首页 > 最新文献

Smart Materials in Medicine最新文献

英文 中文
Anti-inflammatory, antibacterial, antioxidative bioactive glass-based nanofibrous dressing enables scarless wound healing 抗炎、抗菌、抗氧化的生物活性玻璃基纳米纤维敷料可实现无瘢痕伤口愈合
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2023.01.001
Zhengchao Yuan, Lixiang Zhang, Shichao Jiang, Muhammad Shafiq, Youjun Cai, Yujie Chen, Jiahui Song, Xiao Yu, H. Ijima, Yuan Xu, X. Mo
{"title":"Anti-inflammatory, antibacterial, antioxidative bioactive glass-based nanofibrous dressing enables scarless wound healing","authors":"Zhengchao Yuan, Lixiang Zhang, Shichao Jiang, Muhammad Shafiq, Youjun Cai, Yujie Chen, Jiahui Song, Xiao Yu, H. Ijima, Yuan Xu, X. Mo","doi":"10.1016/j.smaim.2023.01.001","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.01.001","url":null,"abstract":"","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46862246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Circulating exosomes in sepsis: A potential role as diagnostic biomarkers, therapeutic and drug delivery carriers 脓毒症中的循环外泌体:作为诊断生物标志物、治疗和药物输送载体的潜在作用
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2023.06.007
Roushka Bhagwan Valjee , Usri H. Ibrahim , Kwanele Xulu , Saajida Mahomed , Irene Mackraj

Sepsis and sepsis-related organ dysfunction have been identified as significant global life-threatening health threats, with a high mortality rate despite ongoing research in the area. Timely diagnosis is essential such that treatment could be initiated as early as possible to ensure the best outcome, since delayed intervention is associated with a higher mortality. Patient stratification and disease monitoring, present significant challenges in sepsis treatment and management strategies, largely due to the heterogenicity of sepsis signs and symptoms. Hence a focus on potential biomarkers to overcome these challenges is needed. Recently, extracellular vesicles (EVs), mainly the exosome subtype, have been investigated regarding their potential role in sepsis diagnostics, therapeutics and as drug delivery vehicles. Herein, we present an up-to-date review covering the role of circulating exosomes in the diagnosis and monitoring of the progression of sepsis and in therapeutics and drug delivery for sepsis. To provide context, sepsis pathophysiology and the role of circulating exosomes in sepsis have been highlighted. Future prospects, current challenges and recommendations regarding the role of exosomes in sepsis are also identified.

败血症和败血症相关的器官功能障碍已被确定为全球危及生命的重大健康威胁,尽管该领域正在进行研究,但死亡率很高。及时诊断至关重要,以便尽早开始治疗,以确保最佳结果,因为延迟干预会导致更高的死亡率。患者分层和疾病监测在败血症的治疗和管理策略方面提出了重大挑战,这主要是由于败血症体征和症状的异质性。因此,需要关注潜在的生物标志物来克服这些挑战。最近,细胞外囊泡(EV),主要是外泌体亚型,已被研究其在败血症诊断、治疗和药物递送载体中的潜在作用。在此,我们对循环外泌体在败血症的诊断和监测进展以及败血症的治疗和药物递送中的作用进行了最新综述。为了提供背景,败血症的病理生理学和循环外泌体在败血症中的作用已经得到了强调。还确定了外泌体在败血症中作用的未来前景、当前挑战和建议。
{"title":"Circulating exosomes in sepsis: A potential role as diagnostic biomarkers, therapeutic and drug delivery carriers","authors":"Roushka Bhagwan Valjee ,&nbsp;Usri H. Ibrahim ,&nbsp;Kwanele Xulu ,&nbsp;Saajida Mahomed ,&nbsp;Irene Mackraj","doi":"10.1016/j.smaim.2023.06.007","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.06.007","url":null,"abstract":"<div><p>Sepsis and sepsis-related organ dysfunction have been identified as significant global life-threatening health threats, with a high mortality rate despite ongoing research in the area. Timely diagnosis is essential such that treatment could be initiated as early as possible to ensure the best outcome, since delayed intervention is associated with a higher mortality. Patient stratification and disease monitoring, present significant challenges in sepsis treatment and management strategies, largely due to the heterogenicity of sepsis signs and symptoms. Hence a focus on potential biomarkers to overcome these challenges is needed. Recently, extracellular vesicles (EVs), mainly the exosome subtype, have been investigated regarding their potential role in sepsis diagnostics, therapeutics and as drug delivery vehicles. Herein, we present an up-to-date review covering the role of circulating exosomes in the diagnosis and monitoring of the progression of sepsis and in therapeutics and drug delivery for sepsis. To provide context, sepsis pathophysiology and the role of circulating exosomes in sepsis have been highlighted. Future prospects, current challenges and recommendations regarding the role of exosomes in sepsis are also identified.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 639-647"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49717089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring the elasticity of nerve implants for regulating peripheral nerve regeneration 调节神经植入物弹性调节周围神经再生
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2022.11.004
Yan Kong , Jiawei Xu , Wenchao Guan , Shaolan Sun , Yumin Yang , Guicai Li

Numerous studies have conducted in-depth research on the biological and chemical properties of tissue-engineered neural graft (TENG) on peripheral nerve regeneration, while the physical properties of the graft also display a significant impact on the regeneration of the injured nerve. Among them, the elasticity properties of TENG show a significant impact on the adhesion, proliferation, migration and bio-functionality of nerve cells in peripheral nerve regeneration. This review summarizes the latest research progress on elastic biomaterials for peripheral nervous system (PNS), including categories of elastic biomaterials, preparation methods and the effect of elasticity on the growth behavior of nerve cells, etc. In addition, the effect of the elastic substrate on the elasticity of the cell itself is also briefly described. Finally, we analyze and discuss the underlying mechanism by which elastic substrate affects nerve cell behavior.

大量研究深入研究了组织工程神经移植物(tissue-engineered neural graft, TENG)的生物学和化学特性对周围神经再生的影响,同时移植物的物理特性对损伤神经的再生也有显著的影响。其中,TENG的弹性特性对周围神经再生中神经细胞的粘附、增殖、迁移和生物功能有显著影响。本文综述了周围神经系统弹性生物材料的最新研究进展,包括弹性生物材料的分类、制备方法以及弹性对神经细胞生长行为的影响等。此外,还简要描述了弹性衬底对细胞本身弹性的影响。最后,我们分析和讨论了弹性基质影响神经细胞行为的潜在机制。
{"title":"Tailoring the elasticity of nerve implants for regulating peripheral nerve regeneration","authors":"Yan Kong ,&nbsp;Jiawei Xu ,&nbsp;Wenchao Guan ,&nbsp;Shaolan Sun ,&nbsp;Yumin Yang ,&nbsp;Guicai Li","doi":"10.1016/j.smaim.2022.11.004","DOIUrl":"10.1016/j.smaim.2022.11.004","url":null,"abstract":"<div><p>Numerous studies have conducted in-depth research on the biological and chemical properties of tissue-engineered neural graft (TENG) on peripheral nerve regeneration, while the physical properties of the graft also display a significant impact on the regeneration of the injured nerve. Among them, the elasticity properties of TENG show a significant impact on the adhesion, proliferation, migration and bio-functionality of nerve cells in peripheral nerve regeneration. This review summarizes the latest research progress on elastic biomaterials for peripheral nervous system (PNS), including categories of elastic biomaterials, preparation methods and the effect of elasticity on the growth behavior of nerve cells, etc. In addition, the effect of the elastic substrate on the elasticity of the cell itself is also briefly described. Finally, we analyze and discuss the underlying mechanism by which elastic substrate affects nerve cell behavior.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 266-285"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47244588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The role of exosomes in regulation and application of vascular homeostasis and vascular grafts 外泌体在血管稳态和血管移植中的调节和应用
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2023.04.002
Xinyu Yang , Boxin Geng , Juan Yan , Lin Lin , Xingli Zhao , Haoran Xiao , Haoquan Hu , Lingtong Ye , Wenqi lv , Wen Zeng

The global morbidity and mortality of cardiovascular diseases are increasing yearly, among which vascular diseases are the main cause of death. Traditional drugs have multiple limitations in the treatment of cardiovascular diseases, and there is a lack of effective means to treat cardiovascular diseases. Exosomes, as transmitters of important intercellular information, are involved in normal physiological and pathological processes of blood vessels and are closely associated with intimal hyperplasia, vascular sclerosis and thrombosis. Engineered exosomes are obtained by modification of natural membrane vesicles, and they have the advantages of targeting, extended duration of action and detectability, which can be an excellent alternative for cardiovascular disease treatment. There is an absence of reviews on how exosomes secreted by various cells affect disease regression when vascular homeostasis is disrupted and how engineered exosomes are regulated to maintain vascular homeostasis. Therefore, this paper reviews the regulatory mechanisms of exosomes in diseases related to vascular homeostasis, briefly describes the application of engineered exosomes in vessels, and explores the potential of engineered exosomes in the treatment of cardiovascular diseases, providing a new idea for the precise regulation of exosomes in the treatment of vascular diseases.

全球心血管疾病的发病率和死亡率逐年上升,其中血管疾病是导致死亡的主要原因。传统药物在治疗心血管疾病方面存在多重局限性,缺乏治疗心血管疾病的有效手段。外泌体作为重要的细胞间信息传递者,参与血管的正常生理和病理过程,与内膜增生、血管硬化和血栓形成密切相关。工程外泌体是通过对天然膜囊泡进行修饰而获得的,具有靶向性强、作用时间长、可检测性强等优点,是治疗心血管疾病的良好选择。当血管内稳态被破坏时,各种细胞分泌的外泌体是如何影响疾病消退的,以及工程外泌体是如何被调节以维持血管内稳态的,目前还没有相关的综述。因此,本文综述了外泌体在血管稳态相关疾病中的调控机制,简要介绍了工程外泌体在血管中的应用,探讨了工程外泌体在心血管疾病治疗中的潜力,为外泌体在血管疾病治疗中的精准调控提供了新的思路。
{"title":"The role of exosomes in regulation and application of vascular homeostasis and vascular grafts","authors":"Xinyu Yang ,&nbsp;Boxin Geng ,&nbsp;Juan Yan ,&nbsp;Lin Lin ,&nbsp;Xingli Zhao ,&nbsp;Haoran Xiao ,&nbsp;Haoquan Hu ,&nbsp;Lingtong Ye ,&nbsp;Wenqi lv ,&nbsp;Wen Zeng","doi":"10.1016/j.smaim.2023.04.002","DOIUrl":"10.1016/j.smaim.2023.04.002","url":null,"abstract":"<div><p>The global morbidity and mortality of cardiovascular diseases are increasing yearly, among which vascular diseases are the main cause of death. Traditional drugs have multiple limitations in the treatment of cardiovascular diseases, and there is a lack of effective means to treat cardiovascular diseases. Exosomes, as transmitters of important intercellular information, are involved in normal physiological and pathological processes of blood vessels and are closely associated with intimal hyperplasia, vascular sclerosis and thrombosis. Engineered exosomes are obtained by modification of natural membrane vesicles, and they have the advantages of targeting, extended duration of action and detectability, which can be an excellent alternative for cardiovascular disease treatment. There is an absence of reviews on how exosomes secreted by various cells affect disease regression when vascular homeostasis is disrupted and how engineered exosomes are regulated to maintain vascular homeostasis. Therefore, this paper reviews the regulatory mechanisms of exosomes in diseases related to vascular homeostasis, briefly describes the application of engineered exosomes in vessels, and explores the potential of engineered exosomes in the treatment of cardiovascular diseases, providing a new idea for the precise regulation of exosomes in the treatment of vascular diseases.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 538-551"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44404783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Optical biosensors for diabetes management: Advancing into stimuli-responsive sensing mechanisms 用于糖尿病管理的光学生物传感器:进入刺激响应传感机制
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2022.08.003
Kanishk Singh , Tarun Agarwal , Utkarsh Kumar , Sampriti Pal , Ashish Runthala , Tung-Ming Pan , Ching Chow Wu

Diabetes is one of the most common chronic diseases that contribute significantly to global mortality. Effective glucose-sensing platforms might allow for an improved monitoring of disease progression, leading to a better health management. Optical sensors based on smart materials, particularly those that respond to external stimuli, have recently paved the way for diabetes management. Such sensors surpass traditional ones due to their unique label-free, quantitative, continuous measurement capabilities and reusability, and can be paired with equipment-free text or picture display. In the current review, we have thoroughly explored the efficient interaction of the target analyte (glucose) with these smart sensing materials by varying a variety of optical parameters such as wavelength, diffracted and diffused light pattern, signal strength, and refractive index. We also highlight the obstacles and opportunities of using smart materials in biosensing research.

糖尿病是导致全球死亡的最常见慢性疾病之一。有效的血糖传感平台可以改善对疾病进展的监测,从而实现更好的健康管理。基于智能材料的光学传感器,特别是那些对外部刺激作出反应的光学传感器,最近为糖尿病管理铺平了道路。由于其独特的无标签、定量、连续测量能力和可重复使用性,这种传感器超越了传统的传感器,并且可以与无设备的文本或图像显示配对。在当前的综述中,我们通过改变各种光学参数,如波长、衍射和漫射光模式、信号强度和折射率,深入探索了目标分析物(葡萄糖)与这些智能传感材料的有效相互作用。我们还强调了在生物传感研究中使用智能材料的障碍和机遇。
{"title":"Optical biosensors for diabetes management: Advancing into stimuli-responsive sensing mechanisms","authors":"Kanishk Singh ,&nbsp;Tarun Agarwal ,&nbsp;Utkarsh Kumar ,&nbsp;Sampriti Pal ,&nbsp;Ashish Runthala ,&nbsp;Tung-Ming Pan ,&nbsp;Ching Chow Wu","doi":"10.1016/j.smaim.2022.08.003","DOIUrl":"10.1016/j.smaim.2022.08.003","url":null,"abstract":"<div><p>Diabetes is one of the most common chronic diseases that contribute significantly to global mortality. Effective glucose-sensing platforms might allow for an improved monitoring of disease progression, leading to a better health management. Optical sensors based on smart materials, particularly those that respond to external stimuli, have recently paved the way for diabetes management. Such sensors surpass traditional ones due to their unique label-free, quantitative, continuous measurement capabilities and reusability, and can be paired with equipment-free text or picture display. In the current review, we have thoroughly explored the efficient interaction of the target analyte (glucose) with these smart sensing materials by varying a variety of optical parameters such as wavelength, diffracted and diffused light pattern, signal strength, and refractive index. We also highlight the obstacles and opportunities of using smart materials in biosensing research.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 91-101"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44741012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Chemical bonding of Epigallocatechin-3-gallate to the surface of nano-hydroxyapatite to enhance its biological activity for anti-osteosarcoma 表没食子儿茶素-3-没食子酸酯与纳米羟基磷灰石表面的化学键合增强其抗骨肉瘤的生物活性
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2022.12.003
Jian Ren , Lingli Sun , Cairong Xiao , Shuoshuo Zhou , Qingyou Liang , Shili Sun , Chunlin Deng

Post-surgical defect repair combined with the elimination of residual cancer cells remains a major clinical challenge for the therapy of malignant bone tumors. As a natural product extracted from green tea, epigallocatechin-3-gallate (EGCG) has a wide range of biological activities. In this study, we investigated the anti-osteosarcoma and osteogenic potential of the natural compound EGCG in combination with hydroxyapatite (HA) for the post-operative treatment of osteosarcoma. We have synthesized well-dispersed surface amino-functionalized hydroxyapatite nanoparticles by the template method combined with surface modification techniques. Then, we conjugated EGCG with HA nanoparticles via amido linkage to prevent burst release of the biomolecules and improve their stability. The results showed that the as-prepared HA-EGCG nanoparticles had the same antioxidant activity as pure EGCG. The HA-EGCG nanoparticles demonstrated efficient EGCG release upon enzyme interactions in an acidic tumor environment, facilitating the accumulation of EGCG in tumor tissues and improving its bioavailability. Compared with pure EGCG and HA, HA-EGCG exhibited enhanced anticancer activity in vitro and in vivo. Furthermore, HA-EGCG could effectively promote osteogenic differentiation. This covalent strategy provides a simple method to fabricate a pH and enzyme-mediated delivery platform to refine the stability and bioavailability of EGCG. This research provides a strategy into designing biomaterials combined with EGCG for the potential application in bone diseases.

术后缺损修复结合清除残余癌症细胞仍然是恶性骨肿瘤治疗的主要临床挑战。表没食子儿茶素没食子酸酯(EGCG)是从绿茶中提取的一种天然产物,具有广泛的生物活性。在本研究中,我们研究了天然化合物EGCG与羟基磷灰石(HA)联合用于骨肉瘤术后治疗的抗骨肉瘤和成骨潜力。我们采用模板法结合表面修饰技术合成了分散良好的表面氨基功能化羟基磷灰石纳米粒子。然后,我们通过酰胺键将EGCG和HA纳米颗粒偶联,以防止生物分子的突然释放并提高其稳定性。结果表明,所制备的HA-EGCG纳米粒子具有与纯EGCG相同的抗氧化活性。HA-EGCG纳米颗粒在酸性肿瘤环境中通过酶相互作用表现出有效的EGCG释放,促进EGCG在肿瘤组织中的积累并提高其生物利用度。与纯EGCG和HA相比,HA-EGCG在体内外均表现出增强的抗癌活性。HA-EGCG能有效促进成骨分化。这种共价策略提供了一种简单的方法来制造pH和酶介导的递送平台,以提高EGCG的稳定性和生物利用度。本研究为设计与EGCG相结合的生物材料在骨病中的潜在应用提供了一种策略。
{"title":"Chemical bonding of Epigallocatechin-3-gallate to the surface of nano-hydroxyapatite to enhance its biological activity for anti-osteosarcoma","authors":"Jian Ren ,&nbsp;Lingli Sun ,&nbsp;Cairong Xiao ,&nbsp;Shuoshuo Zhou ,&nbsp;Qingyou Liang ,&nbsp;Shili Sun ,&nbsp;Chunlin Deng","doi":"10.1016/j.smaim.2022.12.003","DOIUrl":"https://doi.org/10.1016/j.smaim.2022.12.003","url":null,"abstract":"<div><p>Post-surgical defect repair combined with the elimination of residual cancer cells remains a major clinical challenge for the therapy of malignant bone tumors. As a natural product extracted from green tea, epigallocatechin-3-gallate (EGCG) has a wide range of biological activities. In this study, we investigated the anti-osteosarcoma and osteogenic potential of the natural compound EGCG in combination with hydroxyapatite (HA) for the post-operative treatment of osteosarcoma. We have synthesized well-dispersed surface amino-functionalized hydroxyapatite nanoparticles by the template method combined with surface modification techniques. Then, we conjugated EGCG with HA nanoparticles via amido linkage to prevent burst release of the biomolecules and improve their stability. The results showed that the as-prepared HA-EGCG nanoparticles had the same antioxidant activity as pure EGCG. The HA-EGCG nanoparticles demonstrated efficient EGCG release upon enzyme interactions in an acidic tumor environment, facilitating the accumulation of EGCG in tumor tissues and improving its bioavailability. Compared with pure EGCG and HA, HA-EGCG exhibited enhanced anticancer activity in vitro and in vivo. Furthermore, HA-EGCG could effectively promote osteogenic differentiation. This covalent strategy provides a simple method to fabricate a pH and enzyme-mediated delivery platform to refine the stability and bioavailability of EGCG. This research provides a strategy into designing biomaterials combined with EGCG for the potential application in bone diseases.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 396-406"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49735176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eggshell-derived amorphous calcium phosphate: Synthesis, characterization and bio-functions as bone graft materials in novel 3D osteoblastic spheroids model 蛋壳衍生的无定形磷酸钙:合成、表征和生物功能作为新型三维成骨细胞球体模型的骨移植材料
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2023.04.001
Qianli Ma , Kristaps Rubenis , Ólafur Eysteinn Sigurjónsson , Torben Hildebrand , Therese Standal , Signe Zemjane , Janis Locs , Dagnija Loca , Håvard Jostein Haugen

A multitude of autogenous/allogeneic and semi-synthetic bone graft materials have been developed to reconstruct the defective bone tissue but with high bio-cost and potential environmental pollution. With high calcium content and several trace elements, chicken eggshells are no longer considered as wastes but attractive sources of high-value-added biomaterials. This study used chicken eggshells and synthetic hydroxyapatite (HAp) to synthesize amorphous calcium phosphate (ACP) bone graft materials, namely Control and Eggshell. The physiochemical characteristics, biosafety, and immunocompatibility of synthetic ACP particles were inspected. Their osteogenic activity was further investigated in a novel osteoblastic spheroids model. Eggshell ACP particles exhibited ideal cytocompatibility compared to the control ACP and were more resistant to re-crystallization. In osteoblastic spheroids, Eggshell ACP mediated typical osteogenic mRNA profiles of MC-3T3-E1 cells, accompanied by the increased formation of mineralized nodules and boosted synthesis of ECM proteins represented by OPN and collagen I. This study establishes a promising technique to synthesize stable, safe, and osteoinductive ACP graft particles from eggshell waste. Furthermore, the osteoblastic spheroids constructed in the present study provide a more practical model for biomaterial research, which reflect the three-dimensional interaction between host bone tissue and graft materials more realistically.

自体/异体和半合成骨移植材料已被开发出来用于缺损骨组织的修复,但其生物成本高且可能造成环境污染。鸡蛋壳富含钙和多种微量元素,不再被视为废物,而是具有吸引力的高附加值生物材料来源。本研究利用鸡蛋壳和合成羟基磷灰石(HAp)合成无定形磷酸钙(ACP)骨移植材料,即Control和Eggshell。考察了合成ACP颗粒的理化特性、生物安全性和免疫相容性。在一个新的成骨细胞球体模型中进一步研究了它们的成骨活性。与对照ACP相比,蛋壳ACP颗粒表现出理想的细胞相容性,并具有更强的再结晶性。在成骨球体中,蛋壳ACP介导了MC-3T3-E1细胞的典型成骨mRNA谱,同时矿化结节的形成增加,以OPN和胶原为代表的ECM蛋白的合成增加。本研究建立了一种有前景的技术,可以从蛋壳废物中合成稳定、安全、成骨诱导的ACP移植颗粒。此外,本研究构建的成骨细胞球体为生物材料研究提供了更实用的模型,更真实地反映了宿主骨组织与移植物材料之间的三维相互作用。
{"title":"Eggshell-derived amorphous calcium phosphate: Synthesis, characterization and bio-functions as bone graft materials in novel 3D osteoblastic spheroids model","authors":"Qianli Ma ,&nbsp;Kristaps Rubenis ,&nbsp;Ólafur Eysteinn Sigurjónsson ,&nbsp;Torben Hildebrand ,&nbsp;Therese Standal ,&nbsp;Signe Zemjane ,&nbsp;Janis Locs ,&nbsp;Dagnija Loca ,&nbsp;Håvard Jostein Haugen","doi":"10.1016/j.smaim.2023.04.001","DOIUrl":"10.1016/j.smaim.2023.04.001","url":null,"abstract":"<div><p>A multitude of autogenous/allogeneic and semi-synthetic bone graft materials have been developed to reconstruct the defective bone tissue but with high bio-cost and potential environmental pollution. With high calcium content and several trace elements, chicken eggshells are no longer considered as wastes but attractive sources of high-value-added biomaterials. This study used chicken eggshells and synthetic hydroxyapatite (HAp) to synthesize amorphous calcium phosphate (ACP) bone graft materials, namely Control and Eggshell. The physiochemical characteristics, biosafety, and immunocompatibility of synthetic ACP particles were inspected. Their osteogenic activity was further investigated in a novel osteoblastic spheroids model. Eggshell ACP particles exhibited ideal cytocompatibility compared to the control ACP and were more resistant to re-crystallization. In osteoblastic spheroids, Eggshell ACP mediated typical osteogenic mRNA profiles of MC-3T3-E1 cells, accompanied by the increased formation of mineralized nodules and boosted synthesis of ECM proteins represented by OPN and collagen I. This study establishes a promising technique to synthesize stable, safe, and osteoinductive ACP graft particles from eggshell waste. Furthermore, the osteoblastic spheroids constructed in the present study provide a more practical model for biomaterial research, which reflect the three-dimensional interaction between host bone tissue and graft materials more realistically.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 522-537"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48966779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The versatile applications of polydopamine in regenerative medicine: Progress and challenges 多多巴胺在再生医学中的广泛应用:进展与挑战
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2022.11.005
Shundong Cai , Yuhang Cheng , Chenyue Qiu , Gang Liu , Chengchao Chu

In recent decades, great progress has been made in regenerative medicine with the development of various functional scaffolds, many of which have been put into practical clinical applications. In this process, biomaterials with excellent properties have played an important role, such as medical metal materials, bioceramics, polymers, etc. Among them, melanin-like polymer polydopamine (PDA) attracts increasing scientific interest and shows good clinical application potential: i) PDA can be used as coating material to facilitate the loading of various bioactive molecules; ii) PDA can be applied as the main constituent material of scaffolds to optimize the performances. In this review, the preparation method and polymerization mechanism of PDA are first outlined, and then the advantages of PDA, including good biocompatibility, strong adhesion, antioxidant property, and excellent photothermal properties, are introduced. Next, this review highlights the significant applications of PDA in regenerative medicine, mainly focusing on wound healing, bone repair and regeneration, as well as different forms of tissue engineering. Finally, challenges and prospects on future clinical applications of PDA in regenerative medicine are discussed.

近几十年来,随着各种功能支架的发展,再生医学取得了很大的进展,其中许多已经投入实际临床应用。在这一过程中,具有优异性能的生物材料发挥了重要作用,如医用金属材料、生物陶瓷、聚合物等。其中,类黑色素聚合物聚多巴胺(PDA)引起了越来越多的科学关注,并显示出良好的临床应用潜力:1)PDA可作为包衣材料,便于装载各种生物活性分子;ii) PDA可作为支架的主要组成材料,优化支架的性能。本文首先概述了PDA的制备方法和聚合机理,然后介绍了PDA良好的生物相容性、强附着力、抗氧化性和优异的光热性能等优点。接下来,本文综述了PDA在再生医学中的重要应用,主要集中在伤口愈合、骨修复和再生以及不同形式的组织工程。最后,讨论了PDA在再生医学中的临床应用面临的挑战和前景。
{"title":"The versatile applications of polydopamine in regenerative medicine: Progress and challenges","authors":"Shundong Cai ,&nbsp;Yuhang Cheng ,&nbsp;Chenyue Qiu ,&nbsp;Gang Liu ,&nbsp;Chengchao Chu","doi":"10.1016/j.smaim.2022.11.005","DOIUrl":"10.1016/j.smaim.2022.11.005","url":null,"abstract":"<div><p>In recent decades, great progress has been made in regenerative medicine with the development of various functional scaffolds, many of which have been put into practical clinical applications. In this process, biomaterials with excellent properties have played an important role, such as medical metal materials, bioceramics, polymers, etc. Among them, melanin-like polymer polydopamine (PDA) attracts increasing scientific interest and shows good clinical application potential: i) PDA can be used as coating material to facilitate the loading of various bioactive molecules; ii) PDA can be applied as the main constituent material of scaffolds to optimize the performances. In this review, the preparation method and polymerization mechanism of PDA are first outlined, and then the advantages of PDA, including good biocompatibility, strong adhesion, antioxidant property, and excellent photothermal properties, are introduced. Next, this review highlights the significant applications of PDA in regenerative medicine, mainly focusing on wound healing, bone repair and regeneration, as well as different forms of tissue engineering. Finally, challenges and prospects on future clinical applications of PDA in regenerative medicine are discussed.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 294-312"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43411373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Recent advances in hyaluronic acid-based hydrogels for 3D bioprinting in tissue engineering applications 透明质酸基水凝胶在组织工程3D生物打印中的应用进展
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2022.07.003
Yan-Wen Ding , Xu-Wei Zhang , Chen-Hui Mi , Xin-Ya Qi , Jing Zhou , Dai-Xu Wei

3D bioprinting technology can rapidly process cell-loaded biomaterials to prepare personalized scaffolds for repairing defective tissues, tissue regeneration, and even printing tissues or organs. 3D bioprinting relies on bioinks with appropriate rheology and cytocompatibility, and hydrogels are among the most promising bioink materials for 3D bioprinting. Among many hydrogel precursor materials, hyaluronic acid (HA) stands out due to its excellent physicochemical and biological properties, such as biocompatibility, hydrophilicity, non-immunogenicity, and complete biodegradability, and has become the most attractive hydrogel precursor for bioinks. In this review, we discuss the strategies adopted for the application of HA-based hydrogels as bioinks, including printability, improving their mechanical properties, and printing with loaded cells. Finally, we summarize the application of 3D bioprinted HA-based hydrogels in various tissue engineering applications in recent years, with the aim to provide fresh inspiration for further development of HA-based hydrogels for 3D bioprinting.

生物3D打印技术可以快速加工装载细胞的生物材料,制备个性化支架,用于修复缺陷组织、组织再生,甚至打印组织或器官。3D生物打印依赖于具有适当流变学和细胞相容性的生物墨水,而水凝胶是3D生物打印最有前途的生物墨水材料之一。在众多水凝胶前驱体材料中,透明质酸(HA)以其优异的生物相容性、亲水性、非免疫原性、完全生物降解性等物理化学和生物学特性脱颖而出,成为最具吸引力的生物墨水水凝胶前驱体材料。在这篇综述中,我们讨论了ha基水凝胶作为生物墨水的应用策略,包括可印刷性,提高其机械性能,以及负载细胞的印刷。最后,总结了近年来生物3D打印ha基水凝胶在各种组织工程应用中的应用,旨在为生物3D打印ha基水凝胶的进一步发展提供新的灵感。
{"title":"Recent advances in hyaluronic acid-based hydrogels for 3D bioprinting in tissue engineering applications","authors":"Yan-Wen Ding ,&nbsp;Xu-Wei Zhang ,&nbsp;Chen-Hui Mi ,&nbsp;Xin-Ya Qi ,&nbsp;Jing Zhou ,&nbsp;Dai-Xu Wei","doi":"10.1016/j.smaim.2022.07.003","DOIUrl":"10.1016/j.smaim.2022.07.003","url":null,"abstract":"<div><p>3D bioprinting technology can rapidly process cell-loaded biomaterials to prepare personalized scaffolds for repairing defective tissues, tissue regeneration, and even printing tissues or organs. 3D bioprinting relies on bioinks with appropriate rheology and cytocompatibility, and hydrogels are among the most promising bioink materials for 3D bioprinting. Among many hydrogel precursor materials, hyaluronic acid (HA) stands out due to its excellent physicochemical and biological properties, such as biocompatibility, hydrophilicity, non-immunogenicity, and complete biodegradability, and has become the most attractive hydrogel precursor for bioinks. In this review, we discuss the strategies adopted for the application of HA-based hydrogels as bioinks, including printability, improving their mechanical properties, and printing with loaded cells. Finally, we summarize the application of 3D bioprinted HA-based hydrogels in various tissue engineering applications in recent years, with the aim to provide fresh inspiration for further development of HA-based hydrogels for 3D bioprinting.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 59-68"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42141585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 43
Tumor microenvironment-responsive gold nanodendrites for nanoprobe-based single-cell Raman imaging and tumor-targeted chemo-photothermal therapy 肿瘤微环境响应金纳米树突用于基于纳米探针的单细胞拉曼成像和肿瘤靶向化学光热治疗
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2023.06.002
Yajun Shuai , Qing Bao , Hui Yue , Jie Wang , Tao Yang , Quan Wan , Yuxin Zhong , Zongpu Xu , Chuanbin Mao , Mingying Yang

Nanodendrite particles (NDs) with densely branched structures and biomimetic architectures have exhibited great promise in tumor therapy owing to their prolonged in vivo circulation time and exceptional photothermal efficiency. Nevertheless, traditional NDs are deficient in terms of specific surface modification and targeting tumors, which restrict their potential for broader clinical applications. Here, we developed coronavirus-like gold NDs through a seed-mediated approach and using silk fibroin (SF) as a capping agent. Our results demonstrate that these NDs have a favorable drug-loading capacity (∼65.25%) and light-triggered release characteristics of doxorubicin hydrochloride (DOX). Additionally, NDs functionalized with specific probes exhibited exceptional surface-enhanced Raman scattering (SERS) characteristics, enabling high-sensitivity Raman imaging of unstained single cells. Moreover, these NDs allowed for real-time monitoring of endocytic NDs for over 24 ​h. Furthermore, ND@DOX conjugated with tumor-targeting peptides exhibited mild hyperthermia, minimal cytotoxicity, and effective targeting towards cancer cells in vitro, as well as responsiveness to the tumor microenvironment (TME) in vivo. These unique properties led to the highest level of synergistic tumor-killing efficiency when stimulated by a near-infrared (NIR) laser at 808 ​nm. Therefore, our virus-like ND functionalized with SF presents a novel type of nanocarrier that exhibits significant potential for synergistic applications in precision medicine.

具有密集分支结构和仿生结构的纳米树突颗粒(NDs)具有较长的体内循环时间和优异的光热效率,在肿瘤治疗中具有广阔的应用前景。然而,传统的NDs在特异性表面修饰和靶向肿瘤方面存在缺陷,这限制了其广泛临床应用的潜力。在这里,我们通过种子介导的方法,并使用丝素蛋白(SF)作为封盖剂,开发了类似冠状病毒的金NDs。我们的研究结果表明,这些ndds具有良好的载药量(~ 65.25%)和盐酸阿霉素(DOX)的光触发释放特性。此外,用特定探针功能化的nd表现出特殊的表面增强拉曼散射(SERS)特性,使未染色的单细胞具有高灵敏度的拉曼成像。此外,这些NDs允许实时监测内吞NDs超过24小时。此外,ND@DOX与肿瘤靶向肽结合,在体外表现出轻度高温、最小的细胞毒性、对癌细胞的有效靶向,以及对肿瘤微环境(TME)的体内反应性。当受到808 nm近红外(NIR)激光的刺激时,这些独特的特性导致了最高水平的协同肿瘤杀伤效率。因此,我们的SF功能化的病毒样ND提供了一种新型的纳米载体,在精准医学中具有显著的协同应用潜力。
{"title":"Tumor microenvironment-responsive gold nanodendrites for nanoprobe-based single-cell Raman imaging and tumor-targeted chemo-photothermal therapy","authors":"Yajun Shuai ,&nbsp;Qing Bao ,&nbsp;Hui Yue ,&nbsp;Jie Wang ,&nbsp;Tao Yang ,&nbsp;Quan Wan ,&nbsp;Yuxin Zhong ,&nbsp;Zongpu Xu ,&nbsp;Chuanbin Mao ,&nbsp;Mingying Yang","doi":"10.1016/j.smaim.2023.06.002","DOIUrl":"10.1016/j.smaim.2023.06.002","url":null,"abstract":"<div><p>Nanodendrite particles (NDs) with densely branched structures and biomimetic architectures have exhibited great promise in tumor therapy owing to their prolonged <em>in vivo</em> circulation time and exceptional photothermal efficiency. Nevertheless, traditional NDs are deficient in terms of specific surface modification and targeting tumors, which restrict their potential for broader clinical applications. Here, we developed coronavirus-like gold NDs through a seed-mediated approach and using silk fibroin (SF) as a capping agent. Our results demonstrate that these NDs have a favorable drug-loading capacity (∼65.25%) and light-triggered release characteristics of doxorubicin hydrochloride (DOX). Additionally, NDs functionalized with specific probes exhibited exceptional surface-enhanced Raman scattering (SERS) characteristics, enabling high-sensitivity Raman imaging of unstained single cells. Moreover, these NDs allowed for real-time monitoring of endocytic NDs for over 24 ​h. Furthermore, ND@DOX conjugated with tumor-targeting peptides exhibited mild hyperthermia, minimal cytotoxicity, and effective targeting towards cancer cells <em>in vitro</em>, as well as responsiveness to the tumor microenvironment (TME) <em>in vivo.</em> These unique properties led to the highest level of synergistic tumor-killing efficiency when stimulated by a near-infrared (NIR) laser at 808 ​nm. Therefore, our virus-like ND functionalized with SF presents a novel type of nanocarrier that exhibits significant potential for synergistic applications in precision medicine.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 680-689"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42104846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Smart Materials in Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1