首页 > 最新文献

Smart Materials in Medicine最新文献

英文 中文
Smartphone-based polydiacetylene colorimetric sensor for point-of-care diagnosis of bacterial infections 基于智能手机的聚二乙炔比色传感器,用于即时诊断细菌感染
Q1 Engineering Pub Date : 2023-10-25 DOI: 10.1016/j.smaim.2023.10.002
Yue Zhou , Yumeng Xue , Xubo Lin , Menglong Duan , Weili Hong , Lina Geng , Jin Zhou , Yubo Fan

The rapid progress in point-of-care testing (POCT) has become a promising decentralized patient-centered approach for the control of infectious diseases, especially in resource-limited settings. POCT devices should be inexpensive, rapid, simple operation and preferably require no power supply. Here, we developed a simple bacterial sensing platform that can be operated by a smartphone for bacteria identification and antimicrobial susceptibility testing (AST) based on using a polydiacetylene (PDA) arrayed membrane chip. Each PDA array produced a unique color ‘fingerprint’ pattern for each bacteria based on different modes of action of toxins from bacteria on biomimetic lipid bilayers within PDA-lipid assemblies. We show that the PDA-based device can detect viable cells of bacteria as low as 104 ​CFU/mL within 1.5 ​h compared with several days of conventional bacterial identification, with the aid of a smartphone app. The device can also be used for an antimicrobial susceptibility test (AST) for at least two broad-spectrum antimicrobials within 4 ​h and provide identification of antimicrobial susceptibility and resistance, enabling the selection of appropriate therapies. This PDA-based sensing platform provides an alternative way for bacterial detection and could be used as a portable and inexpensive POCT device for the rapid detection of bacterial infection in limited-resource settings.

特别是在资源有限的环境中,即时检测(POCT)已成为一种很有前途的以患者为中心的分散传染病控制方法。POCT设备应价格低廉、快速、操作简单,最好不需要电源。在这里,我们开发了一个简单的细菌传感平台,可以通过智能手机操作,基于聚二乙炔(PDA)阵列膜芯片进行细菌鉴定和抗菌药物敏感性测试(AST)。每个PDA阵列根据细菌毒素在PDA-脂质组件内的仿生脂质双层上的不同作用模式,为每种细菌产生独特的彩色“指纹”图案。研究人员发现,在智能手机应用程序的帮助下,基于pda的设备可以在1.5小时内检测到低至104 CFU/mL的细菌活细胞,而传统的细菌鉴定需要几天时间。该设备还可以在4小时内用于至少两种广谱抗菌素的抗生素敏感性试验(AST),并提供抗生素敏感性和耐药性鉴定,从而选择合适的治疗方法。这种基于pda的传感平台为细菌检测提供了另一种方法,可以作为一种便携式和廉价的POCT设备,用于在资源有限的环境中快速检测细菌感染。
{"title":"Smartphone-based polydiacetylene colorimetric sensor for point-of-care diagnosis of bacterial infections","authors":"Yue Zhou ,&nbsp;Yumeng Xue ,&nbsp;Xubo Lin ,&nbsp;Menglong Duan ,&nbsp;Weili Hong ,&nbsp;Lina Geng ,&nbsp;Jin Zhou ,&nbsp;Yubo Fan","doi":"10.1016/j.smaim.2023.10.002","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.10.002","url":null,"abstract":"<div><p>The rapid progress in point-of-care testing (POCT) has become a promising decentralized patient-centered approach for the control of infectious diseases, especially in resource-limited settings. POCT devices should be inexpensive, rapid, simple operation and preferably require no power supply. Here, we developed a simple bacterial sensing platform that can be operated by a smartphone for bacteria identification and antimicrobial susceptibility testing (AST) based on using a polydiacetylene (PDA) arrayed membrane chip. Each PDA array produced a unique color ‘fingerprint’ pattern for each bacteria based on different modes of action of toxins from bacteria on biomimetic lipid bilayers within PDA-lipid assemblies. We show that the PDA-based device can detect viable cells of bacteria as low as 10<sup>4</sup> ​CFU/mL within 1.5 ​h compared with several days of conventional bacterial identification, with the aid of a smartphone app. The device can also be used for an antimicrobial susceptibility test (AST) for at least two broad-spectrum antimicrobials within 4 ​h and provide identification of antimicrobial susceptibility and resistance, enabling the selection of appropriate therapies. This PDA-based sensing platform provides an alternative way for bacterial detection and could be used as a portable and inexpensive POCT device for the rapid detection of bacterial infection in limited-resource settings.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 140-152"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183423000443/pdfft?md5=b89fa660f31883a469339ba6e9814a65&pid=1-s2.0-S2590183423000443-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137116142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimising degradation and mechanical performance of additively manufactured biodegradable Fe–Mn scaffolds using design strategies based on triply periodic minimal surfaces 基于三周期最小表面设计策略的增材制造可生物降解铁锰支架的降解和力学性能优化
Q1 Engineering Pub Date : 2023-10-20 DOI: 10.1016/j.smaim.2023.10.003
Matthew S. Dargusch , Nicolas Soro , Ali Gokhan Demir , Jeffrey Venezuela , Qiang Sun , Yuan Wang , Abdalla Abdal-hay , Aya Q. Alali , Saso Ivanovski , Barbara Previtali , Damon Kent

Additively manufactured lattices based on triply periodic minimal surfaces (TPMS) have attracted significant research interest from the medical industry due to their good mechanical and biomorphic properties. However, most studies have focussed on permanent metallic implants, while very little work has been undertaken on manufacturing biodegradable metal lattices. In this study, the mechanical properties and in vitro corrosion of selective laser melted Fe–35%Mn lattices based on gyroid, diamond and Schwarz primitive unit-cells were comprehensively evaluated to investigate the relationships between lattice type and implant performance. The gyroid-based lattices were the most readily processable scaffold design for controllable porosity and matching the CAD design. Mechanical properties were influenced by lattice geometry and pore volume. The Schwarz lattices were stronger and stiffer than other designs with the 42% porosity scaffold exhibiting the highest combination of strength and ductility, while diamond and gyroid based scaffolds had lower strength and stiffness and were more plastically compliant. The corrosion behaviour was strongly influenced by porosity, and moderately influenced by geometry and geometry-porosity interaction. At 60% porosity, the diamond lattice displayed the highest degradation rate due to an inherently high surface area-to-volume ratio. The biodegradable Fe–35Mn porous scaffolds showed a good cytocompatibility to primary human osteoblasts cells. Additive manufacturing of biodegradable Fe–Mn alloys employing TPMS lattice designs is a viable approach to optimise and customise the mechanical properties and degradation response of resorbable implants toward specific clinical applications for hard tissue orthopaedic repair.

基于三周期极小表面(TPMS)的增材制造晶格由于其良好的力学和生物形态特性而引起了医学界的极大研究兴趣。然而,大多数研究都集中在永久性金属植入物上,而在制造可生物降解的金属晶格方面所做的工作很少。在本研究中,综合评价了基于旋转、金刚石和Schwarz原始单元格的选择性激光熔化Fe-35%Mn晶格的力学性能和体外腐蚀,以研究晶格类型与植入物性能的关系。基于陀螺仪的支架设计是最容易加工的支架设计,具有可控的孔隙度和匹配的CAD设计。力学性能受晶格几何形状和孔隙体积的影响。与其他设计相比,Schwarz晶格的强度和刚度更高,42%孔隙率的支架表现出最高的强度和延展性,而金刚石和陀螺线支架的强度和刚度较低,塑性更强。孔隙度对腐蚀行为的影响较大,几何形状和几何-孔隙相互作用对腐蚀行为的影响较小。当孔隙率为60%时,由于其固有的高表面积体积比,金刚石晶格显示出最高的降解率。可降解的Fe-35Mn多孔支架对人原代成骨细胞具有良好的细胞相容性。采用TPMS晶格设计的生物可降解Fe-Mn合金的增材制造是一种可行的方法,可以优化和定制可吸收植入物的机械性能和降解反应,从而实现硬组织骨科修复的特定临床应用。
{"title":"Optimising degradation and mechanical performance of additively manufactured biodegradable Fe–Mn scaffolds using design strategies based on triply periodic minimal surfaces","authors":"Matthew S. Dargusch ,&nbsp;Nicolas Soro ,&nbsp;Ali Gokhan Demir ,&nbsp;Jeffrey Venezuela ,&nbsp;Qiang Sun ,&nbsp;Yuan Wang ,&nbsp;Abdalla Abdal-hay ,&nbsp;Aya Q. Alali ,&nbsp;Saso Ivanovski ,&nbsp;Barbara Previtali ,&nbsp;Damon Kent","doi":"10.1016/j.smaim.2023.10.003","DOIUrl":"10.1016/j.smaim.2023.10.003","url":null,"abstract":"<div><p>Additively manufactured lattices based on triply periodic minimal surfaces (TPMS) have attracted significant research interest from the medical industry due to their good mechanical and biomorphic properties. However, most studies have focussed on permanent metallic implants, while very little work has been undertaken on manufacturing biodegradable metal lattices. In this study, the mechanical properties and <em>in vitro</em> corrosion of selective laser melted Fe–35%Mn lattices based on gyroid, diamond and Schwarz primitive unit-cells were comprehensively evaluated to investigate the relationships between lattice type and implant performance. The gyroid-based lattices were the most readily processable scaffold design for controllable porosity and matching the CAD design. Mechanical properties were influenced by lattice geometry and pore volume. The Schwarz lattices were stronger and stiffer than other designs with the 42% porosity scaffold exhibiting the highest combination of strength and ductility, while diamond and gyroid based scaffolds had lower strength and stiffness and were more plastically compliant. The corrosion behaviour was strongly influenced by porosity, and moderately influenced by geometry and geometry-porosity interaction. At 60% porosity, the diamond lattice displayed the highest degradation rate due to an inherently high surface area-to-volume ratio. The biodegradable Fe–35Mn porous scaffolds showed a good cytocompatibility to primary human osteoblasts cells. Additive manufacturing of biodegradable Fe–Mn alloys employing TPMS lattice designs is a viable approach to optimise and customise the mechanical properties and degradation response of resorbable implants toward specific clinical applications for hard tissue orthopaedic repair.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 127-139"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183423000455/pdfft?md5=0cd70ae9e634245f56ae4c18fbc9f38d&pid=1-s2.0-S2590183423000455-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136007631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potentiating sorafenib efficacy against hepatocellular carcinoma via a carrier-free nanomedicine of artesunate prodrug 通过青蒿琥酯前药的无载体纳米药物增强索拉非尼对肝细胞癌的疗效
Q1 Engineering Pub Date : 2023-10-13 DOI: 10.1016/j.smaim.2023.08.003
Kun Liu , Kun Chen , Xueyang Zhang , Guang Li , Kangrui Yuan , Ling Lin , Dudu Wu , Jigang Wang , Zhiqiang Yu , Zhi Chen

Sorafenib is a first-line drug for liver cancer treatment, but its clinical efficacy is still limited by drawbacks such as drug tolerance, toxic effects, and low bioavailability. Therefore, it is urgent to find efficient ways to synergize sorafenib with other agents and increase its bioavailability in order to enhance its clinical efficacy. Herein, we report the successful development of a carrier-free nanoplatform of an artesunate prodrug to potentiate the efficacy of sorafenib against hepatocellular carcinoma. The artesunate prodrug was synthesized by conjugating artesunate and linoleic acid through a thioketone (TK) bond. This prodrug can self-assemble in an aqueous solution via a one-step precipitation method. Furthermore, the inclusion of sorafenib during the self-assembly process results in a carrier-free artesunate/sorafenib mixed nanomedicine (SA@NPs) with a uniform and stable particle size. In addition, SA@NPs possess ROS-responsive drug-releasing ability by breaking up thioketone bonds under high H2O2 levels in tumors. The synergistic anticancer effects of SA@NPs have been demonstrated both in vivo and in vitro. SA@NPs can achieve significantly enhanced synergetic ferroptosis of tumor cells and show potentiated sorafenib efficacy against hepatocellular carcinoma. Moreover, SA@NPs have a tumor inhibition rate of 84.2%, which is 1.63-, 4.22-, and 1.29-fold higher than that in the experimental groups treated with free sorafenib, artesunate, and the simplified combined medication of sorafenib/artesunate, respectively. Overall, this work presents a significant advancement in the clinical chemotherapy of liver cancer and may pave the way for promising developments in the compatibility and clinical combination application of traditional Chinese medicine.

索拉非尼是癌症治疗的一线药物,但其临床疗效仍然受到药物耐受性、毒性作用、生物利用度低等缺点的限制。因此,迫切需要找到有效的方法将索拉非尼与其他药物协同作用,提高其生物利用度,以提高其临床疗效。在此,我们报道了青蒿琥酯前药的无载体纳米平台的成功开发,以增强索拉非尼对肝细胞癌的疗效。青蒿琥酯前药是由青蒿琥酸酯和亚油酸通过硫代酮(TK)键偶联而成。这种前药可以通过一步沉淀法在水溶液中自组装。此外,索拉非尼在自组装过程中的加入导致了无载体的青蒿琥酯/索拉非尼混合纳米药物(SA@NPs)具有均匀且稳定的颗粒尺寸。此外SA@NPs在肿瘤中通过在高H2O2水平下破坏硫酮键而具有ROS响应性药物释放能力。SA@NPs已经在体内和体外得到证实。SA@NPs可以显著增强肿瘤细胞的协同脱铁作用,并显示出索拉非尼对肝细胞癌的增强疗效。此外SA@NPs具有84.2%的抑瘤率,分别是索拉非尼、青蒿琥酯和索拉非尼/青蒿琥酸酯简化联合用药实验组的1.63倍、4.22倍和1.29倍。总体而言,这项工作在癌症的临床化疗方面取得了重大进展,并可能为中药配伍和临床联合应用的发展铺平道路。
{"title":"Potentiating sorafenib efficacy against hepatocellular carcinoma via a carrier-free nanomedicine of artesunate prodrug","authors":"Kun Liu ,&nbsp;Kun Chen ,&nbsp;Xueyang Zhang ,&nbsp;Guang Li ,&nbsp;Kangrui Yuan ,&nbsp;Ling Lin ,&nbsp;Dudu Wu ,&nbsp;Jigang Wang ,&nbsp;Zhiqiang Yu ,&nbsp;Zhi Chen","doi":"10.1016/j.smaim.2023.08.003","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.08.003","url":null,"abstract":"<div><p>Sorafenib is a first-line drug for liver cancer treatment, but its clinical efficacy is still limited by drawbacks such as drug tolerance, toxic effects, and low bioavailability. Therefore, it is urgent to find efficient ways to synergize sorafenib with other agents and increase its bioavailability in order to enhance its clinical efficacy. Herein, we report the successful development of a carrier-free nanoplatform of an artesunate prodrug to potentiate the efficacy of sorafenib against hepatocellular carcinoma. The artesunate prodrug was synthesized by conjugating artesunate and linoleic acid through a thioketone (TK) bond. This prodrug can self-assemble in an aqueous solution via a one-step precipitation method. Furthermore, the inclusion of sorafenib during the self-assembly process results in a carrier-free artesunate/sorafenib mixed nanomedicine (SA@NPs) with a uniform and stable particle size. In addition, SA@NPs possess ROS-responsive drug-releasing ability by breaking up thioketone bonds under high H<sub>2</sub>O<sub>2</sub> levels in tumors. The synergistic anticancer effects of SA@NPs have been demonstrated both <em>in vivo</em> and <em>in vitro</em>. SA@NPs can achieve significantly enhanced synergetic ferroptosis of tumor cells and show potentiated sorafenib efficacy against hepatocellular carcinoma. Moreover, SA@NPs have a tumor inhibition rate of 84.2%, which is 1.63-, 4.22-, and 1.29-fold higher than that in the experimental groups treated with free sorafenib, artesunate, and the simplified combined medication of sorafenib/artesunate, respectively. Overall, this work presents a significant advancement in the clinical chemotherapy of liver cancer and may pave the way for promising developments in the compatibility and clinical combination application of traditional Chinese medicine.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 114-126"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49717028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing bone regeneration with a novel bioactive glass-functionalized polyetheretherketone scaffold by regulating the immune microenvironment 一种新型生物活性玻璃功能化聚醚酮支架通过调节免疫微环境促进骨再生
Q1 Engineering Pub Date : 2023-09-23 DOI: 10.1016/j.smaim.2023.09.002
Mengen Zhao , Qianwen Yang , Shixiong Zhang , Chao Zhang , Zhaoying Wu

Polyetheretherketone (PEEK) has become a promising material for bone engineering due to its excellent mechanical properties, radiolucency and chemical resistance. However, its inherent bioinertness and lack of osteogenic activity induce a foreign body reaction and fibrous encapsulation, which limits its effectiveness in promoting bone regeneration. Herein, we develop a novel bioactive glass–functionalized PEEK scaffold (ADSP) to accelerate bone regeneration by immunoregulation. Strontium-doped bioactive glass nanoparticles loaded with alendronate (A-SrBG) were coated on the sulfonated PEEK scaffold by the strong adhesion ability of polydopamine. The released bioactive ions from the scaffold can improve the biocompatibilities and osteogenic activity of PEEK. In vitro results showed the ADSP scaffold promoted polarization of the M2 macrophages via the NF-κB pathway to enhance the osteogenic differentiation of rat bone mesenchymal stem cells (rBMSCs). Further, in vivo rat skull drilling model assessment revealed efficient polarization of M2 macrophage and desirable new bone formation. Thus, ADSP scaffold exerted osteoimmunomodulation effect to promote bone regeneration.

聚醚醚酮(PEEK)具有良好的力学性能、透照性和耐化学性,已成为一种很有前途的骨工程材料。然而,其固有的生物惰性和缺乏成骨活性会引起异物反应和纤维包裹,这限制了其促进骨再生的有效性。在此,我们开发了一种新型的生物活性玻璃功能化PEEK支架(ADSP),通过免疫调节来加速骨再生。通过聚多巴胺的强粘附能力,将负载阿仑膦酸盐的掺锶生物活性玻璃纳米粒子(A-SrBG)涂覆在磺化PEEK支架上。从支架中释放的生物活性离子可以提高PEEK的生物相容性和成骨活性。体外结果显示,ADSP支架通过NF-κB途径促进M2巨噬细胞的极化,增强大鼠骨髓间充质干细胞(rBMSCs)的成骨分化。此外,体内大鼠颅骨钻孔模型评估显示M2巨噬细胞的有效极化和理想的新骨形成。因此,ADSP支架具有促进骨再生的骨免疫调节作用。
{"title":"Enhancing bone regeneration with a novel bioactive glass-functionalized polyetheretherketone scaffold by regulating the immune microenvironment","authors":"Mengen Zhao ,&nbsp;Qianwen Yang ,&nbsp;Shixiong Zhang ,&nbsp;Chao Zhang ,&nbsp;Zhaoying Wu","doi":"10.1016/j.smaim.2023.09.002","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.09.002","url":null,"abstract":"<div><p>Polyetheretherketone (PEEK) has become a promising material for bone engineering due to its excellent mechanical properties, radiolucency and chemical resistance. However, its inherent bioinertness and lack of osteogenic activity induce a foreign body reaction and fibrous encapsulation, which limits its effectiveness in promoting bone regeneration. Herein, we develop a novel bioactive glass–functionalized PEEK scaffold (ADSP) to accelerate bone regeneration by immunoregulation. Strontium-doped bioactive glass nanoparticles loaded with alendronate (A-SrBG) were coated on the sulfonated PEEK scaffold by the strong adhesion ability of polydopamine. The released bioactive ions from the scaffold can improve the biocompatibilities and osteogenic activity of PEEK. <em>In vitro</em> results showed the ADSP scaffold promoted polarization of the M2 macrophages <em>via</em> the NF-κB pathway to enhance the osteogenic differentiation of rat bone mesenchymal stem cells (rBMSCs). Further, <em>in vivo</em> rat skull drilling model assessment revealed efficient polarization of M2 macrophage and desirable new bone formation. Thus, ADSP scaffold exerted osteoimmunomodulation effect to promote bone regeneration.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 92-105"},"PeriodicalIF":0.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49734839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical nanoprobes in biomedical diagnosis assays: Recent progress 光学纳米探针在生物医学诊断中的研究进展
Q1 Engineering Pub Date : 2023-09-15 DOI: 10.1016/j.smaim.2023.09.001
Fuli Chen , Jiuchuan Guo , Jinhong Guo , Wenjun Chen , Xing Ma

Biomedical assays based on optical nanoprobes play an important role in human health. Optical nanoprobes, the nanomaterials with special optical properties, are widely utilized in biomedical assays. Compared with traditional materials, the well-performed optical nanoprobes have certain properties, such as negligible interferences from the background fluorescence and scattering, simple operations and instruments, high sensitivity, and excellent specificity. This paper reviews the mechanisms, materials, and applications of optical nanoprobes. The mechanisms of optical nanoprobes involve fluorescence, phosphorescence, Förster resonance energy transfer (FRET), upconversion luminescence and chemiluminescence. Time-resolved luminescent nanoprobes are usually prepared from rare earth compounds and quantum dots (QDs). Ultralong inorganic phosphorescent nanoprobes are prepared from transition metal compounds, while ultralong organic phosphorescent nanoprobes are usually prepared from π-conjugated compound nanocrystals that exhibit a rigid confinement to suppress the non-radiative transitions and contain heavy atoms to enhance ISC. Time-resolved luminescent nanoprobes and ultralong phosphorescent nanoprobes minimize background interferences by longer luminescence lifetime. Chemiluminescent nanoprobes are usually prepared from compounds that can react with reactive oxygen species (ROS) to form peroxide bonds. Upconversion luminescent nanoprobes are usually prepared from inorganic rare earth fluoride nanocrystals. Chemiluminescent nanoprobes and upconversion luminescent nanoprobes can avoid background interferences because excitation light of shorter wavelength is not needed. FRET nanoprobes and luminescence quenching nanoprobes are prepared from a donor and an acceptor that can be linked or delinked by the analyte. Optical nanoprobes are applied in both in vitro diagnoses and in vivo imaging. The in vitro applications of optical nanoprobes include the determination of varieties of biomacromolecules and small molecules, while the in vivo imaging involves the diagnoses of inflammation and tumors.

基于光学纳米探针的生物医学检测在人类健康中发挥着重要作用。光学纳米探针是一种具有特殊光学性质的纳米材料,在生物医学检测中有着广泛的应用。与传统材料相比,性能良好的光学纳米探针具有某些特性,如背景荧光和散射的干扰可以忽略不计,操作和仪器简单,灵敏度高,特异性好。本文综述了光学纳米探针的机理、材料和应用。光学纳米探针的机理包括荧光、磷光、Förster共振能量转移(FRET)、上转换发光和化学发光。时间分辨发光纳米探针通常由稀土化合物和量子点(QDs)制备。超长无机磷光纳米探针由过渡金属化合物制备,而超长有机磷光纳米探测器通常由π-共轭化合物纳米晶体制备,这些化合物纳米晶体表现出刚性约束以抑制非辐射跃迁,并含有重原子以增强ISC。时间分辨发光纳米探针和超长磷光纳米探针通过延长发光寿命来最小化背景干扰。化学发光纳米探针通常由可以与活性氧(ROS)反应形成过氧化物键的化合物制备。上转换发光纳米探针通常由无机稀土氟化物纳米晶体制备。化学发光纳米探针和上转换发光纳米探针可以避免背景干扰,因为不需要更短波长的激发光。FRET纳米探针和发光猝灭纳米探针由供体和受体制备,所述供体和受体可以被分析物连接或脱链。光学纳米探针应用于体外诊断和体内成像。光学纳米探针的体外应用包括测定各种生物大分子和小分子,而体内成像则涉及炎症和肿瘤的诊断。
{"title":"Optical nanoprobes in biomedical diagnosis assays: Recent progress","authors":"Fuli Chen ,&nbsp;Jiuchuan Guo ,&nbsp;Jinhong Guo ,&nbsp;Wenjun Chen ,&nbsp;Xing Ma","doi":"10.1016/j.smaim.2023.09.001","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.09.001","url":null,"abstract":"<div><p>Biomedical assays based on optical nanoprobes play an important role in human health. Optical nanoprobes, the nanomaterials with special optical properties, are widely utilized in biomedical assays. Compared with traditional materials, the well-performed optical nanoprobes have certain properties, such as negligible interferences from the background fluorescence and scattering, simple operations and instruments, high sensitivity, and excellent specificity. This paper reviews the mechanisms, materials, and applications of optical nanoprobes. The mechanisms of optical nanoprobes involve fluorescence, phosphorescence, Förster resonance energy transfer (FRET), upconversion luminescence and chemiluminescence. Time-resolved luminescent nanoprobes are usually prepared from rare earth compounds and quantum dots (QDs). Ultralong inorganic phosphorescent nanoprobes are prepared from transition metal compounds, while ultralong organic phosphorescent nanoprobes are usually prepared from π-conjugated compound nanocrystals that exhibit a rigid confinement to suppress the non-radiative transitions and contain heavy atoms to enhance ISC. Time-resolved luminescent nanoprobes and ultralong phosphorescent nanoprobes minimize background interferences by longer luminescence lifetime. Chemiluminescent nanoprobes are usually prepared from compounds that can react with reactive oxygen species (ROS) to form peroxide bonds. Upconversion luminescent nanoprobes are usually prepared from inorganic rare earth fluoride nanocrystals. Chemiluminescent nanoprobes and upconversion luminescent nanoprobes can avoid background interferences because excitation light of shorter wavelength is not needed. FRET nanoprobes and luminescence quenching nanoprobes are prepared from a donor and an acceptor that can be linked or delinked by the analyte. Optical nanoprobes are applied in both in vitro diagnoses and in vivo imaging. The in vitro applications of optical nanoprobes include the determination of varieties of biomacromolecules and small molecules, while the in vivo imaging involves the diagnoses of inflammation and tumors.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 75-91"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49717120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A detailed protocol for cell force measurement by traction force microscopy 用牵引力显微镜测量细胞力的详细方案
Q1 Engineering Pub Date : 2023-08-22 DOI: 10.1016/j.smaim.2023.08.002
Man Zhang , Yu Zhang , Peng Wang , Qian Sun , Xin Wang , Yi Cao , Qiang Wei

Cellular traction forces (CTFs) are generated by adherent cells and involved in regulating migration, morphology, and homeostasis. Accurate measurement of CTFs is crucial for understanding fundamental biological processes such as morphogenesis, angiogenesis, and wound healing. However, directly measuring CTFs, which typically range in the nanonewton scale, is challenging. Cellular traction force microscopy (TFM) has been developed to quantify CTFs, but detailed operational procedures and complex data analysis limit its applicability. In this study, hydrogels embedded with fluo-spheres serve as the substrate for TFM measurement under a detailed TFM protocol. Additionally, we designed a user-friendly program for easy parameter setting. An open-source program called Python Fourier transform traction cytometry (pyFTTC) is introduced for data analysis, utilizing particle image velocimetry (PIV) to calculate the traction force from a batch of images. Cross-correlation based PIV and L2-regularized FTTC are applied to all images for data analysis. This article provides a straightforward protocol for quantifying CTFs in standard laboratories, facilitating both cell biology studies and biomaterials development.

细胞牵引力(CTFs)由贴壁细胞产生,参与调节迁移、形态和体内平衡。CTFs的精确测量对于理解基本的生物过程,如形态发生、血管生成和伤口愈合至关重要。然而,直接测量CTFs(通常在纳米牛顿尺度范围内)是具有挑战性的。细胞牵引力显微镜(TFM)已被用于量化CTFs,但详细的操作程序和复杂的数据分析限制了其适用性。在这项研究中,在详细的TFM协议下,嵌入了流球的水凝胶作为TFM测量的底物。此外,我们还设计了一个用户友好的程序,方便参数设置。引入开源程序Python傅里叶变换牵引细胞术(pyFTTC)进行数据分析,利用粒子图像测速(PIV)从一批图像中计算牵引力。将基于互相关的PIV和l2正则化的FTTC应用于所有图像进行数据分析。本文提供了一种在标准实验室中定量CTFs的简单方案,促进细胞生物学研究和生物材料的开发。
{"title":"A detailed protocol for cell force measurement by traction force microscopy","authors":"Man Zhang ,&nbsp;Yu Zhang ,&nbsp;Peng Wang ,&nbsp;Qian Sun ,&nbsp;Xin Wang ,&nbsp;Yi Cao ,&nbsp;Qiang Wei","doi":"10.1016/j.smaim.2023.08.002","DOIUrl":"10.1016/j.smaim.2023.08.002","url":null,"abstract":"<div><p>Cellular traction forces (CTFs) are generated by adherent cells and involved in regulating migration, morphology, and homeostasis. Accurate measurement of CTFs is crucial for understanding fundamental biological processes such as morphogenesis, angiogenesis, and wound healing. However, directly measuring CTFs, which typically range in the nanonewton scale, is challenging. Cellular traction force microscopy (TFM) has been developed to quantify CTFs, but detailed operational procedures and complex data analysis limit its applicability. In this study, hydrogels embedded with fluo-spheres serve as the substrate for TFM measurement under a detailed TFM protocol. Additionally, we designed a user-friendly program for easy parameter setting. An open-source program called Python Fourier transform traction cytometry (pyFTTC) is introduced for data analysis, utilizing particle image velocimetry (PIV) to calculate the traction force from a batch of images. Cross-correlation based PIV and L2-regularized FTTC are applied to all images for data analysis. This article provides a straightforward protocol for quantifying CTFs in standard laboratories, facilitating both cell biology studies and biomaterials development.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 106-113"},"PeriodicalIF":0.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48035886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The marine natural product trichobotrysin B inhibits proliferation and promotes apoptosis of human glioma cells via the IL-6-mediated STAT3/JAK signaling pathway 海洋天然产物木霉素B通过IL-6介导的STAT3/JAK信号通路抑制人脑胶质瘤细胞增殖并促进细胞凋亡
Q1 Engineering Pub Date : 2023-08-06 DOI: 10.1016/j.smaim.2023.08.001
Xingliang Dai , Junjuan Fan , Dongdong Liu , Huaixu Li , Lei Shu , Peng Gao , Senhua Chen , Xianwen Wang

Glioma is the most common malignant tumor of the central nervous system. Drug-assisted chemotherapy is an important adjuvant treatment post-surgery, but currently, effective chemotherapy drugs for glioma are lacking. Expediting new and effective chemotherapy drugs is a persistent problem that needs to be solved. In this study, a tetramic acid derivative, trichobotrysin B, was extracted from the ascidian-derived fungus Trichobotrys effusa 4729 (denoted ADFTe4729). There is significant cytotoxicity of trichobotrysin B against glioma proliferation, which triggers apoptosis and cell cycle arrest. Furthermore, studies have found that trichobotrysin B inhibits glioma proliferation in a manner closely related to IL-6-mediated STAT3 phosphorylation and JAK2 activation. In conclusion, this study demonstrates that the small-molecule compound trichobotrysin B inhibits glioma proliferation and induces apoptosis through the IL-6-mediated STAT3/JAK2 signaling pathway, suggesting that trichobotrysin B has potential antiglioma efficiency and provides a new way to explore new small-molecule drugs with anticancer effects.

神经胶质瘤是中枢神经系统最常见的恶性肿瘤。药物辅助化疗是胶质瘤术后重要的辅助治疗手段,但目前缺乏有效的胶质瘤化疗药物。加速开发新的有效的化疗药物是一个长期需要解决的问题。本研究从海鞘源真菌Trichobotrys effusa 4729(编号ADFTe4729)中提取了一种四酸衍生物trichobotrysin B。trichobotrysin B对胶质瘤增殖具有显著的细胞毒性,可引发细胞凋亡和细胞周期阻滞。此外,研究发现,trichobotrysin B抑制胶质瘤增殖的方式与il -6介导的STAT3磷酸化和JAK2激活密切相关。综上所述,本研究表明,小分子化合物trichobotrysin B通过il -6介导的STAT3/JAK2信号通路抑制胶质瘤增殖并诱导细胞凋亡,提示trichobotrysin B具有潜在的抗胶质瘤作用,为探索具有抗癌作用的新型小分子药物提供了新的途径。
{"title":"The marine natural product trichobotrysin B inhibits proliferation and promotes apoptosis of human glioma cells via the IL-6-mediated STAT3/JAK signaling pathway","authors":"Xingliang Dai ,&nbsp;Junjuan Fan ,&nbsp;Dongdong Liu ,&nbsp;Huaixu Li ,&nbsp;Lei Shu ,&nbsp;Peng Gao ,&nbsp;Senhua Chen ,&nbsp;Xianwen Wang","doi":"10.1016/j.smaim.2023.08.001","DOIUrl":"10.1016/j.smaim.2023.08.001","url":null,"abstract":"<div><p>Glioma is the most common malignant tumor of the central nervous system. Drug-assisted chemotherapy is an important adjuvant treatment post-surgery, but currently, effective chemotherapy drugs for glioma are lacking. Expediting new and effective chemotherapy drugs is a persistent problem that needs to be solved. In this study, a tetramic acid derivative, trichobotrysin B, was extracted from the ascidian-derived fungus <em>Trichobotrys effusa</em> 4729 (denoted ADF<sub>Te4729</sub>). There is significant cytotoxicity of trichobotrysin B against glioma proliferation, which triggers apoptosis and cell cycle arrest. Furthermore, studies have found that trichobotrysin B inhibits glioma proliferation in a manner closely related to IL-6-mediated STAT3 phosphorylation and JAK2 activation. In conclusion, this study demonstrates that the small-molecule compound trichobotrysin B inhibits glioma proliferation and induces apoptosis through the IL-6-mediated STAT3/JAK2 signaling pathway, suggesting that trichobotrysin B has potential antiglioma efficiency and provides a new way to explore new small-molecule drugs with anticancer effects.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 66-74"},"PeriodicalIF":0.0,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47631530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Octopus -inspired gelatin-methacrylate scaffolds loaded with hBMSC-derived exosomes promote wound healing by regulating macrophage polarization 章鱼启发明胶-甲基丙烯酸酯支架装载hbmscs衍生的外泌体通过调节巨噬细胞极化促进伤口愈合
Q1 Engineering Pub Date : 2023-07-28 DOI: 10.1016/j.smaim.2023.07.002
Dong Yan , Guoqi Cao , Shumei Mao , Zehan Shang , Chengde Li , Guangdong Zhou , Xinping Li , Huitang Xia , Yibing Wang

Excessive local movement and inflammation are common problems in the process of wound repair, which lead to failure of later repair. In order to solve this problem, inspired by the octopus sucker structure, we successfully developed a photocrosslinked hydrogel that can adsorb skin surface fascia. In addition, extracellular vesicles from human bone marrow mesenchymal stem cells are encapsulated in the octopus like sucker structure. The morphology and structure of extracellular vesicles in bone marrow mesenchymal stem cells were detected by scanning electron microscopy and particle size analysis. Through iTRAQ, we tested the expression of angiogenesis related proteins contained in extracellular vesicles. Design small interfering RNA to verify its impact on angiogenic related genes and proteins. Macrophage polarization was detected by immunofluorescence. The expression of new blood vessels was detected by constructing a skin defect model and injecting microfil contrast agent into the heart. When the sucker is firmly adsorbed on the damaged wound, the sucker will slowly degrade. Using its delivery system, it is observed that the extracellular vesicles are released in the wound. Through iTRAQ, it was found that the angiogenesis regulator (angiopoietin-like 4, angiopoietin-like 3 and aminopeptidase N) released in the extracellular vesicles regulates collagen deposition, angiogenesis, and inhibits macrophage aggregation. In addition, the slowly released extracellular vesicles will further inhibit the polarization of proinflammatory macrophages. This biological behavior can provide an adaptive microenvironment for skin regeneration at an early stage. This new bionic octopus sucker structure gel creates a good microenvironment for wound repair and shortens the wound healing time. Therefore, this hydrogel inspired by the octopus sucker structure may provide a good strategy and commercial value for promoting wound repair treatment in clinical practice.

局部过度运动和炎症是创面修复过程中常见的问题,导致后期修复失败。为了解决这一问题,受章鱼吸盘结构的启发,我们成功开发了一种可以吸附皮肤表面筋膜的光交联水凝胶。此外,人骨髓间充质干细胞的胞外囊泡被包裹在章鱼状吸盘结构中。采用扫描电镜和粒度分析方法对骨髓间充质干细胞细胞外囊泡的形态和结构进行了观察。通过iTRAQ检测细胞外囊泡中血管生成相关蛋白的表达。设计小干扰RNA,验证其对血管生成相关基因和蛋白的影响。免疫荧光法检测巨噬细胞极化。通过建立皮肤缺损模型并注入微膜造影剂检测新生血管的表达。当吸盘牢固地吸附在受损伤口上时,吸盘就会慢慢降解。利用其输送系统,观察到细胞外囊泡在伤口中被释放。通过iTRAQ发现细胞外囊泡释放的血管生成调节剂(血管生成素样4、血管生成素样3和氨基肽酶N)调节胶原沉积、血管生成,抑制巨噬细胞聚集。此外,缓慢释放的细胞外囊泡会进一步抑制促炎巨噬细胞的极化。这种生物学行为可以为早期皮肤再生提供适应性微环境。这种新型仿生章鱼吸盘结构凝胶为伤口修复创造了良好的微环境,缩短了伤口愈合时间。因此,这种受章鱼吸盘结构启发的水凝胶可能在临床实践中为促进伤口修复治疗提供良好的策略和商业价值。
{"title":"Octopus -inspired gelatin-methacrylate scaffolds loaded with hBMSC-derived exosomes promote wound healing by regulating macrophage polarization","authors":"Dong Yan ,&nbsp;Guoqi Cao ,&nbsp;Shumei Mao ,&nbsp;Zehan Shang ,&nbsp;Chengde Li ,&nbsp;Guangdong Zhou ,&nbsp;Xinping Li ,&nbsp;Huitang Xia ,&nbsp;Yibing Wang","doi":"10.1016/j.smaim.2023.07.002","DOIUrl":"10.1016/j.smaim.2023.07.002","url":null,"abstract":"<div><p>Excessive local movement and inflammation are common problems in the process of wound repair, which lead to failure of later repair. In order to solve this problem, inspired by the octopus sucker structure, we successfully developed a photocrosslinked hydrogel that can adsorb skin surface fascia. In addition, extracellular vesicles from human bone marrow mesenchymal stem cells are encapsulated in the octopus like sucker structure. The morphology and structure of extracellular vesicles in bone marrow mesenchymal stem cells were detected by scanning electron microscopy and particle size analysis. Through iTRAQ, we tested the expression of angiogenesis related proteins contained in extracellular vesicles. Design small interfering RNA to verify its impact on angiogenic related genes and proteins. Macrophage polarization was detected by immunofluorescence. The expression of new blood vessels was detected by constructing a skin defect model and injecting microfil contrast agent into the heart. When the sucker is firmly adsorbed on the damaged wound, the sucker will slowly degrade. Using its delivery system, it is observed that the extracellular vesicles are released in the wound. Through iTRAQ, it was found that the angiogenesis regulator (angiopoietin-like 4, angiopoietin-like 3 and aminopeptidase N) released in the extracellular vesicles regulates collagen deposition, angiogenesis, and inhibits macrophage aggregation. In addition, the slowly released extracellular vesicles will further inhibit the polarization of proinflammatory macrophages. This biological behavior can provide an adaptive microenvironment for skin regeneration at an early stage. This new bionic octopus sucker structure gel creates a good microenvironment for wound repair and shortens the wound healing time. Therefore, this hydrogel inspired by the octopus sucker structure may provide a good strategy and commercial value for promoting wound repair treatment in clinical practice.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 52-65"},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45540138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recent advances in three-dimensional printing in cardiovascular devices: Bench and bedside applications 心血管设备三维打印的最新进展:实验和床边应用
Q1 Engineering Pub Date : 2023-07-17 DOI: 10.1016/j.smaim.2023.07.001
Yihong Shen , Jie Cui , Xiao Yu , Jiahui Song , Pengfei Cai , Wanxin Guo , Yue Zhao , Jinglei Wu , Hongbing Gu , Binbin Sun , Xiumei Mo

Three-dimensional (3D) printing is emerging as an innovative technology, which is widely used in cardiovascular disease at bench and bedside. During the last decade, with the development of 3D printing industry, many 3D printed models have been used in clinic, because it can provide the advantage of haptic feedback, direct manipulation, and enhanced doctors’ understanding of cardiovascular anatomy and underlying pathologies. In addition to the preparation of 3D printed models, 3D printing technology also shows great application potential in cardiovascular regenerative medicine because it has the advantages of integrating cells, cytokines and materials. Although cardiovascular regenerative medicine application still has a gap between bench and bedside, this gap is gradually narrowing with the development of new materials and new technology of 3D printing recently. In this review, we firstly analyze the characteristics and clinical needs of cardiovascular diseases, and introduce the concept and category of 3D printing technology. Secondly, we summarize the application of 3D printed models, stents, vascular graft, vascular network, and heart organs at bench and bedside. In the end, we discuss the challenges and future perspectives of 3D printing in cardiovascular diseases.

三维(3D)打印是一项新兴的创新技术,广泛应用于心血管疾病的临床和临床。近十年来,随着3D打印行业的发展,许多3D打印模型已经应用于临床,因为它可以提供触觉反馈,直接操作,以及增强医生对心血管解剖和潜在病理的了解。除了3D打印模型的制备,3D打印技术在心血管再生医学方面也显示出巨大的应用潜力,因为它具有整合细胞、细胞因子和材料的优势。虽然心血管再生医学的应用在实验台和床边之间还存在差距,但随着近年来新材料和3D打印新技术的发展,这一差距正在逐渐缩小。本文首先分析了心血管疾病的特点和临床需求,介绍了3D打印技术的概念和分类。其次,总结了3D打印模型、支架、血管移植、血管网、心脏器官在临床和床边的应用。最后,我们讨论了3D打印在心血管疾病中的挑战和未来前景。
{"title":"Recent advances in three-dimensional printing in cardiovascular devices: Bench and bedside applications","authors":"Yihong Shen ,&nbsp;Jie Cui ,&nbsp;Xiao Yu ,&nbsp;Jiahui Song ,&nbsp;Pengfei Cai ,&nbsp;Wanxin Guo ,&nbsp;Yue Zhao ,&nbsp;Jinglei Wu ,&nbsp;Hongbing Gu ,&nbsp;Binbin Sun ,&nbsp;Xiumei Mo","doi":"10.1016/j.smaim.2023.07.001","DOIUrl":"10.1016/j.smaim.2023.07.001","url":null,"abstract":"<div><p>Three-dimensional (3D) printing is emerging as an innovative technology, which is widely used in cardiovascular disease at bench and bedside. During the last decade, with the development of 3D printing industry, many 3D printed models have been used in clinic, because it can provide the advantage of haptic feedback, direct manipulation, and enhanced doctors’ understanding of cardiovascular anatomy and underlying pathologies. In addition to the preparation of 3D printed models, 3D printing technology also shows great application potential in cardiovascular regenerative medicine because it has the advantages of integrating cells, cytokines and materials. Although cardiovascular regenerative medicine application still has a gap between bench and bedside, this gap is gradually narrowing with the development of new materials and new technology of 3D printing recently. In this review, we firstly analyze the characteristics and clinical needs of cardiovascular diseases, and introduce the concept and category of 3D printing technology. Secondly, we summarize the application of 3D printed models, stents, vascular graft, vascular network, and heart organs at bench and bedside. In the end, we discuss the challenges and future perspectives of 3D printing in cardiovascular diseases.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 36-51"},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45522308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Magnetosurgery: Principles, design, and applications 磁外科:原理、设计和应用
Q1 Engineering Pub Date : 2023-07-07 DOI: 10.1016/j.smaim.2023.06.008
Daniil V. Kladko, Vladimir V. Vinogradov

Magnetosurgery, the guidance or actuation of surgical instruments during operations using magnetic forces, has become a global trend in minimally invasive surgeries performed remotely. Despite the promise of the magnetosurgery platform, only select surgeries are compatible with this technology, and issues related to the engineering, materials used, and applications are still not fully understood. In this review, we focus on the engineering and material basis of magnetosurgery in order to summarize and expand existing knowledge to create a versatile platform with multiple surgical applications.

磁力手术,即在手术过程中利用磁力引导或驱动手术器械,已成为远程微创手术的全球趋势。尽管磁手术平台很有前景,但只有部分手术与该技术兼容,而且与工程、使用的材料和应用相关的问题仍未完全了解。在这篇综述中,我们着眼于磁外科的工程和材料基础,以总结和扩展现有的知识,以创建一个具有多种外科应用的通用平台。
{"title":"Magnetosurgery: Principles, design, and applications","authors":"Daniil V. Kladko,&nbsp;Vladimir V. Vinogradov","doi":"10.1016/j.smaim.2023.06.008","DOIUrl":"10.1016/j.smaim.2023.06.008","url":null,"abstract":"<div><p>Magnetosurgery, the guidance or actuation of surgical instruments during operations using magnetic forces, has become a global trend in minimally invasive surgeries performed remotely. Despite the promise of the magnetosurgery platform, only select surgeries are compatible with this technology, and issues related to the engineering, materials used, and applications are still not fully understood. In this review, we focus on the engineering and material basis of magnetosurgery in order to summarize and expand existing knowledge to create a versatile platform with multiple surgical applications.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"5 1","pages":"Pages 24-35"},"PeriodicalIF":0.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42403478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Smart Materials in Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1