Pub Date : 2024-01-06DOI: 10.1016/j.smaim.2023.12.003
Lihua Li , Yao Lu , Xinyue Lao , Sin-Yi Pang , Menglin Song , Man-Chung Wong , Feng Wang , Mo Yang , Jianhua Hao
Accurate, rapid and sensitive detection of specific immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies in human samples is crucial for preventing and assessing pandemics, especially in the case of recent COVID-19 outbreaks. However, simultaneous and efficient detection of IgG and IgM in a single system remains challenging. Herein, we developed a multicolor nanosystem capable of quantitatively analyzing anti-SARS-CoV-2 IgG and IgM with high sensitivity within 20 min. The detection system consists of core-shell upconversion nanoparticles (csUCNPs), secondary antibodies labeled with fluorescent dyes (sab), and magnetic nanocrystals (PMF). By leveraging the Förster resonance energy transfer (FRET) effect, the photoluminescence (PL) intensity of blue and green regions is restored for IgG and IgM detection, respectively. Inspiringly, owing to the introducing of PMF, the limits of detection (LODs) of IgG and IgM tested are improved to 89 fmol L−1 and 19.4 fmol L−1, representing about 416-folds and 487-folds improvement over only-dye dependent system, respectively. Mechanistic investigations reveal that the high collective effect and surface energy transfer efficiency from csUCNPs to PMF contribute to the enhanced detection sensitivity. The assay enables us to quantify clinical vaccinated samples with high specificity and precision, suggesting our multicolor platform can be a promising alternative for clinical point-of-care serological assay.
{"title":"A magnetic-enhanced FRET biosensor for simultaneous detection of multiple antibodies","authors":"Lihua Li , Yao Lu , Xinyue Lao , Sin-Yi Pang , Menglin Song , Man-Chung Wong , Feng Wang , Mo Yang , Jianhua Hao","doi":"10.1016/j.smaim.2023.12.003","DOIUrl":"10.1016/j.smaim.2023.12.003","url":null,"abstract":"<div><p>Accurate, rapid and sensitive detection of specific immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies in human samples is crucial for preventing and assessing pandemics, especially in the case of recent COVID-19 outbreaks. However, simultaneous and efficient detection of IgG and IgM in a single system remains challenging. Herein, we developed a multicolor nanosystem capable of quantitatively analyzing <em>anti</em>-SARS-CoV-2 IgG and IgM with high sensitivity within 20 min. The detection system consists of core-shell upconversion nanoparticles (csUCNPs), secondary antibodies labeled with fluorescent dyes (sab), and magnetic nanocrystals (PMF). By leveraging the Förster resonance energy transfer (FRET) effect, the photoluminescence (PL) intensity of blue and green regions is restored for IgG and IgM detection, respectively. Inspiringly, owing to the introducing of PMF, the limits of detection (LODs) of IgG and IgM tested are improved to 89 fmol L<sup>−1</sup> and 19.4 fmol L<sup>−1</sup>, representing about 416-folds and 487-folds improvement over only-dye dependent system, respectively. Mechanistic investigations reveal that the high collective effect and surface energy transfer efficiency from csUCNPs to PMF contribute to the enhanced detection sensitivity. The assay enables us to quantify clinical vaccinated samples with high specificity and precision, suggesting our multicolor platform can be a promising alternative for clinical point-of-care serological assay.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 2","pages":"Pages 196-206"},"PeriodicalIF":0.0,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000024/pdfft?md5=8ffa25f8348644eb2f4cf61236b2ce89&pid=1-s2.0-S2590183424000024-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139393659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-06DOI: 10.1016/j.smaim.2023.12.002
Zhimin Jiang , Shengao Qin , Weiyi Wang , Tianxiang Du , Yaran Zang , Yuzhu He , Xufeng Dong , Huiying Liu , Guowu Ma
Periodontitis is associated with several systemic diseases, and advanced periodontitis is often linked to an extensive inflammatory microenvironment and irregularly shaped alveolar bone defects. However, eliminating periodontal inflammation in a minimally invasive manner while repairing irregularly shaped bone defects is clinically challenging. In comparison to traditional bone grafts, a thermo-sensitive hydrogel can be injected into deep periodontal pockets, forming and filling the alveolar bone defects in situ. In this study, porous injectable thermo-sensitive hydrogels containing magnesium ions were prepared by adding magnesium particles (MPs) to a glycerophosphate solution and combining this mixture with a chitosan solution. The incorporation of MPs created interconnected pores in the hydrogel, exhibiting high cytocompatibility and maintaining cell viability, proliferation, spreading, and osteogenesis in vitro. Evaluation on an experimental periodontitis rat model, using micro-computed tomography and histological analyses, demonstrated that this Mg2+-containing hydrogel effectively reduced periodontal inflammation, inhibited osteoclast activity, and partially repaired inflammation-induced alveolar bone loss. These results suggest that Mg2+-containing thermo-sensitive porous hydrogels might be promising candidates for treating periodontitis.
{"title":"Investigating the anti-inflammatory and bone repair-promoting effects of an injectable porous hydrogel containing magnesium ions in a rat periodontitis mode","authors":"Zhimin Jiang , Shengao Qin , Weiyi Wang , Tianxiang Du , Yaran Zang , Yuzhu He , Xufeng Dong , Huiying Liu , Guowu Ma","doi":"10.1016/j.smaim.2023.12.002","DOIUrl":"10.1016/j.smaim.2023.12.002","url":null,"abstract":"<div><p>Periodontitis is associated with several systemic diseases, and advanced periodontitis is often linked to an extensive inflammatory microenvironment and irregularly shaped alveolar bone defects. However, eliminating periodontal inflammation in a minimally invasive manner while repairing irregularly shaped bone defects is clinically challenging. In comparison to traditional bone grafts, a thermo-sensitive hydrogel can be injected into deep periodontal pockets, forming and filling the alveolar bone defects <em>in situ</em>. In this study, porous injectable thermo-sensitive hydrogels containing magnesium ions were prepared by adding magnesium particles (MPs) to a glycerophosphate solution and combining this mixture with a chitosan solution. The incorporation of MPs created interconnected pores in the hydrogel, exhibiting high cytocompatibility and maintaining cell viability, proliferation, spreading, and osteogenesis <em>in vitro</em>. Evaluation on an experimental periodontitis rat model, using micro-computed tomography and histological analyses, demonstrated that this Mg<sup>2+</sup>-containing hydrogel effectively reduced periodontal inflammation, inhibited osteoclast activity, and partially repaired inflammation-induced alveolar bone loss. These results suggest that Mg<sup>2+</sup>-containing thermo-sensitive porous hydrogels might be promising candidates for treating periodontitis.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 2","pages":"Pages 207-220"},"PeriodicalIF":0.0,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183424000012/pdfft?md5=17e4d62c4bc4c8f24fcdcf40066163a3&pid=1-s2.0-S2590183424000012-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139394237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-20DOI: 10.1016/j.smaim.2023.12.001
{"title":"Erratum for previously published articles","authors":"","doi":"10.1016/j.smaim.2023.12.001","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.12.001","url":null,"abstract":"","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Page 181"},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183423000479/pdfft?md5=050f5e6744846e9c43f81fc52f83a792&pid=1-s2.0-S2590183423000479-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138839829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-13DOI: 10.1016/j.smaim.2023.10.001
Shiyu Yao , Hui Yan , Shiyu Tian , Rifang Luo , Yuancong Zhao , Jin Wang
Blood-contacting medical devices, such as vascular stents, intravascular catheters, and artificial heart valves, frequently encounter complications in clinical practice, including thrombosis, inflammatory reactions, and infections. These challenges pose significant obstacles in the effective application of blood-contacting medical devices. Given that protein adhesion serves as the primary trigger for detrimental events upon contact with blood, this review focuses on various anti-fouling coating strategies aimed at inhibiting protein adsorption. Currently, surface modification of blood-contacting medical devices primarily involves the construction of active or passive anti-fouling coatings. This review explores the implementation of active and passive anti-fouling coating strategies utilizing chemistry, physics, and biotechnology. Examples of anti-fouling coatings discussed include hydrophilic polymer coatings, zwitterionic polymer coatings, superhydrophobic coatings, and composite coatings. Furthermore, we propose implementation approaches for these coatings to address inflammation and infection challenges associated with blood-contacting devices. The review concludes with a brief overview of current surface modification technologies employed in commercial anti-fouling coatings and offers insights into the future of anti-fouling coating technologies for blood-contacting material surfaces. These advancements are essential for the advancement of design, development, and application of blood-contacting materials.
{"title":"Anti-fouling coatings for blood-contacting devices","authors":"Shiyu Yao , Hui Yan , Shiyu Tian , Rifang Luo , Yuancong Zhao , Jin Wang","doi":"10.1016/j.smaim.2023.10.001","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.10.001","url":null,"abstract":"<div><p>Blood-contacting medical devices, such as vascular stents, intravascular catheters, and artificial heart valves, frequently encounter complications in clinical practice, including thrombosis, inflammatory reactions, and infections. These challenges pose significant obstacles in the effective application of blood-contacting medical devices. Given that protein adhesion serves as the primary trigger for detrimental events upon contact with blood, this review focuses on various anti-fouling coating strategies aimed at inhibiting protein adsorption. Currently, surface modification of blood-contacting medical devices primarily involves the construction of active or passive anti-fouling coatings. This review explores the implementation of active and passive anti-fouling coating strategies utilizing chemistry, physics, and biotechnology. Examples of anti-fouling coatings discussed include hydrophilic polymer coatings, zwitterionic polymer coatings, superhydrophobic coatings, and composite coatings. Furthermore, we propose implementation approaches for these coatings to address inflammation and infection challenges associated with blood-contacting devices. The review concludes with a brief overview of current surface modification technologies employed in commercial anti-fouling coatings and offers insights into the future of anti-fouling coating technologies for blood-contacting material surfaces. These advancements are essential for the advancement of design, development, and application of blood-contacting materials.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 166-180"},"PeriodicalIF":0.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183423000431/pdfft?md5=8ad11314421acec30dc5d25ddd1674c8&pid=1-s2.0-S2590183423000431-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138582430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-05DOI: 10.1016/j.smaim.2023.10.004
Dan Yang , Hailan Chen , Hua Wei , An Liu , Dai-Xu Wei , Jing Chen
Various factors can cause skin defects, resulting in the loss of physiological functions and even death due to severe concurrent infection. Dressings are often clinically used to fully cover the wounds to improve healing. Hydrogel wound dressings can be loaded with therapeutic compounds (e.g., curcumin) within their three-dimensional networks to enable the in situ delivery of compounds at skin defects for wound healing. In recent decades, natural herbal active components have gradually gained worldwide recognition owing to their safe and diverse therapeutic effects, and an increasing number of bioactive components can be loaded into hydrogels or directly act as hydrogel matrices to enhance safety and achieve the desired therapeutic effects. In this review, twelve bioactive compounds from natural Chinese herbs that can promote wound healing and their mechanism of action are summarized, and the latest research progress in the use of Chinese herbal hydrogels for wound treatment is reviewed.
{"title":"Hydrogel wound dressings containing bioactive compounds originated from traditional Chinese herbs: A review","authors":"Dan Yang , Hailan Chen , Hua Wei , An Liu , Dai-Xu Wei , Jing Chen","doi":"10.1016/j.smaim.2023.10.004","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.10.004","url":null,"abstract":"<div><p>Various factors can cause skin defects, resulting in the loss of physiological functions and even death due to severe concurrent infection. Dressings are often clinically used to fully cover the wounds to improve healing. Hydrogel wound dressings can be loaded with therapeutic compounds (<em>e.g.</em>, curcumin) within their three-dimensional networks to enable the in situ delivery of compounds at skin defects for wound healing. In recent decades, natural herbal active components have gradually gained worldwide recognition owing to their safe and diverse therapeutic effects, and an increasing number of bioactive components can be loaded into hydrogels or directly act as hydrogel matrices to enhance safety and achieve the desired therapeutic effects. In this review, twelve bioactive compounds from natural Chinese herbs that can promote wound healing and their mechanism of action are summarized, and the latest research progress in the use of Chinese herbal hydrogels for wound treatment is reviewed.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 153-165"},"PeriodicalIF":0.0,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183423000467/pdfft?md5=30175c670f61a2af412ea348271066d2&pid=1-s2.0-S2590183423000467-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137116143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-25DOI: 10.1016/j.smaim.2023.10.002
Yue Zhou , Yumeng Xue , Xubo Lin , Menglong Duan , Weili Hong , Lina Geng , Jin Zhou , Yubo Fan
The rapid progress in point-of-care testing (POCT) has become a promising decentralized patient-centered approach for the control of infectious diseases, especially in resource-limited settings. POCT devices should be inexpensive, rapid, simple operation and preferably require no power supply. Here, we developed a simple bacterial sensing platform that can be operated by a smartphone for bacteria identification and antimicrobial susceptibility testing (AST) based on using a polydiacetylene (PDA) arrayed membrane chip. Each PDA array produced a unique color ‘fingerprint’ pattern for each bacteria based on different modes of action of toxins from bacteria on biomimetic lipid bilayers within PDA-lipid assemblies. We show that the PDA-based device can detect viable cells of bacteria as low as 104 CFU/mL within 1.5 h compared with several days of conventional bacterial identification, with the aid of a smartphone app. The device can also be used for an antimicrobial susceptibility test (AST) for at least two broad-spectrum antimicrobials within 4 h and provide identification of antimicrobial susceptibility and resistance, enabling the selection of appropriate therapies. This PDA-based sensing platform provides an alternative way for bacterial detection and could be used as a portable and inexpensive POCT device for the rapid detection of bacterial infection in limited-resource settings.
{"title":"Smartphone-based polydiacetylene colorimetric sensor for point-of-care diagnosis of bacterial infections","authors":"Yue Zhou , Yumeng Xue , Xubo Lin , Menglong Duan , Weili Hong , Lina Geng , Jin Zhou , Yubo Fan","doi":"10.1016/j.smaim.2023.10.002","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.10.002","url":null,"abstract":"<div><p>The rapid progress in point-of-care testing (POCT) has become a promising decentralized patient-centered approach for the control of infectious diseases, especially in resource-limited settings. POCT devices should be inexpensive, rapid, simple operation and preferably require no power supply. Here, we developed a simple bacterial sensing platform that can be operated by a smartphone for bacteria identification and antimicrobial susceptibility testing (AST) based on using a polydiacetylene (PDA) arrayed membrane chip. Each PDA array produced a unique color ‘fingerprint’ pattern for each bacteria based on different modes of action of toxins from bacteria on biomimetic lipid bilayers within PDA-lipid assemblies. We show that the PDA-based device can detect viable cells of bacteria as low as 10<sup>4</sup> CFU/mL within 1.5 h compared with several days of conventional bacterial identification, with the aid of a smartphone app. The device can also be used for an antimicrobial susceptibility test (AST) for at least two broad-spectrum antimicrobials within 4 h and provide identification of antimicrobial susceptibility and resistance, enabling the selection of appropriate therapies. This PDA-based sensing platform provides an alternative way for bacterial detection and could be used as a portable and inexpensive POCT device for the rapid detection of bacterial infection in limited-resource settings.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 140-152"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183423000443/pdfft?md5=b89fa660f31883a469339ba6e9814a65&pid=1-s2.0-S2590183423000443-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137116142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-20DOI: 10.1016/j.smaim.2023.10.003
Matthew S. Dargusch , Nicolas Soro , Ali Gokhan Demir , Jeffrey Venezuela , Qiang Sun , Yuan Wang , Abdalla Abdal-hay , Aya Q. Alali , Saso Ivanovski , Barbara Previtali , Damon Kent
Additively manufactured lattices based on triply periodic minimal surfaces (TPMS) have attracted significant research interest from the medical industry due to their good mechanical and biomorphic properties. However, most studies have focussed on permanent metallic implants, while very little work has been undertaken on manufacturing biodegradable metal lattices. In this study, the mechanical properties and in vitro corrosion of selective laser melted Fe–35%Mn lattices based on gyroid, diamond and Schwarz primitive unit-cells were comprehensively evaluated to investigate the relationships between lattice type and implant performance. The gyroid-based lattices were the most readily processable scaffold design for controllable porosity and matching the CAD design. Mechanical properties were influenced by lattice geometry and pore volume. The Schwarz lattices were stronger and stiffer than other designs with the 42% porosity scaffold exhibiting the highest combination of strength and ductility, while diamond and gyroid based scaffolds had lower strength and stiffness and were more plastically compliant. The corrosion behaviour was strongly influenced by porosity, and moderately influenced by geometry and geometry-porosity interaction. At 60% porosity, the diamond lattice displayed the highest degradation rate due to an inherently high surface area-to-volume ratio. The biodegradable Fe–35Mn porous scaffolds showed a good cytocompatibility to primary human osteoblasts cells. Additive manufacturing of biodegradable Fe–Mn alloys employing TPMS lattice designs is a viable approach to optimise and customise the mechanical properties and degradation response of resorbable implants toward specific clinical applications for hard tissue orthopaedic repair.
{"title":"Optimising degradation and mechanical performance of additively manufactured biodegradable Fe–Mn scaffolds using design strategies based on triply periodic minimal surfaces","authors":"Matthew S. Dargusch , Nicolas Soro , Ali Gokhan Demir , Jeffrey Venezuela , Qiang Sun , Yuan Wang , Abdalla Abdal-hay , Aya Q. Alali , Saso Ivanovski , Barbara Previtali , Damon Kent","doi":"10.1016/j.smaim.2023.10.003","DOIUrl":"10.1016/j.smaim.2023.10.003","url":null,"abstract":"<div><p>Additively manufactured lattices based on triply periodic minimal surfaces (TPMS) have attracted significant research interest from the medical industry due to their good mechanical and biomorphic properties. However, most studies have focussed on permanent metallic implants, while very little work has been undertaken on manufacturing biodegradable metal lattices. In this study, the mechanical properties and <em>in vitro</em> corrosion of selective laser melted Fe–35%Mn lattices based on gyroid, diamond and Schwarz primitive unit-cells were comprehensively evaluated to investigate the relationships between lattice type and implant performance. The gyroid-based lattices were the most readily processable scaffold design for controllable porosity and matching the CAD design. Mechanical properties were influenced by lattice geometry and pore volume. The Schwarz lattices were stronger and stiffer than other designs with the 42% porosity scaffold exhibiting the highest combination of strength and ductility, while diamond and gyroid based scaffolds had lower strength and stiffness and were more plastically compliant. The corrosion behaviour was strongly influenced by porosity, and moderately influenced by geometry and geometry-porosity interaction. At 60% porosity, the diamond lattice displayed the highest degradation rate due to an inherently high surface area-to-volume ratio. The biodegradable Fe–35Mn porous scaffolds showed a good cytocompatibility to primary human osteoblasts cells. Additive manufacturing of biodegradable Fe–Mn alloys employing TPMS lattice designs is a viable approach to optimise and customise the mechanical properties and degradation response of resorbable implants toward specific clinical applications for hard tissue orthopaedic repair.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 127-139"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183423000455/pdfft?md5=0cd70ae9e634245f56ae4c18fbc9f38d&pid=1-s2.0-S2590183423000455-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136007631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.1016/j.smaim.2023.08.003
Kun Liu , Kun Chen , Xueyang Zhang , Guang Li , Kangrui Yuan , Ling Lin , Dudu Wu , Jigang Wang , Zhiqiang Yu , Zhi Chen
Sorafenib is a first-line drug for liver cancer treatment, but its clinical efficacy is still limited by drawbacks such as drug tolerance, toxic effects, and low bioavailability. Therefore, it is urgent to find efficient ways to synergize sorafenib with other agents and increase its bioavailability in order to enhance its clinical efficacy. Herein, we report the successful development of a carrier-free nanoplatform of an artesunate prodrug to potentiate the efficacy of sorafenib against hepatocellular carcinoma. The artesunate prodrug was synthesized by conjugating artesunate and linoleic acid through a thioketone (TK) bond. This prodrug can self-assemble in an aqueous solution via a one-step precipitation method. Furthermore, the inclusion of sorafenib during the self-assembly process results in a carrier-free artesunate/sorafenib mixed nanomedicine (SA@NPs) with a uniform and stable particle size. In addition, SA@NPs possess ROS-responsive drug-releasing ability by breaking up thioketone bonds under high H2O2 levels in tumors. The synergistic anticancer effects of SA@NPs have been demonstrated both in vivo and in vitro. SA@NPs can achieve significantly enhanced synergetic ferroptosis of tumor cells and show potentiated sorafenib efficacy against hepatocellular carcinoma. Moreover, SA@NPs have a tumor inhibition rate of 84.2%, which is 1.63-, 4.22-, and 1.29-fold higher than that in the experimental groups treated with free sorafenib, artesunate, and the simplified combined medication of sorafenib/artesunate, respectively. Overall, this work presents a significant advancement in the clinical chemotherapy of liver cancer and may pave the way for promising developments in the compatibility and clinical combination application of traditional Chinese medicine.
{"title":"Potentiating sorafenib efficacy against hepatocellular carcinoma via a carrier-free nanomedicine of artesunate prodrug","authors":"Kun Liu , Kun Chen , Xueyang Zhang , Guang Li , Kangrui Yuan , Ling Lin , Dudu Wu , Jigang Wang , Zhiqiang Yu , Zhi Chen","doi":"10.1016/j.smaim.2023.08.003","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.08.003","url":null,"abstract":"<div><p>Sorafenib is a first-line drug for liver cancer treatment, but its clinical efficacy is still limited by drawbacks such as drug tolerance, toxic effects, and low bioavailability. Therefore, it is urgent to find efficient ways to synergize sorafenib with other agents and increase its bioavailability in order to enhance its clinical efficacy. Herein, we report the successful development of a carrier-free nanoplatform of an artesunate prodrug to potentiate the efficacy of sorafenib against hepatocellular carcinoma. The artesunate prodrug was synthesized by conjugating artesunate and linoleic acid through a thioketone (TK) bond. This prodrug can self-assemble in an aqueous solution via a one-step precipitation method. Furthermore, the inclusion of sorafenib during the self-assembly process results in a carrier-free artesunate/sorafenib mixed nanomedicine (SA@NPs) with a uniform and stable particle size. In addition, SA@NPs possess ROS-responsive drug-releasing ability by breaking up thioketone bonds under high H<sub>2</sub>O<sub>2</sub> levels in tumors. The synergistic anticancer effects of SA@NPs have been demonstrated both <em>in vivo</em> and <em>in vitro</em>. SA@NPs can achieve significantly enhanced synergetic ferroptosis of tumor cells and show potentiated sorafenib efficacy against hepatocellular carcinoma. Moreover, SA@NPs have a tumor inhibition rate of 84.2%, which is 1.63-, 4.22-, and 1.29-fold higher than that in the experimental groups treated with free sorafenib, artesunate, and the simplified combined medication of sorafenib/artesunate, respectively. Overall, this work presents a significant advancement in the clinical chemotherapy of liver cancer and may pave the way for promising developments in the compatibility and clinical combination application of traditional Chinese medicine.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 114-126"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49717028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polyetheretherketone (PEEK) has become a promising material for bone engineering due to its excellent mechanical properties, radiolucency and chemical resistance. However, its inherent bioinertness and lack of osteogenic activity induce a foreign body reaction and fibrous encapsulation, which limits its effectiveness in promoting bone regeneration. Herein, we develop a novel bioactive glass–functionalized PEEK scaffold (ADSP) to accelerate bone regeneration by immunoregulation. Strontium-doped bioactive glass nanoparticles loaded with alendronate (A-SrBG) were coated on the sulfonated PEEK scaffold by the strong adhesion ability of polydopamine. The released bioactive ions from the scaffold can improve the biocompatibilities and osteogenic activity of PEEK. In vitro results showed the ADSP scaffold promoted polarization of the M2 macrophages via the NF-κB pathway to enhance the osteogenic differentiation of rat bone mesenchymal stem cells (rBMSCs). Further, in vivo rat skull drilling model assessment revealed efficient polarization of M2 macrophage and desirable new bone formation. Thus, ADSP scaffold exerted osteoimmunomodulation effect to promote bone regeneration.
{"title":"Enhancing bone regeneration with a novel bioactive glass-functionalized polyetheretherketone scaffold by regulating the immune microenvironment","authors":"Mengen Zhao , Qianwen Yang , Shixiong Zhang , Chao Zhang , Zhaoying Wu","doi":"10.1016/j.smaim.2023.09.002","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.09.002","url":null,"abstract":"<div><p>Polyetheretherketone (PEEK) has become a promising material for bone engineering due to its excellent mechanical properties, radiolucency and chemical resistance. However, its inherent bioinertness and lack of osteogenic activity induce a foreign body reaction and fibrous encapsulation, which limits its effectiveness in promoting bone regeneration. Herein, we develop a novel bioactive glass–functionalized PEEK scaffold (ADSP) to accelerate bone regeneration by immunoregulation. Strontium-doped bioactive glass nanoparticles loaded with alendronate (A-SrBG) were coated on the sulfonated PEEK scaffold by the strong adhesion ability of polydopamine. The released bioactive ions from the scaffold can improve the biocompatibilities and osteogenic activity of PEEK. <em>In vitro</em> results showed the ADSP scaffold promoted polarization of the M2 macrophages <em>via</em> the NF-κB pathway to enhance the osteogenic differentiation of rat bone mesenchymal stem cells (rBMSCs). Further, <em>in vivo</em> rat skull drilling model assessment revealed efficient polarization of M2 macrophage and desirable new bone formation. Thus, ADSP scaffold exerted osteoimmunomodulation effect to promote bone regeneration.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 92-105"},"PeriodicalIF":0.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49734839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomedical assays based on optical nanoprobes play an important role in human health. Optical nanoprobes, the nanomaterials with special optical properties, are widely utilized in biomedical assays. Compared with traditional materials, the well-performed optical nanoprobes have certain properties, such as negligible interferences from the background fluorescence and scattering, simple operations and instruments, high sensitivity, and excellent specificity. This paper reviews the mechanisms, materials, and applications of optical nanoprobes. The mechanisms of optical nanoprobes involve fluorescence, phosphorescence, Förster resonance energy transfer (FRET), upconversion luminescence and chemiluminescence. Time-resolved luminescent nanoprobes are usually prepared from rare earth compounds and quantum dots (QDs). Ultralong inorganic phosphorescent nanoprobes are prepared from transition metal compounds, while ultralong organic phosphorescent nanoprobes are usually prepared from π-conjugated compound nanocrystals that exhibit a rigid confinement to suppress the non-radiative transitions and contain heavy atoms to enhance ISC. Time-resolved luminescent nanoprobes and ultralong phosphorescent nanoprobes minimize background interferences by longer luminescence lifetime. Chemiluminescent nanoprobes are usually prepared from compounds that can react with reactive oxygen species (ROS) to form peroxide bonds. Upconversion luminescent nanoprobes are usually prepared from inorganic rare earth fluoride nanocrystals. Chemiluminescent nanoprobes and upconversion luminescent nanoprobes can avoid background interferences because excitation light of shorter wavelength is not needed. FRET nanoprobes and luminescence quenching nanoprobes are prepared from a donor and an acceptor that can be linked or delinked by the analyte. Optical nanoprobes are applied in both in vitro diagnoses and in vivo imaging. The in vitro applications of optical nanoprobes include the determination of varieties of biomacromolecules and small molecules, while the in vivo imaging involves the diagnoses of inflammation and tumors.
{"title":"Optical nanoprobes in biomedical diagnosis assays: Recent progress","authors":"Fuli Chen , Jiuchuan Guo , Jinhong Guo , Wenjun Chen , Xing Ma","doi":"10.1016/j.smaim.2023.09.001","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.09.001","url":null,"abstract":"<div><p>Biomedical assays based on optical nanoprobes play an important role in human health. Optical nanoprobes, the nanomaterials with special optical properties, are widely utilized in biomedical assays. Compared with traditional materials, the well-performed optical nanoprobes have certain properties, such as negligible interferences from the background fluorescence and scattering, simple operations and instruments, high sensitivity, and excellent specificity. This paper reviews the mechanisms, materials, and applications of optical nanoprobes. The mechanisms of optical nanoprobes involve fluorescence, phosphorescence, Förster resonance energy transfer (FRET), upconversion luminescence and chemiluminescence. Time-resolved luminescent nanoprobes are usually prepared from rare earth compounds and quantum dots (QDs). Ultralong inorganic phosphorescent nanoprobes are prepared from transition metal compounds, while ultralong organic phosphorescent nanoprobes are usually prepared from π-conjugated compound nanocrystals that exhibit a rigid confinement to suppress the non-radiative transitions and contain heavy atoms to enhance ISC. Time-resolved luminescent nanoprobes and ultralong phosphorescent nanoprobes minimize background interferences by longer luminescence lifetime. Chemiluminescent nanoprobes are usually prepared from compounds that can react with reactive oxygen species (ROS) to form peroxide bonds. Upconversion luminescent nanoprobes are usually prepared from inorganic rare earth fluoride nanocrystals. Chemiluminescent nanoprobes and upconversion luminescent nanoprobes can avoid background interferences because excitation light of shorter wavelength is not needed. FRET nanoprobes and luminescence quenching nanoprobes are prepared from a donor and an acceptor that can be linked or delinked by the analyte. Optical nanoprobes are applied in both in vitro diagnoses and in vivo imaging. The in vitro applications of optical nanoprobes include the determination of varieties of biomacromolecules and small molecules, while the in vivo imaging involves the diagnoses of inflammation and tumors.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 75-91"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49717120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}