancer. Furthermore, the use of targeting ligands enables precise delivery of loaded drugs to lung cancer cells. Inhaled nanomedicine exhibits unique distribution and sustained release behaviors in the alveoli, amplifying the therapeutic effect and reducing side effects. This review aims to discuss various inhaled methods of delivering nanomedicine to treat lung cancer and also summarizes the clearance mechanism of nanomedicine in the lung. Overall, this review focuses on the application of different inhalable nanomedicines, which may inspire the development of more effective treatments against lung cancer.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 2","pages":"Pages 261-280"},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259018342400019X/pdfft?md5=630e734d1194fa04bafa07904defd60d&pid=1-s2.0-S259018342400019X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140650392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-27DOI: 10.1016/j.smaim.2024.03.004
Wooju Jeong , Sungrok Wang , Yumin Kim , Soohyun Lee , Minhu Huang , Jaeil Park , Myung-Han Yoon , Chang-Myung Oh , Cheol Ryong Ku
Acromegaly is a challenging medical condition that arises from the excessive production of growth hormones and the insulin-like growth factor 1 in the pituitary gland. While surgery is the primary treatment for acromegaly, medication is increasingly being used in patients who are unsuitable for surgery or have experienced treatment failure. Despite advancements in medical and surgical therapies, the treatment of acromegaly remains challenging. In this research, a three-dimensional (3D) in-vitro cell culture model for pituitary adenoma research was developed using hydrogel fiber meshes (HFMs) and GH3 cells. Electrospun nanofibers based on polyvinyl alcohol and polyacrylic acid were converted into HFMs by hydrogelification with the leaching of electrosprayed cellulose acetate beads for porosity enhancement. GH3 cells grown in the 3D model exhibited increased dispersion and upregulation of the somatostatin receptor subtypes 2 and 5 compared to those grown in traditional 2D cultures, as well as high sensitivity to somatostatin analogs and tumor-like profiles (as indicated by functional assays and transcriptome analysis, respectively). Therefore, the proposed 3D model accurately represents the physiological response to pituitary-adenoma therapeutic agents. This study highlights the potential of HFMs as a versatile platform for 3D in-vitro cell culture models that can be employed for pituitary adenoma research. Moreover, the proposed 3D cell culture model may contribute to a deeper understanding of tumor biology and facilitate the development of effective therapeutic strategies for acromegaly.
{"title":"Hydrogel-fiber-mesh-based 3D cell cultures: A new method for studying pituitary tumors","authors":"Wooju Jeong , Sungrok Wang , Yumin Kim , Soohyun Lee , Minhu Huang , Jaeil Park , Myung-Han Yoon , Chang-Myung Oh , Cheol Ryong Ku","doi":"10.1016/j.smaim.2024.03.004","DOIUrl":"10.1016/j.smaim.2024.03.004","url":null,"abstract":"<div><p>Acromegaly is a challenging medical condition that arises from the excessive production of growth hormones and the insulin-like growth factor 1 in the pituitary gland. While surgery is the primary treatment for acromegaly, medication is increasingly being used in patients who are unsuitable for surgery or have experienced treatment failure. Despite advancements in medical and surgical therapies, the treatment of acromegaly remains challenging. In this research, a three-dimensional (3D) <em>in-vitro</em> cell culture model for pituitary adenoma research was developed using hydrogel fiber meshes (HFMs) and GH3 cells. Electrospun nanofibers based on polyvinyl alcohol and polyacrylic acid were converted into HFMs by hydrogelification with the leaching of electrosprayed cellulose acetate beads for porosity enhancement. GH3 cells grown in the 3D model exhibited increased dispersion and upregulation of the somatostatin receptor subtypes 2 and 5 compared to those grown in traditional 2D cultures, as well as high sensitivity to somatostatin analogs and tumor-like profiles (as indicated by functional assays and transcriptome analysis, respectively). Therefore, the proposed 3D model accurately represents the physiological response to pituitary-adenoma therapeutic agents. This study highlights the potential of HFMs as a versatile platform for 3D <em>in-vitro</em> cell culture models that can be employed for pituitary adenoma research. Moreover, the proposed 3D cell culture model may contribute to a deeper understanding of tumor biology and facilitate the development of effective therapeutic strategies for acromegaly.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 2","pages":"Pages 281-290"},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000188/pdfft?md5=420f9b24347545057e0cecc0858d24c8&pid=1-s2.0-S2590183424000188-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140400536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-26DOI: 10.1016/j.smaim.2024.03.002
Wenhui Hu , Cuifang Wu , Jinhua Long , Zhu Zeng
Over the past decades, increasing evidence has indicated that multiple mechanical signals with different magnitude and pattern, including fluid flow-derived shear stress, topology of extracellular matrix (ECM), substrate stiffness, tension or compression, are now emerging as important orchestrators of immune response under physiological and pathophysiological conditions. Correspondingly, the extrinsic mechanical signals may confer the unique mechanophenotypes on cells, which coupled with their immunophenotypes, determines the ultimate type of immune response. Therefore, the concept of mechano-immunological checkpoints is proposed, which concerns the featured mechanical signals and the typical mechanophenotypes of immune cells, making it possible to elucidate and treat immune-associated disease from the mechanical viewpoint.
{"title":"Mechano-immunological checkpoints: An emerging strategy for investigation and evaluation of disease and therapeutics","authors":"Wenhui Hu , Cuifang Wu , Jinhua Long , Zhu Zeng","doi":"10.1016/j.smaim.2024.03.002","DOIUrl":"10.1016/j.smaim.2024.03.002","url":null,"abstract":"<div><p>Over the past decades, increasing evidence has indicated that multiple mechanical signals with different magnitude and pattern, including fluid flow-derived shear stress, topology of extracellular matrix (ECM), substrate stiffness, tension or compression, are now emerging as important orchestrators of immune response under physiological and pathophysiological conditions. Correspondingly, the extrinsic mechanical signals may confer the unique mechanophenotypes on cells, which coupled with their immunophenotypes, determines the ultimate type of immune response. Therefore, the concept of mechano-immunological checkpoints is proposed, which concerns the featured mechanical signals and the typical mechanophenotypes of immune cells, making it possible to elucidate and treat immune-associated disease from the mechanical viewpoint.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 2","pages":"Pages 256-260"},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000164/pdfft?md5=2d237e1a7d5c819dfe6aa0b1d981f58b&pid=1-s2.0-S2590183424000164-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140400225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-23DOI: 10.1016/j.smaim.2024.03.003
Zixuan Zhao , Yuan Cao , Rui Xu , Junyue Fang , Yuxuan Zhang , Xiaoding Xu , Linzhuo Huang , Rong Li
Although characterized by high reactive oxygen species (ROS) generation, cancer cells maintain redox homeostasis to avoid severe damage (e.g., DNA, protein, and plasma membrane dysfunction) and facilitate cancer progression. Emerging evidence has indicated that targeting the regulation of redox homeostasis to amplify oxidative stress is of value in cancer therapy. However, therapeutic agents like nucleic acids, small molecular inhibitors, and chemotherapeutic drugs fail to exert effective cancer inhibition due to their low bioavailability, susceptibility to serum enzymes, and inefficiency in cell membrane penetrating. Therefore, specific delivery vectors are required to facilitate the intracellular delivery of anti-tumor drugs. In the past few decades, various engineered nanomaterials have been designed and developed for drug delivery. In particular, rational nanoparticles (NPs) have garnered more attention due to their splendid long circulation ability, modification capacity, and stimulation-responded release. In this review, the methods of ROS generation and ROS-regulated signaling in cancer development were firstly briefly introduced. The anti-oxidant system, including the metabolism shifting and anti-oxidant genes, were next reviewed, and the strategies of NPs-mediated targeted regulation of redox homeostasis were emphatically discussed. The main strategies include NPs-induced delivery of nucleic acids, small molecule inhibitors, chemotherapeutic agents, radiosensitizers, and NPs-induced ROS generation and GSH depletion. The future development of NP-mediated redox dyshomeostasis in cancer therapy and their challenges in clinical translation were finally discussed.
{"title":"Nanoparticles (NPs)-mediated targeted regulation of redox homeostasis for effective cancer therapy","authors":"Zixuan Zhao , Yuan Cao , Rui Xu , Junyue Fang , Yuxuan Zhang , Xiaoding Xu , Linzhuo Huang , Rong Li","doi":"10.1016/j.smaim.2024.03.003","DOIUrl":"https://doi.org/10.1016/j.smaim.2024.03.003","url":null,"abstract":"<div><p>Although characterized by high reactive oxygen species (ROS) generation, cancer cells maintain redox homeostasis to avoid severe damage (<em>e.g.</em>, DNA, protein, and plasma membrane dysfunction) and facilitate cancer progression. Emerging evidence has indicated that targeting the regulation of redox homeostasis to amplify oxidative stress is of value in cancer therapy. However, therapeutic agents like nucleic acids, small molecular inhibitors, and chemotherapeutic drugs fail to exert effective cancer inhibition due to their low bioavailability, susceptibility to serum enzymes, and inefficiency in cell membrane penetrating. Therefore, specific delivery vectors are required to facilitate the intracellular delivery of anti-tumor drugs. In the past few decades, various engineered nanomaterials have been designed and developed for drug delivery. In particular, rational nanoparticles (NPs) have garnered more attention due to their splendid long circulation ability, modification capacity, and stimulation-responded release. In this review, the methods of ROS generation and ROS-regulated signaling in cancer development were firstly briefly introduced. The anti-oxidant system, including the metabolism shifting and anti-oxidant genes, were next reviewed, and the strategies of NPs-mediated targeted regulation of redox homeostasis were emphatically discussed. The main strategies include NPs-induced delivery of nucleic acids, small molecule inhibitors, chemotherapeutic agents, radiosensitizers, and NPs-induced ROS generation and GSH depletion. The future development of NP-mediated redox dyshomeostasis in cancer therapy and their challenges in clinical translation were finally discussed.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 2","pages":"Pages 291-320"},"PeriodicalIF":0.0,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000176/pdfft?md5=74d4eb6f96bfad7d5fd321568235caed&pid=1-s2.0-S2590183424000176-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140901800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-15DOI: 10.1016/j.smaim.2024.03.001
Shuyan Han , Jun Wu
With the rapid progress of information technology and life sciences, artificial intelligence (AI) technology has substantially changed the way in many areas of biomaterials and biomedicine, including biomaterials and formulation design, drug development, preclinical study, clinical diagnosis and treatment, as well as health management. This perspective outlines the key issues of AI in the fields of biomaterials and biomedicine applications, and analyzes some opportunities and challenges of AI in the biomedical and clinical development. The gap between experts from multiple disciplines and fields needs to be narrowed, and common participation should be applied to open the next frontier of integrated AI-biomedicine.
{"title":"Artificial intelligence (AI) meets biomaterials and biomedicine","authors":"Shuyan Han , Jun Wu","doi":"10.1016/j.smaim.2024.03.001","DOIUrl":"10.1016/j.smaim.2024.03.001","url":null,"abstract":"<div><p>With the rapid progress of information technology and life sciences, artificial intelligence (AI) technology has substantially changed the way in many areas of biomaterials and biomedicine, including biomaterials and formulation design, drug development, preclinical study, clinical diagnosis and treatment, as well as health management. This perspective outlines the key issues of AI in the fields of biomaterials and biomedicine applications, and analyzes some opportunities and challenges of AI in the biomedical and clinical development. The gap between experts from multiple disciplines and fields needs to be narrowed, and common participation should be applied to open the next frontier of integrated AI-biomedicine.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 2","pages":"Pages 251-255"},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000152/pdfft?md5=0aef4c180840a30d709a511a9a77a24c&pid=1-s2.0-S2590183424000152-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140278706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-27DOI: 10.1016/j.smaim.2024.02.002
Kai Cheng , Yan Deng , Lin Qiu , Shuhang Song , Lei Chen , LinGe Wang , Qianqian Yu
Chronic non-healing wounds induced by oxidative stress and inflammation can activate inflammatory cells and produce large amounts of inflammatory mediators, which fail to maintain homeostasis in the skin and delay the wound-healing process. To tackle this issue, heparin-loaded hierarchical composite scaffolds comprised of electrospun fibers and electrosprayed microspheres were prepared to act as an effective anti-inflammatory wound dressing. Microspheres with different electrosprayed densities were deposited into the surface of the electrospun fibers for the improvement of surface topographical cues and cellular activities. The results indicated that the electrospun fibers followed by electrosprayed for 3 min to fabricate the composite fiber/microsphere scaffolds contributed to the best performance in terms of promoting cellular activities, with no obvious cytotoxicity, good adhesion morphology, and the fastest cell migration rate. In addition, a suitable amount of heparin was added to the composite scaffolds to alleviate inflammation. The significant adsorption efficiency of heparin-loaded composite scaffolds on inflammatory mediator MCP-1 indicates a favorable anti-inflammation effect in vitro. Furthermore, the heparin-loaded hierarchical scaffolds accelerated the pace of inflammatory wound healing in vivo when compared to commercial 3 M Tegaderm and non-heparin-loaded scaffolds. Our work provided a facile strategy for fabricating heparin-loaded hierarchical fiber/microsphere scaffolds to modulate cellular activities via topographical cues and accelerating the inflammatory wound healing process by electrostatic interactions between heparin and MCP-1. These findings suggested that the heparin-loaded hierarchical scaffold was expected to be a promising dressing for inflammatory wound healing.
{"title":"Heparin-loaded hierarchical fiber/microsphere scaffolds for anti-inflammatory and promoting wound healing","authors":"Kai Cheng , Yan Deng , Lin Qiu , Shuhang Song , Lei Chen , LinGe Wang , Qianqian Yu","doi":"10.1016/j.smaim.2024.02.002","DOIUrl":"https://doi.org/10.1016/j.smaim.2024.02.002","url":null,"abstract":"<div><p>Chronic non-healing wounds induced by oxidative stress and inflammation can activate inflammatory cells and produce large amounts of inflammatory mediators, which fail to maintain homeostasis in the skin and delay the wound-healing process. To tackle this issue, heparin-loaded hierarchical composite scaffolds comprised of electrospun fibers and electrosprayed microspheres were prepared to act as an effective anti-inflammatory wound dressing. Microspheres with different electrosprayed densities were deposited into the surface of the electrospun fibers for the improvement of surface topographical cues and cellular activities. The results indicated that the electrospun fibers followed by electrosprayed for 3 min to fabricate the composite fiber/microsphere scaffolds contributed to the best performance in terms of promoting cellular activities, with no obvious cytotoxicity, good adhesion morphology, and the fastest cell migration rate. In addition, a suitable amount of heparin was added to the composite scaffolds to alleviate inflammation. The significant adsorption efficiency of heparin-loaded composite scaffolds on inflammatory mediator MCP-1 indicates a favorable anti-inflammation effect <em>in vitro</em>. Furthermore, the heparin-loaded hierarchical scaffolds accelerated the pace of inflammatory wound healing <em>in vivo</em> when compared to commercial 3 M Tegaderm and non-heparin-loaded scaffolds. Our work provided a facile strategy for fabricating heparin-loaded hierarchical fiber/microsphere scaffolds to modulate cellular activities via topographical cues and accelerating the inflammatory wound healing process by electrostatic interactions between heparin and MCP-1. These findings suggested that the heparin-loaded hierarchical scaffold was expected to be a promising dressing for inflammatory wound healing.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 2","pages":"Pages 240-250"},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000140/pdfft?md5=87e72f78ab41cd75eeba08006f76f8b3&pid=1-s2.0-S2590183424000140-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140113249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-10DOI: 10.1016/j.smaim.2024.02.001
Shengxi Jiang , Peiji Yang , Yujia Zheng , Xiong Lu , Chaoming Xie
Polyphenol-based materials, primarily composed of polyphenolic compounds, have attracted considerable attention due to their unique chemical structures and biological activities. However, there are many derivatives of polyphenols, resulting in the complexity and diversity of polyphenol-based materials. Traditional methods are difficult to meet the rapid development of polyphenol-based materials. Machine learning, known for its proficiency in predicting performance, optimizing synthesis processes, and designing novel materials, offers significant potential in the intelligent design and applications of polyphenol-based materials. In this review, we summarize the recent advancements in the research and development of polyphenol-based materials and machine learning. The intersection of polyphenol-based materials and machine learning is also discussed, including their applications in biomedical, environmental, and energy fields. The challenges and prospects for the future development of polyphenol-based materials based on machine learning are highlighted.
{"title":"Machine learning for polyphenol-based materials","authors":"Shengxi Jiang , Peiji Yang , Yujia Zheng , Xiong Lu , Chaoming Xie","doi":"10.1016/j.smaim.2024.02.001","DOIUrl":"https://doi.org/10.1016/j.smaim.2024.02.001","url":null,"abstract":"<div><p>Polyphenol-based materials, primarily composed of polyphenolic compounds, have attracted considerable attention due to their unique chemical structures and biological activities. However, there are many derivatives of polyphenols, resulting in the complexity and diversity of polyphenol-based materials. Traditional methods are difficult to meet the rapid development of polyphenol-based materials. Machine learning, known for its proficiency in predicting performance, optimizing synthesis processes, and designing novel materials, offers significant potential in the intelligent design and applications of polyphenol-based materials. In this review, we summarize the recent advancements in the research and development of polyphenol-based materials and machine learning. The intersection of polyphenol-based materials and machine learning is also discussed, including their applications in biomedical, environmental, and energy fields. The challenges and prospects for the future development of polyphenol-based materials based on machine learning are highlighted.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 2","pages":"Pages 221-239"},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000139/pdfft?md5=7f0ddbde2e40cb18a9a5a75c4e740d78&pid=1-s2.0-S2590183424000139-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139935234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-12DOI: 10.1016/j.smaim.2024.01.001
Ke Zheng , Muyuan Chai , Bingping Luo , Kezhao Cheng , Zhenxing Wang , Nan Li , Xuetao Shi
Since the need for vascular networks to supply oxygen and nutrients while expelling metabolic waste, most cells can only survive within 200 μm of blood vessels; thus, the construction of well-developed blood vessel networks is essential for the manufacture of artificial tissues and organs. Three-dimensional (denoted as 3D) printing is a scalable, reproducible and high-precision manufacturing technology. In the past several years, there have been many breakthroughs in building various vascularized tissues, greatly promoting the development of biological tissue engineering. This paper highlights the latest progress of 3D printed vascularized tissues and organs, including the heart, liver, lung, kidney, and penis. We also discuss the application status and potential of the above printed tissues, and prospect the further requirement of 3D printing technology for manufacturing clinically useable vascularized tissues.
由于需要血管网络提供氧气和养分,同时排出代谢废物,大多数细胞只能在距离血管 200 μm 的范围内生存;因此,构建发达的血管网络对于制造人工组织和器官至关重要。三维(3D)打印是一种可扩展、可复制和高精度的制造技术。在过去几年中,各种血管组织的构建取得了许多突破性进展,极大地推动了生物组织工程学的发展。本文重点介绍了三维打印血管化组织和器官的最新进展,包括心脏、肝脏、肺脏、肾脏和阴茎。我们还讨论了上述打印组织的应用现状和潜力,并展望了制造临床可用血管化组织对 3D 打印技术的进一步要求。
{"title":"Recent progress of 3D printed vascularized tissues and organs","authors":"Ke Zheng , Muyuan Chai , Bingping Luo , Kezhao Cheng , Zhenxing Wang , Nan Li , Xuetao Shi","doi":"10.1016/j.smaim.2024.01.001","DOIUrl":"10.1016/j.smaim.2024.01.001","url":null,"abstract":"<div><p>Since the need for vascular networks to supply oxygen and nutrients while expelling metabolic waste, most cells can only survive within 200 μm of blood vessels; thus, the construction of well-developed blood vessel networks is essential for the manufacture of artificial tissues and organs. Three-dimensional (denoted as 3D) printing is a scalable, reproducible and high-precision manufacturing technology. In the past several years, there have been many breakthroughs in building various vascularized tissues, greatly promoting the development of biological tissue engineering. This paper highlights the latest progress of 3D printed vascularized tissues and organs, including the heart, liver, lung, kidney, and penis. We also discuss the application status and potential of the above printed tissues, and prospect the further requirement of 3D printing technology for manufacturing clinically useable vascularized tissues.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 2","pages":"Pages 183-195"},"PeriodicalIF":0.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000127/pdfft?md5=5687a89e851d648e61c59bd2aa7b3354&pid=1-s2.0-S2590183424000127-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139539770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}